首页 > 最新文献

Information Display最新文献

英文 中文
Potential Future of QDEL Technology: The OLED Replacement? QDEL技术的潜在未来:OLED的替代品?
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1618
Ian Hendy, Bruce Berkoff, Artur Podhorodecki

Cost, performance, and ease of adoption are key factors in implementing QDEL emissive display technology.

成本、性能和易于采用是实现QDEL发射显示技术的关键因素。
{"title":"Potential Future of QDEL Technology: The OLED Replacement?","authors":"Ian Hendy,&nbsp;Bruce Berkoff,&nbsp;Artur Podhorodecki","doi":"10.1002/msid.1618","DOIUrl":"10.1002/msid.1618","url":null,"abstract":"<p>Cost, performance, and ease of adoption are key factors in implementing QDEL emissive display technology.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"62-66"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145128767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Green Shoots for the Display Business 显示业的一些萌芽
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1617
Bob Raikes

OLED continues to improve in technical terms and put pressure on LCD applications, while the LCD market has become more stable.

OLED在技术方面持续改善,对LCD应用构成压力,而LCD市场则趋于稳定。
{"title":"Some Green Shoots for the Display Business","authors":"Bob Raikes","doi":"10.1002/msid.1617","DOIUrl":"10.1002/msid.1617","url":null,"abstract":"<p>OLED continues to improve in technical terms and put pressure on LCD applications, while the LCD market has become more stable.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"56-61"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroLED Technology Shift Signifies a Transformative Moment in Displays 微led技术的转变标志着显示器的变革时刻
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1606
Nag Patibandla

THE USE OF MICROLEDS (TINY LIGHT-EMITTING DIODES of gallium nitride) as subpixels represents a significant advancement in display technology, offering improved luminance, energy efficiency, and color quality. This innovation unlocks new opportunities in high dynamic range in direct-view displays, while also enabling high brightness and wider viewing angle near-eye displays for augmented and mixed reality (AR/MR) applications. However, to fully realize this potential, several critical challenges must be addressed, particularly in the realms of pixel yield during die-transfer and laser-assisted or anisotropic conductive film (ACF) bonding, optical efficiency, and manufacturing costs.

The traditional fabrication methods for microLED displays involve the use of red, green, and blue (RGB) GaN LED dice epitaxially grown on sapphire (or silicon) wafers. It is worth noting that AlGaInP red dice grown on gallium arsenide (or silicon or germanium) substrates may be substituted. In these conventional approaches, arrays of dice are created on each wafer and subsequently transferred to a backplane through a series of complex steps involving multiple interposers. This intricate transfer process can lead to yield loss, necessitating the implementation of die repair measures or redundancy in the form of two sets of RGB dice, both of which contribute to higher manufacturing costs. Furthermore, as the die-size decreases to achieve cost efficiency, microLED efficiency tends to decline based on increased carrier loss at the sidewalls, ultimately limiting overall pixel efficiency.

Current display technologies predominantly use backplanes with thin-film transistors (TFT) on glass substrates, optimized for high-yield production in display fabrication facilities that handle large substrates. Transitioning these TFT production lines to accommodate high-resolution microLED backplanes required for AR/MR displays presents significant engineering hurdles that may not be financially sustainable. For instance, manufacturing AR/MR displays at 5,000 ppi entails producing millions of subpixels in a small area—a monumental engineering feat. A more viable solution for AR/MR displays may lie in using silicon complementary metal-oxide semiconductor (CMOS) backplanes. Some companies have already demonstrated silicon CMOS backplanes capable of achieving 3,000-ppi resolutions. The ongoing development of high-yield CMOS backplanes at larger sizes with resolutions exceeding 5,000 ppi is still in its nascent stages, but this holds promise for future advancements.

