Pub Date : 2024-05-25DOI: 10.1007/s00410-024-02126-z
Tyler Cadena, Michael Manga, Kenneth Befus, Nobumichi Tamura
Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption.
{"title":"Stressful crystal histories recorded around melt inclusions in volcanic quartz","authors":"Tyler Cadena, Michael Manga, Kenneth Befus, Nobumichi Tamura","doi":"10.1007/s00410-024-02126-z","DOIUrl":"10.1007/s00410-024-02126-z","url":null,"abstract":"<div><p>Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02126-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1007/s00410-024-02133-0
Kei Shimizu, Tyler B. Blum, Chloe E. Bonamici, John H. Fournelle, Christine E. Jilly-Rehak, Noriko T. Kita, Kouki Kitajima, Jacob D. Klug, Will O. Nachlas, Brad S. Singer, Michael J. Spicuzza, Alexander V. Sobolev, Bryan A. Wathen, John W. Valley
Explosive silicic eruptions pose a significant threat to society, yet the development and destabilization of the underlying silicic magmatic systems are still controversial. Zircons provide simultaneous information on the trace element composition and age of silicic magmatic systems, while melt inclusions in quartz and plagioclase yield important constraints on their volatile content as well as magma storage depth. Melt inclusions in zircons (MIZs) combine these data from a single mineral grain, recording the age, storage depth, temperature, and composition of magmas, and thus provide unique constraints on the structure and evolution of silicic magmatic systems. We studied MIZs from the Laguna del Maule (LdM) volcanic field in the southern Andes that is among the most active Pleistocene-Holocene rhyolitic volcanic centers worldwide and a potentially hazardous system displaying inflation rates in excess of 25 cm/yr. The host zircon ages suggest that the LdM MIZ record extends to ~ 30 kyr before eruption, in contrast to the melt inclusions in LdM plagioclase and quartz crystals that formed only decades to centuries before eruption. The major element compositions of MIZs are minimally affected by post-entrapment crystallization, and agree well with the LdM rhyolitic whole rock data. The MIZs record long-term differences in zircon-saturated melt composition between two eruptive units (rdm: Rhyolite of the Laguna del Maule vs. rle: Rhyolite of Los Espejos). The more evolved major element composition of rle MIZs than rdm MIZs, suggests a long-term deeper connection of the rdm crystal mush to a more primitive magma body than that of the rle. The evidence of slow H diffusion observed in MIZs suggest that their H2O contents are not significantly affected by diffusion of H through the host zircon. The magma storage pressures of 1.1 to 2.8 kbars recorded by the H2O contents of rdm and rle MIZs are consistent with the optimal emplacement window (2.0 ± 0.5 kbar) of silicic magma reservoir growth, storage, and eruptibility based on thermomechanical modeling (Huber et al. 2019).
爆炸性硅质火山爆发对社会构成了重大威胁,但其背后硅质岩浆系统的发展和不稳定仍然存在争议。锆石同时提供了有关硅质岩浆系统微量元素组成和年龄的信息,而石英和斜长石中的熔融包裹体则提供了有关其挥发物含量和岩浆储存深度的重要制约因素。锆石中的熔融包裹体(MIZs)结合了来自单一矿物颗粒的这些数据,记录了岩浆的年龄、贮存深度、温度和成分,从而为硅质岩浆系统的结构和演化提供了独特的约束条件。我们研究了安第斯山脉南部 Laguna del Maule(LdM)火山区的 MIZs,该火山区是全球最活跃的更新世-全新世流纹岩火山中心之一,也是一个潜在的危险系统,其膨胀率超过 25 厘米/年。主锆石年龄表明,LdM MIZ 的记录可追溯到火山爆发前约 30 千年,而 LdM 斜长石和石英晶体中的熔融包裹体仅在火山爆发前几十年至几百年才形成。MIZs的主要元素组成受喷发后结晶的影响很小,与LdM流纹岩全岩数据非常吻合。MIZs记录了两个喷发单元(rdm:Laguna del Maule流纹岩与rle:Los Espejos流纹岩)之间锆石饱和熔体成分的长期差异。与 rdm MIZs 相比,rle MIZs 的主要元素组成更为复杂,这表明 rdm 晶泥与比 rle 晶泥更原始的岩浆体之间存在长期的深层联系。在 MIZs 中观察到的 H 缓慢扩散的证据表明,它们的 H2O 含量并没有受到 H 通过主锆石扩散的显著影响。rdm和rle MIZ的H2O含量所记录的1.1至2.8千巴的岩浆储存压力与基于热力学建模的硅质岩浆储层生长、储存和喷发的最佳喷发窗口(2.0 ± 0.5千巴)是一致的(Huber等人,2019年)。
