首页 > 最新文献

Fungal Biology and Biotechnology最新文献

英文 中文
Enhancement of antioxidant activity and total phenolic content of Fomitopsis pinicola mycelium extract. 提高拟尾柱虫菌丝体提取物的抗氧化活性和总酚含量
Q1 Agricultural and Biological Sciences Pub Date : 2024-11-07 DOI: 10.1186/s40694-024-00187-0
Tetiana Krupodorova, Victor Barshteyn, Veronika Dzhagan, Andrii Pluzhnyk, Tetiana Zaichenko, Yaroslav Blume

Background: Fomitopsis pinicola is one of the most common fungi found in temperate zone of Europe, widely distributed spread in Asia and North America. Fungus has a wide range of therapeutic activity: antitumor, antimicrobial, anti-inflammatory, antidiabetic, antifungal, hepatoprotective, hemostatic action. A number of studies have confirmed the significant antioxidant activity of F. pinicola fruiting bodies. However, the controlled cultivation conditions that influence fungal growth and metabolite production of F. pinicola, particularly the mycelial growth and biosynthesis of metabolites in its culture broth, as well as the antioxidant activity of its mycelium, remain poorly understood.

Results: This study investigated the impact of cultivation conditions on F. pinicola mycelium growth, phenols synthesis and antioxidant activity. Difference in the biosynthetic activity of F. pinicola under tested cultivation conditions was established. A highest value of 2,2-diphenyl-1-picryl-hydrazyl (DPPH•) inhibition (78.2 ± 0.9%) was found for a mycelium cultivated at 30 ºC, while cultivation at a lower temperature (20 ºC) was suitable for biomass growth (8.5 ± 0.3 g/L) and total phenolic content (TPC) 11.0 ± 0.6 mg GAE/g. Carbon and nitrogen sources in a cultivation broth significantly influenced the studied characteristics. Xylose supported the highest DPPH• inhibition (89.91 ± 0.5%) and TPC (16.55 ± 0.4 mg GAE/g), while galactose yielded the best biomass (4.0 ± 0.3 g/L). Peptone was the most effective nitrogen source for obtaining the mycelium with high potential of DPPH• radical inactivation (90.42 ± 0.5%) and TPC (17.41 ± 0.5 mg GAE/g), while the maximum biomass yield (7.8 ± 0.6 g/L) was found with yeast extract in cultivation medium. F. pinicola demonstrated the ability to grow and produce bioactive metabolites across a wide pH range from 2.5 to 7.5. Shaking cultivation resulted in the highest TPC (21.44 ± 0.10 mg GAE/g), though the same level of antioxidant activity (93%) was achieved under both shaking and static cultivation on the 7th and 28th days, respectively.

Conclusion: Controlling cultivation parameters makes it possible to regulate the metabolic and biochemical processes of F. pinicola, facilitating the balance needed to obtain optimal biomass, phenols and antioxidant activity. The findings show the potential to increase phenol production by 2.25 and 2.23 times under shaking and static conditions, respectively, while maintaining a high level of activity.

