Pub Date : 2023-05-29DOI: 10.1186/s40694-023-00159-w
Pamela Vrabl, Maria Zottele, Lucia Colleselli, Christoph Walter Schinagl, Laura Mayerhofer, Bianka Siewert, Hermann Strasser
Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λpeak = 635 nm), green light (λpeak = 519 nm) or blue light (λpeak = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm-2, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm-2, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm-2. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.
{"title":"Light in the box-photobiological examination chamber with light trap ventilation system for studying fungal surface cultures illustrated with Metarhizium brunneum and Beauveria brongniartii.","authors":"Pamela Vrabl, Maria Zottele, Lucia Colleselli, Christoph Walter Schinagl, Laura Mayerhofer, Bianka Siewert, Hermann Strasser","doi":"10.1186/s40694-023-00159-w","DOIUrl":"10.1186/s40694-023-00159-w","url":null,"abstract":"<p><p>Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λ<sub>peak</sub> = 635 nm), green light (λ<sub>peak</sub> = 519 nm) or blue light (λ<sub>peak</sub> = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm<sup>-2</sup>, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm<sup>-2</sup>, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm<sup>-2</sup>. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9955125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-03DOI: 10.1186/s40694-023-00157-y
Revanna Ashwin, Davis Joseph Bagyaraj, Basavaiah Mohan Raju
Background: Drought stress is currently the primary abiotic stress factor for crop loss worldwide. Although drought stress reduces the crop yield significantly, species and genotypes differ in their stress response; some tolerate the stress effect while others not. In several systems, it has been shown that, some of the beneficial soil microbes ameliorate the stress effect and thereby, minimizing yield losses under stress conditions. Realizing the importance of beneficial soil microbes, a field experiment was conducted to study the effect of selected microbial inoculants namely, N-fixing bacteria, Bradyrhizobium liaoningense and P-supplying arbuscular mycorrhizal fungus, Ambispora leptoticha on growth and performance of a drought susceptible and high yielding soybean cultivar, MAUS 2 under drought condition.
Results: Drought stress imposed during flowering and pod filling stages showed that, dual inoculation consisting of B. liaoningense and A. leptoticha improved the physiological and biometric characteristics including nutrient uptake and yield under drought conditions. Inoculated plants showed an increased number of pods and pod weight per plant by 19% and 34% respectively, while the number of seeds and seed weight per plant increased by 17% and 32% respectively over un-inoculated plants under drought stress condition. Further, the inoculated plants showed higher chlorophyll and osmolyte content, higher detoxifying enzyme activity, and higher cell viability because of less membrane damage compared to un-inoculated plants under stress condition. In addition, they also showed higher water use efficiency coupled with more nutrients accumulation besides exhibiting higher load of beneficial microbes.
Conclusion: Dual inoculation of soybean plants with beneficial microbes would alleviate the drought stress effects, thereby allowing normal plants' growth under stress condition. The study therefore, infers that AM fungal and rhizobia inoculation seems to be necessary when soybean is to be cultivated under drought or water limiting conditions.
{"title":"Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus.","authors":"Revanna Ashwin, Davis Joseph Bagyaraj, Basavaiah Mohan Raju","doi":"10.1186/s40694-023-00157-y","DOIUrl":"https://doi.org/10.1186/s40694-023-00157-y","url":null,"abstract":"<p><strong>Background: </strong>Drought stress is currently the primary abiotic stress factor for crop loss worldwide. Although drought stress reduces the crop yield significantly, species and genotypes differ in their stress response; some tolerate the stress effect while others not. In several systems, it has been shown that, some of the beneficial soil microbes ameliorate the stress effect and thereby, minimizing yield losses under stress conditions. Realizing the importance of beneficial soil microbes, a field experiment was conducted to study the effect of selected microbial inoculants namely, N-fixing bacteria, Bradyrhizobium liaoningense and P-supplying arbuscular mycorrhizal fungus, Ambispora leptoticha on growth and performance of a drought susceptible and high yielding soybean cultivar, MAUS 2 under drought condition.</p><p><strong>Results: </strong>Drought stress imposed during flowering and pod filling stages showed that, dual inoculation consisting of B. liaoningense and A. leptoticha improved the physiological and biometric characteristics including nutrient uptake and yield under drought conditions. Inoculated plants showed an increased number of pods and pod weight per plant by 19% and 34% respectively, while the number of seeds and seed weight per plant increased by 17% and 32% respectively over un-inoculated plants under drought stress condition. Further, the inoculated plants showed higher chlorophyll and osmolyte content, higher detoxifying enzyme activity, and higher cell viability because of less membrane damage compared to un-inoculated plants under stress condition. In addition, they also showed higher water use efficiency coupled with more nutrients accumulation besides exhibiting higher load of beneficial microbes.