{"title":"Melt inclusions in zircon: a window to understanding the structure and evolution of the magmatic system beneath the Laguna del Maule volcanic field","authors":"Kei Shimizu, Tyler B. Blum, Chloe E. Bonamici, John H. Fournelle, Christine E. Jilly-Rehak, Noriko T. Kita, Kouki Kitajima, Jacob D. Klug, Will O. Nachlas, Brad S. Singer, Michael J. Spicuzza, Alexander V. Sobolev, Bryan A. Wathen, John W. Valley","doi":"10.1007/s00410-024-02133-0","DOIUrl":"10.1007/s00410-024-02133-0","url":null,"abstract":"<div><p>Explosive silicic eruptions pose a significant threat to society, yet the development and destabilization of the underlying silicic magmatic systems are still controversial. Zircons provide simultaneous information on the trace element composition and age of silicic magmatic systems, while melt inclusions in quartz and plagioclase yield important constraints on their volatile content as well as magma storage depth. Melt inclusions in zircons (MIZs) combine these data from a single mineral grain, recording the age, storage depth, temperature, and composition of magmas, and thus provide unique constraints on the structure and evolution of silicic magmatic systems. We studied MIZs from the Laguna del Maule (LdM) volcanic field in the southern Andes that is among the most active Pleistocene-Holocene rhyolitic volcanic centers worldwide and a potentially hazardous system displaying inflation rates in excess of 25 cm/yr. The host zircon ages suggest that the LdM MIZ record extends to ~ 30 kyr before eruption, in contrast to the melt inclusions in LdM plagioclase and quartz crystals that formed only decades to centuries before eruption. The major element compositions of MIZs are minimally affected by post-entrapment crystallization, and agree well with the LdM rhyolitic whole rock data. The MIZs record long-term differences in zircon-saturated melt composition between two eruptive units (rdm: Rhyolite of the Laguna del Maule vs. rle: Rhyolite of Los Espejos). The more evolved major element composition of rle MIZs than rdm MIZs, suggests a long-term deeper connection of the rdm crystal mush to a more primitive magma body than that of the rle. The evidence of slow H diffusion observed in MIZs suggest that their H<sub>2</sub>O contents are not significantly affected by diffusion of H through the host zircon. The magma storage pressures of 1.1 to 2.8 kbars recorded by the H<sub>2</sub>O contents of rdm and rle MIZs are consistent with the optimal emplacement window (2.0 ± 0.5 kbar) of silicic magma reservoir growth, storage, and eruptibility based on thermomechanical modeling (Huber et al. 2019).</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1007/s00410-024-02134-z
J. L. Scholpp, N. Dygert
Hybridization of the lunar mantle during the overturn (sinking) of Fe- and Ti–rich ilmenite-bearing clinopyroxenite cumulates (IBC) in the lunar interior is called upon to explain the high TiO2 abundances of lunar basalts. Chemical reactions that occur after juxtaposition of IBC and mantle peridotite are poorly constrained. We experimentally investigated these reactions in experiments that adjoin an IBC glass against presynthesized dunite in a reaction couple at temperatures of 1100–1300 °C and pressures of 0.5–2.02 GPa for 0.33–31.66 h. These conditions produced experiments near to well above the solidus temperature of the IBC. Near solidus experiments produce garnet in the IBC at 2 GPa. Supersolidus experiments exhibit dissolution of olivine material into the IBC melt and the formation of clinopyroxene at the IBC melt-dunite interface. Dunite dissolution is attributed to the olivine undersaturated composition of the IBC melt. In both near- and supersolidus experiments, compositional variations produced by solid-state diffusion across the IBC melt-dunite interface are observed. When pressure increases, temperature decreases, or IBC melts become closer to olivine saturation, dissolution slows, and the effects of solid-state diffusion in the dunite become more evident. Similar chemical exchange reactions would occur in the lunar mantle as downwelling IBC and lunar peridotites are juxtaposed by cumulate overturn. Hybridized lunar mantle sources are expected to contain 47–84% normative peridotite and 16–53% IBC. Simple numerical simulations suggest that in addition to dissolution–precipitation reactions, mechanical mixing may be required to produce volumetrically significant hybridized mantle sources over geologically-relevant timescales.