背景:Fomitopsis pinicola 是欧洲温带地区最常见的真菌之一,广泛分布于亚洲和北美洲。真菌具有广泛的治疗活性:抗肿瘤、抗菌、消炎、抗糖尿病、抗真菌、保肝和止血作用。许多研究证实,松果菊子实体具有显著的抗氧化活性。然而,人们对影响 F. pinicola 真菌生长和代谢产物产生的可控栽培条件,尤其是其菌丝生长和培养液中代谢产物的生物合成,以及其菌丝体的抗氧化活性仍知之甚少:本研究探讨了培养条件对松果菊菌丝生长、酚类合成和抗氧化活性的影响。结果:本研究调查了栽培条件对 F. pinicola 菌丝生长、酚类合成和抗氧化活性的影响。在 30 ºC 温度下培养的菌丝体对 2,2-二苯基-1-苦基肼(DPPH)的抑制率最高(78.2 ± 0.9%),而在较低温度(20 ºC)下培养的菌丝体生物量增长(8.5 ± 0.3 g/L)和总酚含量(TPC)为 11.0 ± 0.6 mg GAE/g。培养液中的碳源和氮源对所研究的特性有显著影响。木糖的 DPPH 抑制率(89.91 ± 0.5%)和总酚含量(16.55 ± 0.4 毫克 GAE/克)最高,而半乳糖的生物量(4.0 ± 0.3 克/升)最好。蛋白胨是获得具有高 DPPH 自由基失活潜力(90.42 ± 0.5%)和 TPC(17.41 ± 0.5 毫克 GAE/克)的菌丝的最有效氮源,而在培养基中添加酵母提取物则可获得最高生物量产量(7.8 ± 0.6 克/升)。在 2.5 到 7.5 的广泛 pH 值范围内,松果菊都能生长并产生生物活性代谢物。尽管在第 7 天和第 28 天,摇床培养和静态培养的抗氧化活性(93%)水平相同,但摇床培养的 TPC 最高(21.44 ± 0.10 mg GAE/g):控制栽培参数可以调节松果菊的代谢和生化过程,促进获得最佳生物量、酚类和抗氧化活性所需的平衡。研究结果表明,在摇动和静止条件下,酚的产量有可能分别增加 2.25 倍和 2.23 倍,同时保持较高的活性水平。
{"title":"Enhancement of antioxidant activity and total phenolic content of Fomitopsis pinicola mycelium extract.","authors":"Tetiana Krupodorova, Victor Barshteyn, Veronika Dzhagan, Andrii Pluzhnyk, Tetiana Zaichenko, Yaroslav Blume","doi":"10.1186/s40694-024-00187-0","DOIUrl":"10.1186/s40694-024-00187-0","url":null,"abstract":"<p><strong>Background: </strong>Fomitopsis pinicola is one of the most common fungi found in temperate zone of Europe, widely distributed spread in Asia and North America. Fungus has a wide range of therapeutic activity: antitumor, antimicrobial, anti-inflammatory, antidiabetic, antifungal, hepatoprotective, hemostatic action. A number of studies have confirmed the significant antioxidant activity of F. pinicola fruiting bodies. However, the controlled cultivation conditions that influence fungal growth and metabolite production of F. pinicola, particularly the mycelial growth and biosynthesis of metabolites in its culture broth, as well as the antioxidant activity of its mycelium, remain poorly understood.</p><p><strong>Results: </strong>This study investigated the impact of cultivation conditions on F. pinicola mycelium growth, phenols synthesis and antioxidant activity. Difference in the biosynthetic activity of F. pinicola under tested cultivation conditions was established. A highest value of 2,2-diphenyl-1-picryl-hydrazyl (DPPH•) inhibition (78.2 ± 0.9%) was found for a mycelium cultivated at 30 ºC, while cultivation at a lower temperature (20 ºC) was suitable for biomass growth (8.5 ± 0.3 g/L) and total phenolic content (TPC) 11.0 ± 0.6 mg GAE/g. Carbon and nitrogen sources in a cultivation broth significantly influenced the studied characteristics. Xylose supported the highest DPPH• inhibition (89.91 ± 0.5%) and TPC (16.55 ± 0.4 mg GAE/g), while galactose yielded the best biomass (4.0 ± 0.3 g/L). Peptone was the most effective nitrogen source for obtaining the mycelium with high potential of DPPH• radical inactivation (90.42 ± 0.5%) and TPC (17.41 ± 0.5 mg GAE/g), while the maximum biomass yield (7.8 ± 0.6 g/L) was found with yeast extract in cultivation medium. F. pinicola demonstrated the ability to grow and produce bioactive metabolites across a wide pH range from 2.5 to 7.5. Shaking cultivation resulted in the highest TPC (21.44 ± 0.10 mg GAE/g), though the same level of antioxidant activity (93%) was achieved under both shaking and static cultivation on the 7th and 28th days, respectively.</p><p><strong>Conclusion: </strong>Controlling cultivation parameters makes it possible to regulate the metabolic and biochemical processes of F. pinicola, facilitating the balance needed to obtain optimal biomass, phenols and antioxidant activity. The findings show the potential to increase phenol production by 2.25 and 2.23 times under shaking and static conditions, respectively, while maintaining a high level of activity.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a whole-cell SELEX process to select species-specific aptamers against Aspergillus niger. 开发全细胞 SELEX 流程,选择针对黑曲霉的物种特异性适配体。
Q1 Agricultural and Biological Sciences Pub Date : 2024-11-05 DOI: 10.1186/s40694-024-00185-2
Valeria Ellena, Alexandra Ioannou, Claudia Kolm, Andreas H Farnleiter, Matthias G Steiger

Background: Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations. Among others, aptamers could serve as biosensors for the specific detection of fungal spores.

Results: In this study, DNA aptamers specific to conidia of A. niger were developed by optimizing a whole-cell SELEX approach. Three whole-cells SELEX experiments were performed in parallel with similar conditions. Quantification of recovered ssDNA and melting curve analyses were applied to monitor the ongoing SELEX process. Next-generation sequencing was performed on selected recovered ssDNA pools, allowing the identification of DNA aptamers which bind with high affinity to the target cells. The developed aptamers were shown to be species-specific, being able to bind to A. niger but not to A. tubingensis or to A. nidulans. The binding affinity of two aptamers (AN01-R9-006 and AN02-R9-185) was measured to be 58.97 nM and 138.71 nM, respectively, which is in the range of previously developed aptamers.

Conclusions: This study demonstrates that species-specific aptamers can be successfully developed via whole-cell SELEX to distinguish different Aspergillus species and opens up new opportunities in the field of diagnostics of fungal infections.