</p><p><strong>Conclusion: </strong>Dual inoculation of soybean plants with beneficial microbes would alleviate the drought stress effects, thereby allowing normal plants' growth under stress condition. The study therefore, infers that AM fungal and rhizobia inoculation seems to be necessary when soybean is to be cultivated under drought or water limiting conditions.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9418919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1186/s40694-023-00156-z
Vera Meyer, Alexander Idnurm
{"title":"Putting Fungal Biology and Biotechnology to the test.","authors":"Vera Meyer, Alexander Idnurm","doi":"10.1186/s40694-023-00156-z","DOIUrl":"https://doi.org/10.1186/s40694-023-00156-z","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1186/s40694-023-00155-0
Neil Phillips, Antoni Gandia, Andrew Adamatzky
Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stimuli are taken into account, it is possible to create functioning fungal materials. Thus, active building components, sensory wearables, etc. might be created. This research describes the electrical sensitivity of fungus to changes in the moisture content of a mycelium-bound composite. Trains of electrical spikes initiate spontaneously in fresh mycelium-bound composites with a moisture content between [Formula: see text] 95% and [Formula: see text] 65%, and between [Formula: see text] 15% and [Formula: see text] 5% when partially dried. When the surfaces of mycelium-bound composites were partially or totally encased with an impermeable layer, increased electrical activity was observed. In fresh mycelium-bound composites, electrical spikes were seen both spontaneously and when induced by water droplets on the surface. Also explored is the link between electrical activity and electrode depth. Future designs of smart buildings, wearables, fungi-based sensors, and unconventional computer systems may benefit from fungi configurations and biofabrication flexibility.
{"title":"Electrical response of fungi to changing moisture content.","authors":"Neil Phillips, Antoni Gandia, Andrew Adamatzky","doi":"10.1186/s40694-023-00155-0","DOIUrl":"https://doi.org/10.1186/s40694-023-00155-0","url":null,"abstract":"<p><p>Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stimuli are taken into account, it is possible to create functioning fungal materials. Thus, active building components, sensory wearables, etc. might be created. This research describes the electrical sensitivity of fungus to changes in the moisture content of a mycelium-bound composite. Trains of electrical spikes initiate spontaneously in fresh mycelium-bound composites with a moisture content between [Formula: see text] 95% and [Formula: see text] 65%, and between [Formula: see text] 15% and [Formula: see text] 5% when partially dried. When the surfaces of mycelium-bound composites were partially or totally encased with an impermeable layer, increased electrical activity was observed. In fresh mycelium-bound composites, electrical spikes were seen both spontaneously and when induced by water droplets on the surface. Also explored is the link between electrical activity and electrode depth. Future designs of smart buildings, wearables, fungi-based sensors, and unconventional computer systems may benefit from fungi configurations and biofabrication flexibility.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9251884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1186/s40694-023-00154-1
Mihail Besleaga, Gabriel A Vignolle, Julian Kopp, Oliver Spadiut, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann
Background: The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date. In this study, we searched publicly available RNASeq data for stably expressed genes to find potential reference genes for relative transcript analysis by RT-qPCR in K. phaffii. To evaluate the applicability of these genes, we used a diverse set of samples from three different strains and a broad range of cultivation conditions. The transcript levels of 9 genes were measured and compared using commonly applied bioinformatic tools.
Results: We could demonstrate that the often-used reference gene ACT1 is not very stably expressed and could identify two genes with outstandingly low transcript level fluctuations. Consequently, we suggest the two genes, RSC1, and TAF10 to be simultaneously used as reference genes in transcript analyses by RT-qPCR in K. phaffii in future RT-qPCR assays.
Conclusion: The usage of ACT1 as a reference gene in RT-qPCR analysis might lead to distorted results due to the instability of its transcript levels. In this study, we evaluated the transcript levels of several genes and found RSC1 and TAF10 to be extremely stable. Using these genes holds the promise for reliable RT-qPCR results.