To foster a sustainable business model, it is essential to develop microLED display technology applicable to both direct-view and near-eye applications using processes and tools adaptable for both TFT on glass and silicon CMOS backplanes. The advancements in microLED display manufacturing are highlighted in this issue, which includes three articles focused on critical aspects of microLED manufacturing t

使用microled(微小的氮化镓发光二极管)作为亚像素代表了显示技术的重大进步,提供了更好的亮度,能源效率和色彩质量。这一创新为直视显示器的高动态范围带来了新的机遇,同时也为增强和混合现实(AR/MR)应用提供了高亮度和更宽视角的近眼显示器。然而,为了充分实现这一潜力,必须解决几个关键挑战,特别是在模转移和激光辅助或各向异性导电膜(ACF)键合期间的像素成像率、光学效率和制造成本方面。微型LED显示器的传统制造方法包括使用在蓝宝石(或硅)晶圆上外延生长的红、绿、蓝(RGB) GaN LED片。值得注意的是,在砷化镓(或硅或锗)衬底上生长的AlGaInP红片可以被取代。在这些传统方法中,在每个晶圆上创建骰子阵列,然后通过涉及多个中间体的一系列复杂步骤转移到背板上。这种复杂的转移过程可能导致产量损失,需要实施模具修复措施或以两套RGB骰子的形式冗余,这两者都有助于提高制造成本。此外,随着晶片尺寸的减小以实现成本效益,微led的效率往往会由于侧壁载流子损耗的增加而下降,最终限制了整体像素效率。目前的显示技术主要是在玻璃基板上使用带有薄膜晶体管(TFT)的背板,这是针对处理大型基板的显示制造设施的高产产量进行优化的。过渡这些TFT生产线以适应AR/MR显示器所需的高分辨率微led背板存在重大的工程障碍,可能在财务上不可持续。例如,制造5000 ppi的AR/MR显示器需要在一个小区域内产生数百万个子像素——这是一个巨大的工程壮举。AR/MR显示器的一个更可行的解决方案可能是使用硅互补金属氧化物半导体(CMOS)背板。一些公司已经展示了能够达到3000 ppi分辨率的硅CMOS背板。目前,分辨率超过5000 ppi的大尺寸高产量CMOS背板的开发仍处于起步阶段,但这为未来的进步带来了希望。为了培育可持续的商业模式,必须开发适用于直视和近眼应用的微型led显示技术,使用适用于玻璃和硅CMOS背板上TFT的工艺和工具。这一期重点介绍了微led显示屏制造的进展,其中包括三篇文章,重点介绍了微led制造技术的关键方面。此外,第四篇文章讨论了缩放OLED技术,展示了显示器制造中正在进行的创新。在文章“激光辅助键合用于平视显示应用的微led模块”中,田文亚等人讨论了一种3.8英寸,1,280 × 1,024超高分辨率,超高亮度的平视显示模块,其照明率超过99.9%。激光辅助共晶键合用于组装该显示器,其光电效率提高了51.3%。在下一篇文章“通过基于ACF的键接解决方案实现下一代MicroLED显示器”中,Hiroki Ozeki等人描述了一种专门为MicroLED显示器应用设计的新型粒子阵列ACF的使用。该方法可在超小型焊盘上实现可靠的低温粘合,解决了下一代显示技术的关键制造挑战。在第三篇文章“新颖的封装设计提高了MicroLED显示器的光学效率”中,刘乃伟等人使用高折射率透明阻片显著提高了MicroLED的光提取效率。此外,采用高反射率白色树脂材料结合透镜微结构,使光线从宽视角汇聚,使0度视角下的亮度增加约53%。在最后一篇文章“下一代OLED显示器的革命性MAX OLED解决方案”中,Yu-Hsin Lin等人解决了传统RGB OLED图案工艺的关键局限性。结果表明,MAX OLED显著提高了光圈比、亮度、分辨率和显示寿命。精确的角度控制沉积和像素化封装技术保护敏感的OLED材料。 这种向微led技术的转变标志着显示器未来的变革时刻,而OLED显示器制造的进步继续发展,有可能重新定义各种应用的性能标准。
{"title":"MicroLED Technology Shift Signifies a Transformative Moment in Displays","authors":"Nag Patibandla","doi":"10.1002/msid.1606","DOIUrl":"10.1002/msid.1606","url":null,"abstract":"<p><b>THE USE OF MICROLEDS (TINY LIGHT-EMITTING DIODES</b> of gallium nitride) as subpixels represents a significant advancement in display technology, offering improved luminance, energy efficiency, and color quality. This innovation unlocks new opportunities in high dynamic range in direct-view displays, while also enabling high brightness and wider viewing angle near-eye displays for augmented and mixed reality (AR/MR) applications. However, to fully realize this potential, several critical challenges must be addressed, particularly in the realms of pixel yield during die-transfer and laser-assisted or anisotropic conductive film (ACF) bonding, optical efficiency, and manufacturing costs.