背景:丝状真菌黑曲霉产生的孢子在各种环境中大量存在。这种真菌在室内环境中的大量繁殖与健康风险有关,其分生孢子可引起动物和人类的过敏反应和严重的侵袭性疾病。因此,检测和监测曲霉分生孢子对预防严重的真菌感染和污染至关重要。其中,适配体可作为特异性检测真菌孢子的生物传感器:结果:本研究通过优化全细胞 SELEX 方法,开发出了特异于黑僵菌分生孢子的 DNA 嵌合体。在相似的条件下同时进行了三次全细胞 SELEX 实验。回收的 ssDNA 定量和熔解曲线分析用于监测正在进行的 SELEX 过程。对选定的回收 ssDNA 池进行了下一代测序,从而鉴定出与靶细胞结合亲和力高的 DNA 合体。研究结果表明,所开发的适配体具有物种特异性,能与黑僵菌结合,但不能与管僵菌或尼德兰僵菌结合。据测定,两种适配体(AN01-R9-006 和 AN02-R9-185)的结合亲和力分别为 58.97 nM 和 138.71 nM,处于以前开发的适配体的范围之内:这项研究表明,通过全细胞 SELEX 可以成功地开发出物种特异性适配体来区分不同的曲霉菌种,这为真菌感染诊断领域带来了新的机遇。
{"title":"Development of a whole-cell SELEX process to select species-specific aptamers against Aspergillus niger.","authors":"Valeria Ellena, Alexandra Ioannou, Claudia Kolm, Andreas H Farnleiter, Matthias G Steiger","doi":"10.1186/s40694-024-00185-2","DOIUrl":"10.1186/s40694-024-00185-2","url":null,"abstract":"<p><strong>Background: </strong>Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations. Among others, aptamers could serve as biosensors for the specific detection of fungal spores.</p><p><strong>Results: </strong>In this study, DNA aptamers specific to conidia of A. niger were developed by optimizing a whole-cell SELEX approach. Three whole-cells SELEX experiments were performed in parallel with similar conditions. Quantification of recovered ssDNA and melting curve analyses were applied to monitor the ongoing SELEX process. Next-generation sequencing was performed on selected recovered ssDNA pools, allowing the identification of DNA aptamers which bind with high affinity to the target cells. The developed aptamers were shown to be species-specific, being able to bind to A. niger but not to A. tubingensis or to A. nidulans. The binding affinity of two aptamers (AN01-R9-006 and AN02-R9-185) was measured to be 58.97 nM and 138.71 nM, respectively, which is in the range of previously developed aptamers.</p><p><strong>Conclusions: </strong>This study demonstrates that species-specific aptamers can be successfully developed via whole-cell SELEX to distinguish different Aspergillus species and opens up new opportunities in the field of diagnostics of fungal infections.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ashbya gossypii as a versatile platform to produce sabinene from agro-industrial wastes. 白蜡树是利用农用工业废料生产沙比利烯的多功能平台。
Q1 Agricultural and Biological Sciences Pub Date : 2024-10-29 DOI: 10.1186/s40694-024-00186-1
Gloria Muñoz-Fernández, Javier-Fernando Montero-Bullón, José Luis Martínez, Rubén M Buey, Alberto Jiménez

Background: Ashbya gossypii is a filamentous fungus widely utilized for industrial riboflavin production and has a great potential as a microbial chassis for synthesizing other valuable metabolites such as folates, biolipids, and limonene. Engineered strains of A. gossypii can effectively use various waste streams, including xylose-rich feedstocks. Notably, A. gossypii has been identified as a proficient biocatalyst for producing limonene from xylose-rich sources. This study aims to investigate the capability of engineered A. gossypii strains to produce various plant monoterpenes using agro-industrial waste as carbon sources.

Results: We overexpressed heterologous terpene synthases to produce acyclic, monocyclic, and bicyclic monoterpenes in two genetic backgrounds of A. gossypii. These backgrounds included an NPP synthase orthogonal pathway and a mutant erg20F95W allele with reduced FPP synthase activity. Our findings demonstrate that A. gossypii can synthesize linalool, limonene, pinene, and sabinene, with terpene synthases showing differential substrate selectivity for NPP or GPP precursors. Additionally, co-overexpression of endogenous HMG1 and ERG12 with heterologous NPP synthase and terpene synthases significantly increased sabinene yields from xylose-containing media. Using mixed formulations of corn-cob lignocellulosic hydrolysates and either sugarcane or beet molasses, we achieved limonene and sabinene productions of 383 mg/L and 684.5 mg/L, respectively, the latter representing a significant improvement compared to other organisms in flask culture mode.

Conclusions: Engineered A. gossypii strains serve as a suitable platform for assessing plant terpene synthase functionality and substrate selectivity in vivo, which are crucial to understand monoterpene bioproduction. The NPP synthase pathway markedly enhances limonene and sabinene production in A. gossypii, achieving levels comparable to those of other industrial microbial producers. Furthermore, these engineered strains offer a novel approach for producing monoterpenes through the valorization of agro-industrial wastes.