{"title":"Evaluation of reference genes for transcript analyses in Komagataella phaffii (Pichia pastoris).","authors":"Mihail Besleaga, Gabriel A Vignolle, Julian Kopp, Oliver Spadiut, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann","doi":"10.1186/s40694-023-00154-1","DOIUrl":"https://doi.org/10.1186/s40694-023-00154-1","url":null,"abstract":"<p><strong>Background: </strong>The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date. In this study, we searched publicly available RNASeq data for stably expressed genes to find potential reference genes for relative transcript analysis by RT-qPCR in K. phaffii. To evaluate the applicability of these genes, we used a diverse set of samples from three different strains and a broad range of cultivation conditions. The transcript levels of 9 genes were measured and compared using commonly applied bioinformatic tools.</p><p><strong>Results: </strong>We could demonstrate that the often-used reference gene ACT1 is not very stably expressed and could identify two genes with outstandingly low transcript level fluctuations. Consequently, we suggest the two genes, RSC1, and TAF10 to be simultaneously used as reference genes in transcript analyses by RT-qPCR in K. phaffii in future RT-qPCR assays.</p><p><strong>Conclusion: </strong>The usage of ACT1 as a reference gene in RT-qPCR analysis might lead to distorted results due to the instability of its transcript levels. In this study, we evaluated the transcript levels of several genes and found RSC1 and TAF10 to be extremely stable. Using these genes holds the promise for reliable RT-qPCR results.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9277518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-25DOI: 10.1186/s40694-023-00153-2
Khadiga Amr, Nehal Ibrahim, Ahmed M Elissawy, Abdel Nasser B Singab
Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.
{"title":"Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review.","authors":"Khadiga Amr, Nehal Ibrahim, Ahmed M Elissawy, Abdel Nasser B Singab","doi":"10.1186/s40694-023-00153-2","DOIUrl":"https://doi.org/10.1186/s40694-023-00153-2","url":null,"abstract":"<p><p>Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1186/s40694-023-00151-4
El-Sayed M El-Morsy, Yomna S Elmalahy, Mohamed M A Mousa
A safe and ecofriendly biocontrol of pathogenic Fusarium equiseti was developed based on chitosan nanoparticles (CNPs) combined with Trichoderma longibrachiatum and Penicillium polonicum. Two strains of F. equiseti which were isolated from wilting tomato plant as well as three antagonistic fungi including Trichoderma longibrachiatum and two strains of Penicillium polonicum were isolated from the surrounding soil. All the isolated pathogenic and antagonistic fungi were identified using genomic DNA sequences. The antifungal activity of the three antagonistic fungi were studied against the two strains of F. equiseti. Also, CNPs which were prepared according to the ionic gelation method using sodium tripolyphosphate anions in acetic acid solution were used to enhance the antifungal activity of the three antagonistic fungi. The results exhibit that, combination of T. longibrachiatum with CNPs and P. polonicum with CNPs achieve high antifungal activity against F. equiseti by an inhibition rate equal to 71.05% and 66.7%, respectively.
{"title":"Biocontrol of Fusarium equiseti using chitosan nanoparticles combined with Trichoderma longibrachiatum and Penicillium polonicum.","authors":"El-Sayed M El-Morsy, Yomna S Elmalahy, Mohamed M A Mousa","doi":"10.1186/s40694-023-00151-4","DOIUrl":"10.1186/s40694-023-00151-4","url":null,"abstract":"<p><p>A safe and ecofriendly biocontrol of pathogenic Fusarium equiseti was developed based on chitosan nanoparticles (CNPs) combined with Trichoderma longibrachiatum and Penicillium polonicum. Two strains of F. equiseti which were isolated from wilting tomato plant as well as three antagonistic fungi including Trichoderma longibrachiatum and two strains of Penicillium polonicum were isolated from the surrounding soil. All the isolated pathogenic and antagonistic fungi were identified using genomic DNA sequences. The antifungal activity of the three antagonistic fungi were studied against the two strains of F. equiseti. Also, CNPs which were prepared according to the ionic gelation method using sodium tripolyphosphate anions in acetic acid solution were used to enhance the antifungal activity of the three antagonistic fungi. The results exhibit that, combination of T. longibrachiatum with CNPs and P. polonicum with CNPs achieve high antifungal activity against F. equiseti by an inhibition rate equal to 71.05% and 66.7%, respectively.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10665839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1186/s40694-023-00152-3
Leo Kirchgaessner, Jacob M Wurlitzer, Paula S Seibold, Malik Rakhmanov, Markus Gressler
Background: Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts.
Results: An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF.
Conclusions: The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.
{"title":"A genetic tool to express long fungal biosynthetic genes.","authors":"Leo Kirchgaessner, Jacob M Wurlitzer, Paula S Seibold, Malik Rakhmanov, Markus Gressler","doi":"10.1186/s40694-023-00152-3","DOIUrl":"https://doi.org/10.1186/s40694-023-00152-3","url":null,"abstract":"<p><strong>Background: </strong>Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts.</p><p><strong>Results: </strong>An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF.</p><p><strong>Conclusions: </strong>The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-25DOI: 10.1186/s40694-023-00150-5
Mayuree Kanlayavattanakul, Nattaya Lourith
Background: Topical product derived from the fungus Cordyceps militaris was explored as a feasible method for an industrial practice.