</p><p>The traditional fabrication methods for microLED displays involve the use of red, green, and blue (RGB) GaN LED dice epitaxially grown on sapphire (or silicon) wafers. It is worth noting that AlGaInP red dice grown on gallium arsenide (or silicon or germanium) substrates may be substituted. In these conventional approaches, arrays of dice are created on each wafer and subsequently transferred to a backplane through a series of complex steps involving multiple interposers. This intricate transfer process can lead to yield loss, necessitating the implementation of die repair measures or redundancy in the form of two sets of RGB dice, both of which contribute to higher manufacturing costs. Furthermore, as the die-size decreases to achieve cost efficiency, microLED efficiency tends to decline based on increased carrier loss at the sidewalls, ultimately limiting overall pixel efficiency.</p><p>Current display technologies predominantly use backplanes with thin-film transistors (TFT) on glass substrates, optimized for high-yield production in display fabrication facilities that handle large substrates. Transitioning these TFT production lines to accommodate high-resolution microLED backplanes required for AR/MR displays presents significant engineering hurdles that may not be financially sustainable. For instance, manufacturing AR/MR displays at 5,000 ppi entails producing millions of subpixels in a small area—a monumental engineering feat. A more viable solution for AR/MR displays may lie in using silicon complementary metal-oxide semiconductor (CMOS) backplanes. Some companies have already demonstrated silicon CMOS backplanes capable of achieving 3,000-ppi resolutions. The ongoing development of high-yield CMOS backplanes at larger sizes with resolutions exceeding 5,000 ppi is still in its nascent stages, but this holds promise for future advancements.</p><p>To foster a sustainable business model, it is essential to develop microLED display technology applicable to both direct-view and near-eye applications using processes and tools adaptable for both TFT on glass and silicon CMOS backplanes. The advancements in microLED display manufacturing are highlighted in this issue, which includes three articles focused on critical aspects of microLED manufacturing t","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete Issue 完整的问题
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1623
{"title":"Complete Issue","authors":"","doi":"10.1002/msid.1623","DOIUrl":"10.1002/msid.1623","url":null,"abstract":"","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"1-76"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145128924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-Assisted Bonding for MicroLED Modules in Head-Up Display Applications 平视显示应用中微led模组的激光辅助键合
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1607
Wenya Tian, Yiran Wu, Yuanhao Sun, Peilin Zhang, Yatong Qiao, Ming Chen