背景:棉铃灰是一种广泛用于工业核黄素生产的丝状真菌,作为合成叶酸盐、生物脂类和柠檬烯等其他有价值代谢物的微生物底盘,它具有巨大的潜力。棉铃虫的工程菌株可以有效利用各种废物流,包括富含木糖的原料。值得注意的是,棉花糖酵母已被确认为一种从富含木糖的原料中生产柠檬烯的高效生物催化剂。本研究旨在研究工程化棉铃虫菌株利用农业工业废弃物作为碳源生产各种植物单萜的能力:结果:我们在两种 A. gossypii 基因背景中过表达异源萜烯合成酶,以生产无环、单环和双环单萜烯。这些背景包括 NPP 合成酶正交途径和 FPP 合成酶活性降低的突变体 erg20F95W 等位基因。我们的研究结果表明,A. gossypii 可以合成芳樟醇、柠檬烯、蒎烯和沙比利烯,萜烯合成酶对 NPP 或 GPP 前体的底物选择性不同。此外,内源 HMG1 和 ERG12 与异源 NPP 合成酶和萜烯合成酶的共重表达可显著提高含木糖培养基中的桧烯产量。使用玉米芯木质纤维素水解物与甘蔗或甜菜糖蜜的混合配方,我们的柠檬烯和桧烯产量分别达到了 383 mg/L 和 684.5 mg/L,后者与其他生物在烧瓶培养模式下的产量相比有显著提高:结论:A. gossypii工程菌株是评估体内植物萜烯合成酶功能和底物选择性的合适平台,这对了解单萜烯生物生产至关重要。NPP 合成酶途径显著提高了棉铃虫的柠檬烯和桧烯产量,达到了与其他工业微生物生产商相当的水平。此外,这些工程菌株还提供了一种通过农用工业废物的价值化来生产单萜烯的新方法。
{"title":"Ashbya gossypii as a versatile platform to produce sabinene from agro-industrial wastes.","authors":"Gloria Muñoz-Fernández, Javier-Fernando Montero-Bullón, José Luis Martínez, Rubén M Buey, Alberto Jiménez","doi":"10.1186/s40694-024-00186-1","DOIUrl":"10.1186/s40694-024-00186-1","url":null,"abstract":"<p><strong>Background: </strong>Ashbya gossypii is a filamentous fungus widely utilized for industrial riboflavin production and has a great potential as a microbial chassis for synthesizing other valuable metabolites such as folates, biolipids, and limonene. Engineered strains of A. gossypii can effectively use various waste streams, including xylose-rich feedstocks. Notably, A. gossypii has been identified as a proficient biocatalyst for producing limonene from xylose-rich sources. This study aims to investigate the capability of engineered A. gossypii strains to produce various plant monoterpenes using agro-industrial waste as carbon sources.</p><p><strong>Results: </strong>We overexpressed heterologous terpene synthases to produce acyclic, monocyclic, and bicyclic monoterpenes in two genetic backgrounds of A. gossypii. These backgrounds included an NPP synthase orthogonal pathway and a mutant erg20<sup>F95W</sup> allele with reduced FPP synthase activity. Our findings demonstrate that A. gossypii can synthesize linalool, limonene, pinene, and sabinene, with terpene synthases showing differential substrate selectivity for NPP or GPP precursors. Additionally, co-overexpression of endogenous HMG1 and ERG12 with heterologous NPP synthase and terpene synthases significantly increased sabinene yields from xylose-containing media. Using mixed formulations of corn-cob lignocellulosic hydrolysates and either sugarcane or beet molasses, we achieved limonene and sabinene productions of 383 mg/L and 684.5 mg/L, respectively, the latter representing a significant improvement compared to other organisms in flask culture mode.</p><p><strong>Conclusions: </strong>Engineered A. gossypii strains serve as a suitable platform for assessing plant terpene synthase functionality and substrate selectivity in vivo, which are crucial to understand monoterpene bioproduction. The NPP synthase pathway markedly enhances limonene and sabinene production in A. gossypii, achieving levels comparable to those of other industrial microbial producers. Furthermore, these engineered strains offer a novel approach for producing monoterpenes through the valorization of agro-industrial wastes.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competition between homologous chromosomal DNA and exogenous donor DNA to repair CRISPR/Cas9-induced double-strand breaks in Aspergillus  niger. 同源染色体 DNA 与外源供体 DNA 竞争修复黑曲霉中 CRISPR/Cas9 诱导的双链断裂。
Q1 Agricultural and Biological Sciences Pub Date : 2024-10-15 DOI: 10.1186/s40694-024-00184-3
Selina Forrer, Mark Arentshorst, Prajeesh Koolth Valappil, Jaap Visser, Arthur F J Ram

Background: Aspergillus niger is well-known for its high protein secretion capacity and therefore an important cell factory for homologous and heterologous protein production. The use of a strong promoter and multiple gene copies are commonly used strategies to increase the gene expression and protein production of the gene of interest (GOI). We recently presented a two-step CRISPR/Cas9-mediated approach in which glucoamylase (glaA) landing sites (GLSs) are introduced at predetermined sites in the genome (step 1), which are subsequently filled with copies of the GOI (step 2) to achieve high expression of the GOI.