Results: The mycelium residue of C. militaris that was industrial biotechnological produced was extracted with water at different time conditions under ambient temperature, filtered and lyophilized. The extracts were all light to dark brown powder. The 24 h extraction was significantly (p < 0.01) highest in an extractive yield and total polysaccharides content (TPC) (43.33 ± 0.99% and 144.02 ± 2.06 mg glucose/g crude extract). This extract was proved to be stable following an accelerated stability test with the insignificant (p > 0.05) reduction of TPC (4.95 ± 2.23%). Topical product containing the extract were developed. Skin care preparation containing 0.2% extract was exhibited as the appropriated amount giving the stable cream. The developed C. militaris polysaccharide cream was confirmed safe and gained more than 70% of the overall preferences examined in 20 female volunteers.
Conclusions: Cordyceps militaris mycelium residue is a beneficial source for pharmaceutical products. The C. militaris polysaccharides extract was prepared and qualified in terms of active content and stability. The extract was shown to be compatible with the available cosmetic ingredients. The safe and preferred C. militaris polysaccharides skin care cosmetics was developed. Accordingly, C. militaris polysaccharides skin care cosmetics that meets all the quality characters which are stable, safe, usable and efficient.
背景:从真菌蛹虫草中提取外用产品是一种可行的工业实践方法。结果:采用工业生物技术生产的军夜蛾菌丝渣,在常温下不同时间条件下用水提取、过滤、冻干。提取物都是浅棕色到深棕色的粉末。提取24 h TPC降低(4.95±2.23%)显著(p 0.05)。开发了含有该提取物的外用产品。含有0.2%提取物的护肤制剂被展示为给予稳定乳霜的适当量。在20名女性志愿者的测试中,开发的军蛾多糖霜被证实是安全的,获得了70%以上的总体偏好。结论:蛹虫草菌丝渣是一种有益的医药产品来源。制备了军草多糖提取物,并对其活性含量和稳定性进行了验证。该提取物被证明与现有的化妆品成分相容。研制出安全、优选的军蛾多糖护肤化妆品。因此,符合稳定、安全、使用、高效等品质特征的军草多糖护肤化妆品。
{"title":"Cordyceps militaris polysaccharides: preparation and topical product application.","authors":"Mayuree Kanlayavattanakul, Nattaya Lourith","doi":"10.1186/s40694-023-00150-5","DOIUrl":"https://doi.org/10.1186/s40694-023-00150-5","url":null,"abstract":"<p><strong>Background: </strong>Topical product derived from the fungus Cordyceps militaris was explored as a feasible method for an industrial practice.</p><p><strong>Results: </strong>The mycelium residue of C. militaris that was industrial biotechnological produced was extracted with water at different time conditions under ambient temperature, filtered and lyophilized. The extracts were all light to dark brown powder. The 24 h extraction was significantly (p < 0.01) highest in an extractive yield and total polysaccharides content (TPC) (43.33 ± 0.99% and 144.02 ± 2.06 mg glucose/g crude extract). This extract was proved to be stable following an accelerated stability test with the insignificant (p > 0.05) reduction of TPC (4.95 ± 2.23%). Topical product containing the extract were developed. Skin care preparation containing 0.2% extract was exhibited as the appropriated amount giving the stable cream. The developed C. militaris polysaccharide cream was confirmed safe and gained more than 70% of the overall preferences examined in 20 female volunteers.</p><p><strong>Conclusions: </strong>Cordyceps militaris mycelium residue is a beneficial source for pharmaceutical products. The C. militaris polysaccharides extract was prepared and qualified in terms of active content and stability. The extract was shown to be compatible with the available cosmetic ingredients. The safe and preferred C. militaris polysaccharides skin care cosmetics was developed. Accordingly, C. militaris polysaccharides skin care cosmetics that meets all the quality characters which are stable, safe, usable and efficient.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10624580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.1186/s40694-023-00148-z
V Shapaval, A Deniset-Besseau, D Dubava, S Dzurendova, J Heitmann Solheim, A Kohler
Background: Oleaginous fungi have versatile metabolism and able to transform a wide range of substrates into lipids, accounting up to 20-70% of their total cell mass. Therefore, oleaginous fungi are considered as an alternative source of lipids. Oleaginous fungi can accumulate mainly acyl glycerides and free fatty acids which are localized in lipid droplets. Some of the oleaginous fungi possessing promising lipid productivity are dimorphic and can exhibit three cell forms, flat hyphae, swollen hyphae and yeast-like cells. To develop sustainable targeted fungal lipid production, deep understanding of lipogenesis and lipid droplet chemistry in these cell forms is needed at multiscale level. In this study, we explored the potential of infrared spectroscopy techniques for examining lipid droplet formation and accumulation in different cell forms of the dimorphic and oleaginous fungus Mucor circinelloides.