{"title":"Experimental insights into the mineralogy and melt-rock reactions produced by lunar cumulate mantle overturn","authors":"J. L. Scholpp, N. Dygert","doi":"10.1007/s00410-024-02134-z","DOIUrl":"10.1007/s00410-024-02134-z","url":null,"abstract":"<div><p>Hybridization of the lunar mantle during the overturn (sinking) of Fe- and Ti–rich ilmenite-bearing clinopyroxenite cumulates (IBC) in the lunar interior is called upon to explain the high TiO<sub>2</sub> abundances of lunar basalts. Chemical reactions that occur after juxtaposition of IBC and mantle peridotite are poorly constrained. We experimentally investigated these reactions in experiments that adjoin an IBC glass against presynthesized dunite in a reaction couple at temperatures of 1100–1300 °C and pressures of 0.5–2.02 GPa for 0.33–31.66 h. These conditions produced experiments near to well above the solidus temperature of the IBC. Near solidus experiments produce garnet in the IBC at 2 GPa. Supersolidus experiments exhibit dissolution of olivine material into the IBC melt and the formation of clinopyroxene at the IBC melt-dunite interface. Dunite dissolution is attributed to the olivine undersaturated composition of the IBC melt. In both near- and supersolidus experiments, compositional variations produced by solid-state diffusion across the IBC melt-dunite interface are observed. When pressure increases, temperature decreases, or IBC melts become closer to olivine saturation, dissolution slows, and the effects of solid-state diffusion in the dunite become more evident. Similar chemical exchange reactions would occur in the lunar mantle as downwelling IBC and lunar peridotites are juxtaposed by cumulate overturn. Hybridized lunar mantle sources are expected to contain 47–84% normative peridotite and 16–53% IBC. Simple numerical simulations suggest that in addition to dissolution–precipitation reactions, mechanical mixing may be required to produce volumetrically significant hybridized mantle sources over geologically-relevant timescales.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s00410-024-02139-8
Z. M.G. Li, F. Gaidies, Y.-C. Chen, Y.-L. Zhao, C.-M. Wu
Texturally and chemically sector-zoned garnet crystals in two contiguous metapelitic rocks from the Danba dome, eastern Tibetan Plateau (SW China) were investigated. A petrographic boundary in one of the rocks (sample 21DB103) separates a thin section into two zones. Whereas one zone containing sector-zoned garnet and fined-grained matrix is enriched in graphite and quartz, the other zone encompasses garnets with relatively regular habit in a coarse-grained matrix poor in graphite and quartz. The two zones are distinct with regards to the chemical compositions of biotite and plagioclase, as well as the major and trace element zoning patterns of garnet. Electron back-scattered diffraction analysis shows that all the investigated garnet crystals in this sample are single crystals. Relatively higher P-T conditions are estimated for the initial growth of sector-zoned garnet (~ 5.0 kbar / ~540 ℃) compared to the regular garnet (~ 3.8 kbar / ~510 ℃) in this rock, possibly indicating that growth of the sector-zoned garnet postdates growth of the regular garnet. Texturally and chemically radial sectors with garnet-quartz intergrowths and irregular sectors of garnet are preserved in the other graphite-rich rock (sample 21DB104). Isopleth thermobarometry applied to the core of the largest garnet crystal exhibiting sector zoning in this sample reveals P-T conditions of initial garnet crystallization (~ 4.4 kbar / ~512 ℃) that deviate far (~ 0.8 kbar/~45 ℃) from equilibrium, potentially indicating significant overstepping required for garnet nucleation. Plagioclase inclusions in garnet display varying trace element abundances, indicating their replacements of different preexisting phases. These results suggest that abundant graphite may play a pivotal role in changing fluid conditions and reducing the solubility of SiO2 to grow sector-zoned garnet, as well as impeding matrix coarsening. Development of sector-zoned core and dodecahedral faces of garnet may be related to rapid growth with changes in crystal morphology. Irregular sectors may have developed through fluid infiltration and local chemical adjustments.