Results: Here we show that in a ku70 defective A. niger strain (Δku70), thereby excluding non-homologous end joining (NHEJ) as a mechanism to repair double-stranded DNA breaks (DSBs), the chromosomal glaA locus or homologous GLSs can be used to repair Cas9-induced DSBs, thereby competing with the integration of the donor DNA containing the GOI. In the absence of exogenously added donor DNA, the DSBs are repaired with homologous chromosomal DNA located on other chromosomes (inter-chromosomal repair) or, with higher efficiency, by a homologous DNA fragment located on the same chromosome (intra-chromosomal repair). Single copy inter-chromosomal homology-based DNA repair was found to occur in 13-20% of the transformants while 80-87% of the transformants were repaired by exogenously added donor DNA. The efficiency of chromosomal repair was dependent on the copy number of the potential donor DNA sequences in the genome. The presence of five homologous DNA sequences, resulted in an increased number (35-61%) of the transformants repaired by chromosomal DNA. The efficiency of intra-chromosomal homology based DSB repair in the absence of donor DNA was found to be highly preferred (85-90%) over inter-chromosomal repair. Intra-chromosomal repair was also found to be the preferred way of DNA repair in the presence of donor DNA and was found to be locus-dependent.

Conclusion: The awareness that homologous chromosomal DNA repair can compete with donor DNA to repair DSB and thereby affecting the efficiency of multicopy strain construction using CRISPR/Cas9-mediated genome editing is an important consideration to take into account in industrial strain design.

背景:黑曲霉以其高蛋白分泌能力而闻名,因此是生产同源和异源蛋白的重要细胞工厂。使用强启动子和多基因拷贝是提高相关基因(GOI)的基因表达和蛋白质产量的常用策略。我们最近提出了一种由 CRISPR/Cas9 介导的两步法,即在基因组中的预定位点引入葡萄糖淀粉酶(glaA)着陆点(GLSs)(第一步),随后用 GOI 的拷贝填充这些着陆点(第二步),以实现 GOI 的高表达:结果:我们在这里发现,在黑僵菌 ku70 缺陷菌株(Δku70)中,染色体 glaA 基因座或同源 GLS 可用于修复 Cas9 诱导的 DSB,从而与含有 GOI 的供体 DNA 的整合竞争,从而排除了非同源末端连接(NHEJ)这一修复双链 DNA 断裂(DSB)的机制。在没有外源添加供体DNA的情况下,DSB会被位于其他染色体上的同源染色体DNA修复(染色体间修复),或者被位于同一染色体上的同源DNA片段修复(染色体内修复),后者的效率更高。研究发现,13%-20% 的转化子发生了单拷贝染色体间同源 DNA 修复,而 80%-87% 的转化子则由外源添加的供体 DNA 修复。染色体修复的效率取决于基因组中潜在供体 DNA 序列的拷贝数。如果存在五个同源的 DNA 序列,则通过染色体 DNA 修复的转化子数量会增加(35-61%)。研究发现,在没有供体 DNA 的情况下,基于染色体内同源的 DSB 修复效率(85-90%)要比染色体间修复高。在有供体 DNA 存在的情况下,染色体内修复也被认为是首选的 DNA 修复方式,而且这种修复方式与基因位点有关:结论:同源染色体 DNA 修复可与供体 DNA 竞争修复 DSB,从而影响利用 CRISPR/Cas9 介导的基因组编辑构建多拷贝菌株的效率,这是工业化菌株设计中需要考虑的一个重要因素。
{"title":"Competition between homologous chromosomal DNA and exogenous donor DNA to repair CRISPR/Cas9-induced double-strand breaks in Aspergillus  niger.","authors":"Selina Forrer, Mark Arentshorst, Prajeesh Koolth Valappil, Jaap Visser, Arthur F J Ram","doi":"10.1186/s40694-024-00184-3","DOIUrl":"https://doi.org/10.1186/s40694-024-00184-3","url":null,"abstract":"<p><strong>Background: </strong>Aspergillus niger is well-known for its high protein secretion capacity and therefore an important cell factory for homologous and heterologous protein production. The use of a strong promoter and multiple gene copies are commonly used strategies to increase the gene expression and protein production of the gene of interest (GOI). We recently presented a two-step CRISPR/Cas9-mediated approach in which glucoamylase (glaA) landing sites (GLSs) are introduced at predetermined sites in the genome (step 1), which are subsequently filled with copies of the GOI (step 2) to achieve high expression of the GOI.</p><p><strong>Results: </strong>Here we show that in a ku70 defective A. niger strain (Δku70), thereby excluding non-homologous end joining (NHEJ) as a mechanism to repair double-stranded DNA breaks (DSBs), the chromosomal glaA locus or homologous GLSs can be used to repair Cas9-induced DSBs, thereby competing with the integration of the donor DNA containing the GOI. In the absence of exogenously added donor DNA, the DSBs are repaired with homologous chromosomal DNA located on other chromosomes (inter-chromosomal repair) or, with higher efficiency, by a homologous DNA fragment located on the same chromosome (intra-chromosomal repair). Single copy inter-chromosomal homology-based DNA repair was found to occur in 13-20% of the transformants while 80-87% of the transformants were repaired by exogenously added donor DNA. The efficiency of chromosomal repair was dependent on the copy number of the potential donor DNA sequences in the genome. The presence of five homologous DNA sequences, resulted in an increased number (35-61%) of the transformants repaired by chromosomal DNA. The efficiency of intra-chromosomal homology based DSB repair in the absence of donor DNA was found to be highly preferred (85-90%) over inter-chromosomal repair. Intra-chromosomal repair was also found to be the preferred way of DNA repair in the presence of donor DNA and was found to be locus-dependent.</p><p><strong>Conclusion: </strong>The awareness that homologous chromosomal DNA repair can compete with donor DNA to repair DSB and thereby affecting the efficiency of multicopy strain construction using CRISPR/Cas9-mediated genome editing is an important consideration to take into account in industrial strain design.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. 毛霉属真菌寄生攻击与否的决定是在一定距离外以猎物特异性的方式做出的,有利于植物之间的有益互动。
Q1 Agricultural and Biological Sciences Pub Date : 2024-09-09 DOI: 10.1186/s40694-024-00183-4
Pia Stange, Johannes Kersting, Prasath Balaji Sivaprakasam Padmanaban, Jörg-Peter Schnitzler, Maaria Rosenkranz, Tanja Karl, J Philipp Benz