The microLED mass transfer process is a critical step in display manufacturing. Laser-assisted eutectic bonding significantly improves photoelectric efficiency, accelerating microLED display commercialization.

微led传质过程是显示屏制造的关键步骤。激光辅助共晶键合显著提高了光电效率,加速了微led显示屏的商业化。
{"title":"Laser-Assisted Bonding for MicroLED Modules in Head-Up Display Applications","authors":"Wenya Tian,&nbsp;Yiran Wu,&nbsp;Yuanhao Sun,&nbsp;Peilin Zhang,&nbsp;Yatong Qiao,&nbsp;Ming Chen","doi":"10.1002/msid.1607","DOIUrl":"10.1002/msid.1607","url":null,"abstract":"<p>The microLED mass transfer process is a critical step in display manufacturing. Laser-assisted eutectic bonding significantly improves photoelectric efficiency, accelerating microLED display commercialization.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"7-11"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1607","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OLED Innovations Drive Concepts and Displays OLED创新驱动概念和显示
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1616
Rasha Hamze

Progress was evident in resolution and refresh rates, the integration of artificial intelligence, and sensing functionalities.

在分辨率和刷新率、人工智能的集成和传感功能方面取得了明显的进展。
{"title":"OLED Innovations Drive Concepts and Displays","authors":"Rasha Hamze","doi":"10.1002/msid.1616","DOIUrl":"10.1002/msid.1616","url":null,"abstract":"<p>Progress was evident in resolution and refresh rates, the integration of artificial intelligence, and sensing functionalities.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"52-55"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Next-Generation MicroLED Displays Through ACF-Based Bonding Solutions 通过基于acf的键合解决方案实现下一代MicroLED显示屏
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1608
Hiroki Ozeki, Reiji Tsukao, Yasumasa Shin

Novel particle-arrayed anisotropic conductive film enables reliable, low-temperature bonding on ultra-small pads, addressing key manufacturing challenges.

新型颗粒阵列各向异性导电膜可在超小型焊盘上实现可靠的低温粘合,解决了关键的制造挑战。
{"title":"Enabling Next-Generation MicroLED Displays Through ACF-Based Bonding Solutions","authors":"Hiroki Ozeki,&nbsp;Reiji Tsukao,&nbsp;Yasumasa Shin","doi":"10.1002/msid.1608","DOIUrl":"10.1002/msid.1608","url":null,"abstract":"<p>Novel particle-arrayed anisotropic conductive film enables reliable, low-temperature bonding on ultra-small pads, addressing key manufacturing challenges.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"12-16"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Journal of the Society for Information Display 信息显示学会杂志
Q4 Engineering Pub Date : 2025-09-23 DOI: 10.1002/msid.1621
Abhishek Kumar Srivastava

The latest impact factor of JSID is 2.2. Thank you to the authors, reviewers, and editorial team for their hard work.

Two special issues—artificial intelligence and machine learning in the display industry and augmented, virtual, and mixed reality (AR/VR/MR)—are set to be released in late 2025.

Chromaticity space uniformity and gamut: Analysis and visualization | Kenichiro Masaoka | https://doi.org/10.1002/jsid.2094

Stereopsis–occlusion conflicts impair visual performance in augmented reality | Daniel P. Spiegel & Ian M. Erkelens | https://doi.org/10.1002/jsid.2095

Riemannian color difference metric for spatial color gratings | Patrick Candry & Kristiaan Neyts | https://doi.org/10.1002/jsid.2100

A miniaturized augmented reality head-up display system based on real-time holographic with dynamic depth variation | Chien-Yu Chen et al. | https://doi.org/10.1002/jsid.2048

CALL FOR PAPERS:

JSID的最新影响因子是2.2。感谢作者、审稿人和编辑团队的辛勤工作。两期特刊——显示行业中的人工智能和机器学习,以及增强、虚拟和混合现实(AR/VR/MR)——将于2025年底发布。色度、空间均匀性和色域:分析与可视化| Kenichiro Masaoka | https://doi.org/10.1002/jsid.2094Stereopsis -遮挡冲突影响增强现实中的视觉表现| Daniel P. Spiegel & Ian M. Erkelens | https://doi.org/10.1002/jsid.2095Riemannian空间颜色光栅色差指标| Patrick Candry &; Kristiaan Neyts | https://doi.org/10.1002/jsid.2100A基于实时全息动态深度变化的小型增强现实平视显示系统| Chien-YuChen et al. | https://doi.org/10.1002/jsid.2048CALL
{"title":"Journal of the Society for Information Display","authors":"Abhishek Kumar Srivastava","doi":"10.1002/msid.1621","DOIUrl":"10.1002/msid.1621","url":null,"abstract":"<p>The latest impact factor of <i>JSID</i> is 2.2. Thank you to the authors, reviewers, and editorial team for their hard work.</p><p>Two special issues—artificial intelligence and machine learning in the display industry and augmented, virtual, and mixed reality (AR/VR/MR)—are set to be released in late 2025.</p><p><b>Chromaticity space uniformity and gamut: Analysis and visualization</b> | Kenichiro Masaoka | https://doi.org/10.1002/jsid.2094</p><p><b>Stereopsis–occlusion conflicts impair visual performance in augmented reality</b> | Daniel P. Spiegel &amp; Ian M. Erkelens | https://doi.org/10.1002/jsid.2095</p><p><b>Riemannian color difference metric for spatial color gratings</b> | Patrick Candry &amp; Kristiaan Neyts | https://doi.org/10.1002/jsid.2100</p><p><b>A miniaturized augmented reality head-up display system based on real-time holographic with dynamic depth variation</b> | Chien-Yu Chen et al. | https://doi.org/10.1002/jsid.2048</p><p><b>CALL FOR PAPERS:</b></p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 5","pages":"74-75"},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sid.onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Emissive Displays at Fuzhou University 福州大学推进发射显示器
Q4 Engineering Pub Date : 2025-07-15 DOI: 10.1002/msid.1598
Chris Boylan
<p><b>FROM CATHODE RAY TUBES (CRTS) TO OLED OR MICROLED,</b> emissive displays capture the imagination of consumers and developers who want high-performance televisions or professionals who need the most accurate display for mastering films and performing scientific research. With illumination and lighting control at the individual pixel level, emissive displays can reproduce near-perfect black levels—allowing for movement of images with minimal blur and providing outstanding detail and contrast as well as deep, rich colors. However, these displays tend to carry higher price tags than their LCD counterparts, which can limit their audience. Also, current emissive displays are mostly passive, with limited user interactivity.</p><p>At institutions such as Fuzhou University (FZU), ongoing research is advancing the state of the art in emissive displays, adding rich interactivity and advanced AI features, while also bringing the cost and complexity down to make these next-generation display devices more accessible. Founded in 1958 and located in Fujian, China, FZU is one of the key national universities selected for the Double First-Class Initiative, a commitment by the Chinese government to enhance China's higher education and foster international competitiveness.</p><p>FZU's history in electronic display research dates to its pioneering work in oxide cathode emission in CRTs in the late 1970s. University researchers expanded into field emission displays in the late 1990s and early 2000s and then into flat panels, including LCD TVs, from the mid-2000s. By 2012, FZU was leading the way in Chinese flat-panel TV development via the Haixi Collaborative Innovation Center for New Display Devices and Systems Integration. This project united 11 institutions, including universities across mainland China, Hong Kong, Taiwan, and Singapore, plus display industry leaders such as TCL, AOC, Tianma, Hisense, and Sanan Optoelectronics. Each collaborated with the goal of refining the processes and technologies used in end-to-end display development.