{"title":"Petrogenesis of sector-zoned garnet in graphitic metapelite from the Danba dome, eastern Tibetan Plateau (SW China)","authors":"Z. M.G. Li, F. Gaidies, Y.-C. Chen, Y.-L. Zhao, C.-M. Wu","doi":"10.1007/s00410-024-02139-8","DOIUrl":"10.1007/s00410-024-02139-8","url":null,"abstract":"<div><p>Texturally and chemically sector-zoned garnet crystals in two contiguous metapelitic rocks from the Danba dome, eastern Tibetan Plateau (SW China) were investigated. A petrographic boundary in one of the rocks (sample 21DB103) separates a thin section into two zones. Whereas one zone containing sector-zoned garnet and fined-grained matrix is enriched in graphite and quartz, the other zone encompasses garnets with relatively regular habit in a coarse-grained matrix poor in graphite and quartz. The two zones are distinct with regards to the chemical compositions of biotite and plagioclase, as well as the major and trace element zoning patterns of garnet. Electron back-scattered diffraction analysis shows that all the investigated garnet crystals in this sample are single crystals. Relatively higher <i>P-T</i> conditions are estimated for the initial growth of sector-zoned garnet (~ 5.0 kbar / ~540 ℃) compared to the regular garnet (~ 3.8 kbar / ~510 ℃) in this rock, possibly indicating that growth of the sector-zoned garnet postdates growth of the regular garnet. Texturally and chemically radial sectors with garnet-quartz intergrowths and irregular sectors of garnet are preserved in the other graphite-rich rock (sample 21DB104). Isopleth thermobarometry applied to the core of the largest garnet crystal exhibiting sector zoning in this sample reveals <i>P-T</i> conditions of initial garnet crystallization (~ 4.4 kbar / ~512 ℃) that deviate far (~ 0.8 kbar/~45 ℃) from equilibrium, potentially indicating significant overstepping required for garnet nucleation. Plagioclase inclusions in garnet display varying trace element abundances, indicating their replacements of different preexisting phases. These results suggest that abundant graphite may play a pivotal role in changing fluid conditions and reducing the solubility of SiO<sub>2</sub> to grow sector-zoned garnet, as well as impeding matrix coarsening. Development of sector-zoned core and dodecahedral faces of garnet may be related to rapid growth with changes in crystal morphology. Irregular sectors may have developed through fluid infiltration and local chemical adjustments.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s00410-024-02137-w
Mike W. Jansen, Carsten Münker, Josua J. Pakulla, Eric Hasenstab-Dübeler, Christian S. Marien, Toni Schulz, Maria Kirchenbaur, Kathrin P. Schneider, Robin Tordy, Vera Schmitt, Frank Wombacher
<div><p>Quaternary rocks from the East and West Eifel volcanic fields in western Germany are a key suite of intraplate volcanic rocks that can provide insights into volcanism of the Central European Volcanic Province (CEVP) and into continental intraplate volcanism in general. We present a comprehensive dataset for Eifel lavas including isotope as well as major and trace element data for 59 samples covering representative compositions of the different volcanic fields. In line with previous studies, the lavas are all SiO<sub>2</sub>-undersaturated, alkaline-rich and mainly comprise primitive basanites, melilitites, and nephelinites (Mg# ≥ 57). Geochemical compositions of samples from both volcanic subfields display distinct differences in their trace-element as well as radiogenic isotope compositions, largely confirming previous subdivisions. Coupled trace-element and radiogenic Sr–Nd–Hf–Pb–Os isotope compositions can now provide firm evidence for spatially heterogeneous mantle sources and compositionally distinct magmatic pulses. Within the West Eifel Field, Sr–Nd–Pb isotope compositions of the younger (≤80 ka), ONB-suite (olivine-nephelinite-basanite) are similar to