Background: The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization.

Results: We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens.

Conclusion: The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.

背景:近年来,由于农业和林业都面临着土壤贫瘠和气候变化的挑战,应用对植物有益的微生物作为生物肥料和生物控制剂的做法越来越受到重视。毛霉菌属在农业和林业中越来越受欢迎,这是因为它们通过养分转运、激素生产、诱导植物系统抗性以及直接拮抗其他真菌等多方面作用促进植物生长。然而,该真菌属的真菌营养特性可能会干扰根瘤菌圈中对植物有益的其他本地真菌,如外生菌根。这种干扰可能会给这些生态系统中的寄主植物带来难以预料的后果。迄今为止,毛霉菌是否能在植物定殖过程中区分植物有益真菌和植物致病真菌仍不清楚:结果:我们研究了毛霉属真菌是否能在不同的对抗场景中区分有益的外生菌根真菌(以 Laccaria bicolor 和 Hebeloma cylindrosporum 为代表)和致病真菌(以 Fusarium graminearum 和 Alternaria alternata 为代表),包括新开发的类似嗅觉仪的 "竞赛管 "系统。我们的研究使用了两个独立的物种--T. harzianum和T. atrobrunneum,它们对杨树具有促进生长和免疫刺激的特性,研究结果表明,它们对植物病原体的生长加速强劲,而对外生菌则表现出相反的反应。转录组分析确定了与生活方式相对应的相互作用过程中不同的遗传程序,强调了只有在植物病原体存在的情况下才会表达与真菌寄生相关的基因:结论:研究结果揭示了地下真菌群落相互作用的一种关键模式,并表明毛霉属真菌可以在一定距离内区分不同生活方式的真菌伙伴。这揭示了真菌在根瘤菌圈中纠缠不清的相互作用,并强调了在植树造林中使用毛霉属作为生物控制剂和生物肥料的潜在益处。
{"title":"The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions.","authors":"Pia Stange, Johannes Kersting, Prasath Balaji Sivaprakasam Padmanaban, Jörg-Peter Schnitzler, Maaria Rosenkranz, Tanja Karl, J Philipp Benz","doi":"10.1186/s40694-024-00183-4","DOIUrl":"https://doi.org/10.1186/s40694-024-00183-4","url":null,"abstract":"<p><strong>Background: </strong>The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization.</p><p><strong>Results: </strong>We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer \"race tube\"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens.</p><p><strong>Conclusion: </strong>The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox. 在尼日尔黑曲霉中表达的链霉菌小漆酶是木质纤维素生物转化工具箱中的新成员。
Q1 Agricultural and Biological Sciences Pub Date : 2024-09-02 DOI: 10.1186/s40694-024-00181-6
Andika Sidar, Gerben P Voshol, Ahmed El-Masoudi, Erik Vijgenboom, Peter J Punt

Laccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains. This type of SLAC with interesting lignocellulose bioconversion activities has not been reported in Aspergillus niger. In our research, we explored the expression and engineering of the SLAC from Streptomyces leeuwenhoekii C34 in A. niger. Genes encoding two versions of the SLAC were expressed. One encoding the SLAC in its native form and a second encoding the SLAC fused to two N-terminal CBM1 domains. The latter is a configuration also known for specific yeast laccases. Both SLAC variants were functionally expressed in A. niger as shown by in vitro activity assays and proteome analysis. Laccase activity was also analyzed toward bioconversion of lignocellulosic rice straw. From this analysis it was clear that the SLAC activity improved the efficiency of saccharification of lignocellulosic biomass by cellulase enzyme cocktails.