Results: Both transmission- and reflectance-based spectroscopy techniques are shown to be well suited for studying bulk fungal biomass. Exploring single cells with infrared microspectroscopy reveals differences in chemical profiles and, consequently, lipogenesis process, for different cell forms. Yeast-like cells of M. circinelloides exhibited the highest absorbance intensities for lipid-associated peaks in comparison to hyphae-like cell forms. Lipid-to-protein ratio, which is commonly used in IR spectroscopy to estimate lipid yield was the lowest in flat hyphae. Swollen hyphae are mainly composed of lipids and characterized by more uniform distribution of lipid-to-protein concentration. Yeast-like cells seem to be comprised mostly of lipids having the largest lipid-to-protein ratio among all studied cell forms. With infrared nanospectroscopy, variations in the ratios between lipid fractions triglycerides and free fatty acids and clear evidence of heterogeneity within and between lipid droplets are illustrated for the first time.
Conclusions: Vibrational spectroscopy techniques can provide comprehensive information on lipogenesis in dimorphic and oleaginous fungi at the levels of the bulk of cells, single cells and single lipid droplets. Unicellular spectra showed that various cell forms of M. circinelloides differs in the total lipid content and profile of the accumulated lipids, where yeast-like cells are the fatty ones and, therefore, could be considered as preferable cell form for producing lipid-rich biomass. Spectra of single lipid droplets showed an indication of possible droplet-to-droplet and within-droplet heterogeneity.
{"title":"Multiscale spectroscopic analysis of lipids in dimorphic and oleaginous Mucor circinelloides accommodate sustainable targeted lipid production.","authors":"V Shapaval, A Deniset-Besseau, D Dubava, S Dzurendova, J Heitmann Solheim, A Kohler","doi":"10.1186/s40694-023-00148-z","DOIUrl":"https://doi.org/10.1186/s40694-023-00148-z","url":null,"abstract":"<p><strong>Background: </strong>Oleaginous fungi have versatile metabolism and able to transform a wide range of substrates into lipids, accounting up to 20-70% of their total cell mass. Therefore, oleaginous fungi are considered as an alternative source of lipids. Oleaginous fungi can accumulate mainly acyl glycerides and free fatty acids which are localized in lipid droplets. Some of the oleaginous fungi possessing promising lipid productivity are dimorphic and can exhibit three cell forms, flat hyphae, swollen hyphae and yeast-like cells. To develop sustainable targeted fungal lipid production, deep understanding of lipogenesis and lipid droplet chemistry in these cell forms is needed at multiscale level. In this study, we explored the potential of infrared spectroscopy techniques for examining lipid droplet formation and accumulation in different cell forms of the dimorphic and oleaginous fungus Mucor circinelloides.</p><p><strong>Results: </strong>Both transmission- and reflectance-based spectroscopy techniques are shown to be well suited for studying bulk fungal biomass. Exploring single cells with infrared microspectroscopy reveals differences in chemical profiles and, consequently, lipogenesis process, for different cell forms. Yeast-like cells of M. circinelloides exhibited the highest absorbance intensities for lipid-associated peaks in comparison to hyphae-like cell forms. Lipid-to-protein ratio, which is commonly used in IR spectroscopy to estimate lipid yield was the lowest in flat hyphae. Swollen hyphae are mainly composed of lipids and characterized by more uniform distribution of lipid-to-protein concentration. Yeast-like cells seem to be comprised mostly of lipids having the largest lipid-to-protein ratio among all studied cell forms. With infrared nanospectroscopy, variations in the ratios between lipid fractions triglycerides and free fatty acids and clear evidence of heterogeneity within and between lipid droplets are illustrated for the first time.</p><p><strong>Conclusions: </strong>Vibrational spectroscopy techniques can provide comprehensive information on lipogenesis in dimorphic and oleaginous fungi at the levels of the bulk of cells, single cells and single lipid droplets. Unicellular spectra showed that various cell forms of M. circinelloides differs in the total lipid content and profile of the accumulated lipids, where yeast-like cells are the fatty ones and, therefore, could be considered as preferable cell form for producing lipid-rich biomass. Spectra of single lipid droplets showed an indication of possible droplet-to-droplet and within-droplet heterogeneity.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10550170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}