</p><p>In 2019, FZU allied with the Chinese Academy of Sciences (CAS) to establish the China (Fujian) Science & Technology Innovation Laboratory for Optoelectronic Information, also known as the Mindu Innovation Lab. It is one of four provincial laboratories focusing on advanced photonic materials, new display and lighting technologies, and high-speed optical communications. The lab expanded the university's research into flexible, 3D, and microLED display technologies. FZU's display research program currently includes 25 professors and researchers and approximately 300 students.</p><p>Qun “Frank” Yan joined FZU as a distinguished professor in 2016. Previously, he worked in senior research roles at Plasmaco, Panasonic, and Changhong Electric Group, where he served as the chief scientist until 2016. Yan is currently president elect of the Society for Information Display (SID) as well as director of SID China and an author
从阴极射线管(crt)到OLED或MICROLED,发射显示器捕获了想要高性能电视的消费者和开发人员或需要最精确显示以掌握电影和进行科学研究的专业人员的想象力。在单个像素级的照明和照明控制下,发光显示器可以再现近乎完美的黑色水平——允许图像以最小的模糊移动,并提供出色的细节和对比度以及深而丰富的色彩。然而,这些显示器往往比液晶显示器的价格更高,这可能会限制它们的受众。此外,目前的发射显示器大多是被动的,用户交互性有限。在福州大学(FZU)等机构,正在进行的研究正在推进发射显示器的最新技术,增加丰富的交互性和先进的人工智能功能,同时降低成本和复杂性,使这些下一代显示设备更容易使用。福建大学成立于1958年,位于中国福建省,是中国政府为提高中国高等教育水平和培养国际竞争力而选择的“双一流”重点大学之一。FZU在电子显示研究方面的历史可以追溯到20世纪70年代末在crt氧化阴极发射方面的开创性工作。大学的研究人员在20世纪90年代末和21世纪初扩展到场发射显示器,然后从21世纪头十年中期开始扩展到平板显示器,包括液晶电视。到2012年,FZU通过海西新型显示器件与系统集成协同创新中心引领了中国平板电视的发展。该项目联合了11家机构,包括中国大陆、香港、台湾和新加坡的大学,以及TCL、AOC、天马、海信和三安光电等显示行业领导者。每个合作的目标是改进端到端显示开发中使用的流程和技术。2019年,福建大学与中国科学院(CAS)联合成立了中国(福建)科学院。光电信息技术创新实验室,又称民都创新实验室。它是四个省级实验室之一,重点研究先进光子材料,新型显示和照明技术,以及高速光通信。该实验室将该大学的研究扩展到柔性、3D和微型led显示技术。FZU的显示研究项目目前有25名教授和研究人员,约300名学生。严群于2016年加入复旦大学,任特聘教授。此前,他曾在Plasmaco、Panasonic和长虹电气集团担任高级研究职务,并担任首席科学家直到2016年。现任美国信息显示学会(SID)候任会长、SID中国分会理事,是视觉显示设备领域的权威专家。2013年获得SID特别表彰奖,2017年获得SID Fellow,以表彰他在显示技术方面的杰出贡献,是唯一一位同时获得这两项荣誉的中国大陆出生的学者。他在他的专业领域发表了200多篇论文和40次会议演讲,并拥有60多项专利。Yan的许多早期专利都与等离子显示面板(PDP)技术有关,并有助于将PDP大规模生产。随着技术的发展,他的创新还在继续。他说:“这些最新的专利将成为微型led技术创新的核心部分,包括大规模生产的专有技术,一些专利将成为我的研究小组新成立的公司的关键知识产权。”Yan看到了微型led作为等离子体后继产品的潜力,并决定转向学术界,帮助开发技术和能够将其推向市场的人员。他之所以选择FZU,是因为FZU拥有全面的展示研究项目、优良的设施和合作研究环境。他指导本科生和研究生学习显示技术和相关的交互系统。“目睹了PDP的兴衰,我确信微型led代表了真正的‘第三波’发射显示器,但认识到它的成熟需要持续的基础研究和新一代熟练的工程师,”Yan说。复旦大学物理与信息工程学院设有国家级显示研究实验室。该实验室由30多名研究人员和300多名研究生组成。Yan的团队包括两位教授,四位工程师和30多名研究生,他们的研究重点是高度集成的半导体信息显示(HISID)(图1)。HISID是Yan提出的一个富有远见的概念,旨在将传统屏幕转变为多功能、交互式的信息终端。 通过结合强大的合作伙伴关系,世界一流的人才管道和转化研究基础设施,福州大学将巩固其在下一代显示技术方面的领导地位,并培育定义交互式沉浸式信息显示未来的创新。”
{"title":"Advancing Emissive Displays at Fuzhou University","authors":"Chris Boylan","doi":"10.1002/msid.1598","DOIUrl":"10.1002/msid.1598","url":null,"abstract":"&lt;p&gt;&lt;b&gt;FROM CATHODE RAY TUBES (CRTS) TO OLED OR MICROLED,&lt;/b&gt; emissive displays capture the imagination of consumers and developers who want high-performance televisions or professionals who need the most accurate display for mastering films and performing scientific research. With illumination and lighting control at the individual pixel level, emissive displays can reproduce near-perfect black levels—allowing for movement of images with minimal blur and providing outstanding detail and contrast as well as deep, rich colors. However, these displays tend to carry higher price tags than their LCD counterparts, which can limit their audience. Also, current emissive displays are mostly passive, with limited user interactivity.