Laccase 是一种多铜氧化酶,通常由三个铜氧化酶结构域组成。第一和第三结构域是铜结合位点,第二结构域参与形成底物结合裂隙。然而,人们发现链霉菌中有一些小型氧化酶(SLAC)缺少三个铜氧化酶结构域中的一个。这种具有有趣的木质纤维素生物转化活性的 SLAC 在黑曲霉中尚未见报道。在我们的研究中,我们探索了黑曲霉中来自 Leeuwenhoekii C34 链霉菌的 SLAC 的表达和工程设计。我们表达了编码两种版本 SLAC 的基因。一个编码原生形式的 SLAC,另一个编码与两个 N 端 CBM1 结构域融合的 SLAC。后者也是已知的特定酵母漆酶的结构。体外活性测定和蛋白质组分析表明,这两种 SLAC 变体都能在黑曲霉中正常表达。此外,还对生物转化木质纤维素稻草的漆酶活性进行了分析。分析结果表明,SLAC 活性提高了纤维素酶鸡尾酒对木质纤维素生物质的糖化效率。
{"title":"Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox.","authors":"Andika Sidar, Gerben P Voshol, Ahmed El-Masoudi, Erik Vijgenboom, Peter J Punt","doi":"10.1186/s40694-024-00181-6","DOIUrl":"10.1186/s40694-024-00181-6","url":null,"abstract":"<p><p>Laccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains. This type of SLAC with interesting lignocellulose bioconversion activities has not been reported in Aspergillus niger. In our research, we explored the expression and engineering of the SLAC from Streptomyces leeuwenhoekii C34 in A. niger. Genes encoding two versions of the SLAC were expressed. One encoding the SLAC in its native form and a second encoding the SLAC fused to two N-terminal CBM1 domains. The latter is a configuration also known for specific yeast laccases. Both SLAC variants were functionally expressed in A. niger as shown by in vitro activity assays and proteome analysis. Laccase activity was also analyzed toward bioconversion of lignocellulosic rice straw. From this analysis it was clear that the SLAC activity improved the efficiency of saccharification of lignocellulosic biomass by cellulase enzyme cocktails.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Border crossings and connections. 过境和连接。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-22 DOI: 10.1186/s40694-024-00182-5
Martin Weinhold

From 30 September 2023 to 7 January 2024, the Nobel Prize Museum in Stockholm presented the show Fungi-In Art and Science. For the exhibition, an alliance of scientists, artists, and designers was brought together that overcame all the alleged borders between the disciplines, between the scientific and the creative world. This special exhibition is the starting point to take on a tour where it is about crossing borders and growing connections when working with fungi. My interview partners represent perfectly the different angles from which you can take a look onto the kingdom of fungi. There is the person without previous knowledge but with a profound artistic understanding who got mesmerized by the subject-matter, which he didn't realize it existed before-Karl-Johan Cottman. There is the scientist, being knee-deep in fungi matter who discovered the arts for an extension of her scientific understanding-Vera Meyer. And last but not least there is the person living passionately for the arts who found fungi mesmerizing for both art creation and progressive/sustainable production-Phil Ross. So, there are three threads weaving one fungal fabric. Have fun reading it!

2023 年 9 月 30 日至 2024 年 1 月 7 日,斯德哥尔摩诺贝尔奖博物馆举办了 "真 菌--艺术与科学 "展览。在这次展览中,科学家、艺术家和设计师组成了一个联盟,克服了各学科之间、科学界和创意界之间所有所谓的界限。这次特别展览是我们参观的起点,在这里,我们可以跨越边界,与真菌建立联系。我的采访对象完美地诠释了真菌王国的不同角度。卡尔-约翰-科特曼(Karl-Johan Cottman)是一个没有任何知识但对艺术有着深刻理解的人,他被这个主题深深吸引,而他之前并没有意识到它的存在。还有一位在真菌领域深耕多年的科学家,她发现艺术是她对科学理解的延伸--薇拉-梅耶尔(Vera Meyer)。最后一位是对艺术充满热情的人--菲尔-罗斯,他发现真菌在艺术创作和进步/可持续生产方面都令人着迷。因此,三条线索编织成了一块真菌织物。祝您阅读愉快!
{"title":"Border crossings and connections.","authors":"Martin Weinhold","doi":"10.1186/s40694-024-00182-5","DOIUrl":"10.1186/s40694-024-00182-5","url":null,"abstract":"<p><p>From 30 September 2023 to 7 January 2024, the Nobel Prize Museum in Stockholm presented the show Fungi-In Art and Science. For the exhibition, an alliance of scientists, artists, and designers was brought together that overcame all the alleged borders between the disciplines, between the scientific and the creative world. This special exhibition is the starting point to take on a tour where it is about crossing borders and growing connections when working with fungi. My interview partners represent perfectly the different angles from which you can take a look onto the kingdom of fungi. There is the person without previous knowledge but with a profound artistic understanding who got mesmerized by the subject-matter, which he didn't realize it existed before-Karl-Johan Cottman. There is the scientist, being knee-deep in fungi matter who discovered the arts for an extension of her scientific understanding-Vera Meyer. And last but not least there is the person living passionately for the arts who found fungi mesmerizing for both art creation and progressive/sustainable production-Phil Ross. So, there are three threads weaving one fungal fabric. Have fun reading it!</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. 基于真菌菌丝体的材料专利状况分析:关于如何解读当前专利状况的指导报告。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-10 DOI: 10.1186/s40694-024-00177-2
Vera Meyer, Sabine Mengel

Background: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.

Results: This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.

Conclusion: Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.

背景:真菌生物技术和材料科学这两个科学学科之间的合作近来取得了进展,这凸显了真菌菌丝体作为可持续生物材料的可再生资源的潜力,可在不同行业加以利用。由于真菌菌丝体可以通过生物技术从不同的丝状真菌中获得,而且是一种用途非常广泛的材料,因此相关的研究和商业应用应当蓬勃发展。然而,真菌菌丝体材料领域的一些已授权专利却给社会带来了不确定性,即哪些主题受专利保护,保护期预计有多长:因此,本意见书描绘了以真菌菌丝体为基础的材料的专利状况,并特别关注建筑施工、绝缘、包装等技术应用领域。我们概述了已授权专利(73 项)和与已授权专利相关的待决申请(34 项)、主要专利组合(5 个,每个所有者的专利和/或申请数量在 6 至 44 项之间)、专利所有者,并强调了为保护发明而制定的关键权利要求。此外,我们还概述了增加该领域活动的各种方案:该领域的专利发展给人留下的印象是,尽管真菌材料作为可再生和可生物降解的材料具有巨大潜力,但由于专利保护过度而受到阻碍。考虑到需要用可再生生物材料取代目前的石油基材料,可能需要协调努力,加强该领域的工作。
{"title":"Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation.","authors":"Vera Meyer, Sabine Mengel","doi":"10.1186/s40694-024-00177-2","DOIUrl":"10.1186/s40694-024-00177-2","url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.</p><p><strong>Results: </strong>This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.</p><p><strong>Conclusion: </strong>Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. 在黑曲霉基因组整合过程中,NHEJ 和 HDR 可同时发生。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-05 DOI: 10.1186/s40694-024-00180-7
Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger

Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.

非同源末端连接(NHEJ)和同源定向修复(HDR)是丝状真菌修复 DNA 损伤的两种机制。NHEJ 是快速连接 DNA 双链断裂的主要反应途径,但往往会导致插入或缺失。另一方面,HDR 更为精确,它利用同源 DNA 模板来恢复受损序列。在本研究中,我们评估了基于 HDR 的基因整合系统的效率,该系统是为黑曲霉 pyrG 基因座设计的。在基因整合率达到 91.4% 的同时,我们还发现了一种混合型修复(MTR)机制,即通过 NHEJ 和 HDR 同时修复 Cas9 介导的双链断裂。在 20.3% 的分析转化子中,供体 DNA 在双链断裂的 3' 端通过 NHEJ 进行整合,在 5' 端通过 HDR 进行整合。总之,这些结果证明了基因组整合系统和新型 DNA 修复类型的适用性,并对丝状真菌遗传修饰的多样性产生了影响。
{"title":"NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.","authors":"Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger","doi":"10.1186/s40694-024-00180-7","DOIUrl":"10.1186/s40694-024-00180-7","url":null,"abstract":"<p><p>Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. 利用真菌水凝胶的干凝胶纺丝技术,从食物垃圾中开发可再生纱线。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-02 DOI: 10.1186/s40694-024-00178-1
Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani

Background: Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.

Results: Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.

Conclusion: The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.

背景:采用环保工艺生产的可再生材料作为减少时装业污染的一种解决方案,受到了广泛的关注。近年来,有关可再生材料的研究呈上升趋势,重点研究从真菌中提取的生物基材料:最近,一种生产壳聚糖的真菌细胞壁材料被湿法纺成单丝。本文对真菌单丝纺丝工艺进行了改进,开发了一种良性方法--干凝胶纺丝法,利用真菌细胞壁生产连续单丝和加捻多丝纱线,可用于纺织品应用。以面包废料为基质培养的根瘤菌(Rhizopus delemar)的真菌生物质经过稀氢氧化钠溶液的碱处理,分离出碱不溶物(AIM),其中主要包括真菌细胞壁。用稀乳酸处理 AIM 后形成水凝胶。水凝胶的形态与 pH 值有关,并表现出剪切稀化粘弹性行为。真菌水凝胶的干凝胶纺丝首先使用一个简单的实验室规模注射泵,通过针头注入水凝胶形成单丝,然后直接将其放在旋转接收器上,在室温下静置干燥。得到的单丝可用于制造加捻多丝纱线。随后,为了加快单丝的干燥速度(30⁰C),该工艺又进行了改进,加入了一个加热室。最后,使用双螺杆微成型机取代注射泵,扩大了纺丝工艺的规模。单丝长达数米,拉伸强度达到 63 兆帕,断裂伸长率为 14%。在加热室中纺丝时,拉伸强度增加到 80 兆帕,使用微型压片机纺丝时,拉伸强度进一步增加到 103 兆帕:结论:所开发的干凝胶纺丝方法在可扩展性方面显示出良好的效果,并证明了利用真菌生产可再生材料的潜力。这种新方法生产出的材料具有与传统纺织纤维相当的机械性能。
{"title":"Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste.","authors":"Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani","doi":"10.1186/s40694-024-00178-1","DOIUrl":"10.1186/s40694-024-00178-1","url":null,"abstract":"<p><strong>Background: </strong>Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.</p><p><strong>Results: </strong>Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.</p><p><strong>Conclusion: </strong>The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Biology and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1