&lt;/p&gt;&lt;p&gt;At institutions such as Fuzhou University (FZU), ongoing research is advancing the state of the art in emissive displays, adding rich interactivity and advanced AI features, while also bringing the cost and complexity down to make these next-generation display devices more accessible. Founded in 1958 and located in Fujian, China, FZU is one of the key national universities selected for the Double First-Class Initiative, a commitment by the Chinese government to enhance China's higher education and foster international competitiveness.&lt;/p&gt;&lt;p&gt;FZU's history in electronic display research dates to its pioneering work in oxide cathode emission in CRTs in the late 1970s. University researchers expanded into field emission displays in the late 1990s and early 2000s and then into flat panels, including LCD TVs, from the mid-2000s. By 2012, FZU was leading the way in Chinese flat-panel TV development via the Haixi Collaborative Innovation Center for New Display Devices and Systems Integration. This project united 11 institutions, including universities across mainland China, Hong Kong, Taiwan, and Singapore, plus display industry leaders such as TCL, AOC, Tianma, Hisense, and Sanan Optoelectronics. Each collaborated with the goal of refining the processes and technologies used in end-to-end display development.&lt;/p&gt;&lt;p&gt;In 2019, FZU allied with the Chinese Academy of Sciences (CAS) to establish the China (Fujian) Science &amp; Technology Innovation Laboratory for Optoelectronic Information, also known as the Mindu Innovation Lab. It is one of four provincial laboratories focusing on advanced photonic materials, new display and lighting technologies, and high-speed optical communications. The lab expanded the university's research into flexible, 3D, and microLED display technologies. FZU's display research program currently includes 25 professors and researchers and approximately 300 students.&lt;/p&gt;&lt;p&gt;Qun “Frank” Yan joined FZU as a distinguished professor in 2016. Previously, he worked in senior research roles at Plasmaco, Panasonic, and Changhong Electric Group, where he served as the chief scientist until 2016. Yan is currently president elect of the Society for Information Display (SID) as well as director of SID China and an author","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 4","pages":"53-56"},"PeriodicalIF":0.0,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Image Acquisition Technology in Digital Radiography 数字放射照相中的动态图像采集技术
Q4 Engineering Pub Date : 2025-07-15 DOI: 10.1002/msid.1589
Yue Geng, Fengchun Pang, Yong Zhang, Chuncheng Che

Dynamic x-ray detection can acquire images at high frequency, continuously and smoothly, in contrast to the traditional method that relies on manually stitching and analyzing static images frame by frame.

动态x射线检测可以获得高频、连续和平滑的图像,而传统方法依赖于手工拼接和逐帧分析静态图像。
{"title":"Dynamic Image Acquisition Technology in Digital Radiography","authors":"Yue Geng,&nbsp;Fengchun Pang,&nbsp;Yong Zhang,&nbsp;Chuncheng Che","doi":"10.1002/msid.1589","DOIUrl":"10.1002/msid.1589","url":null,"abstract":"<p>Dynamic x-ray detection can acquire images at high frequency, continuously and smoothly, in contrast to the traditional method that relies on manually stitching and analyzing static images frame by frame.</p>","PeriodicalId":52450,"journal":{"name":"Information Display","volume":"41 4","pages":"6-10"},"PeriodicalIF":0.0,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msid.1589","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Information Display
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1