FOZO (FOcal ZOne) or the EAR (European Asthenospheric Reservoir) and resemble compositions that have been previously reported from plume-sourced ocean island basalts (OIB). In marked difference, older (700 Ma to 80 ka) volcanic rocks from the F-suite (Foidite) in the West Eifel field and from the entire east Eifel Field tap a more enriched mantle component, as illustrated by more radiogenic Sr isotope (<sup>86</sup>Sr/<sup>87</sup>Sr up to 0.705408) and variable Pb isotope compositions (<sup>206</sup>Pb/<sup>204</sup>Pb = 18.61–19.70, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.62–15.67 and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.89–39.76). Combined trace-element compositions of ONB-suite samples are in good agreement with results from batch melting models suggesting a hybrid composition of Eifel magmas formed through mixing 10% of a FOZO-like melt with 90% of a DMM-like melt, similar to melts from the Tertiary HEVF. However, radiogenic Sr–Nd–Pb isotope compositions of F-suite and EEVF and some ONB lavas require the admixture of melts from lithospheric mantle sources. Elevated Nb/Ta and Lu/Hf ratios in combination with variable <sup>187</sup>Os/<sup>188</sup>Os ratios can now demonstrate the presence of residual carbonated eclogite components, either in the lithosphere or in the asthenospheric mantle. Finally, by combining geochemical and temporal constraints of Tertiary and Quaternary volcanism it becomes evident that CEVP volcanism in central and western Germany has resulted from compositionally distinct magmatic pulses that tap separate mantle sources. Although the presence of a mantle plume can neither be fully confirmed nor excluded, plume-like melt pulses which partially tap carbonated eclogite domains that interact to variable extents with the lithosphere provide a viable explanatio
{"title":"Petrogenesis of volcanic rocks from the Quaternary Eifel volcanic fields, Germany: detailed insights from combined trace-element and Sr–Nd–Hf–Pb–Os isotope data","authors":"Mike W. Jansen, Carsten Münker, Josua J. Pakulla, Eric Hasenstab-Dübeler, Christian S. Marien, Toni Schulz, Maria Kirchenbaur, Kathrin P. Schneider, Robin Tordy, Vera Schmitt, Frank Wombacher","doi":"10.1007/s00410-024-02137-w","DOIUrl":"10.1007/s00410-024-02137-w","url":null,"abstract":"<div><p>Quaternary rocks from the East and West Eifel volcanic fields in western Germany are a key suite of intraplate volcanic rocks that can provide insights into volcanism of the Central European Volcanic Province (CEVP) and into continental intraplate volcanism in general. We present a comprehensive dataset for Eifel lavas including isotope as well as major and trace element data for 59 samples covering representative compositions of the different volcanic fields. In line with previous studies, the lavas are all SiO<sub>2</sub>-undersaturated, alkaline-rich and mainly comprise primitive basanites, melilitites, and nephelinites (Mg# ≥ 57). Geochemical compositions of samples from both volcanic subfields display distinct differences in their trace-element as well as radiogenic isotope compositions, largely confirming previous subdivisions. Coupled trace-element and radiogenic Sr–Nd–Hf–Pb–Os isotope compositions can now provide firm evidence for spatially heterogeneous mantle sources and compositionally distinct magmatic pulses. Within the West Eifel Field, Sr–Nd–Pb isotope compositions of the younger (≤80 ka), ONB-suite (olivine-nephelinite-basanite) are similar to FOZO (FOcal ZOne) or the EAR (European Asthenospheric Reservoir) and resemble compositions that have been previously reported from plume-sourced ocean island basalts (OIB). In marked difference, older (700 Ma to 80 ka) volcanic rocks from the F-suite (Foidite) in the West Eifel field and from the entire east Eifel Field tap a more enriched mantle component, as illustrated by more radiogenic Sr isotope (<sup>86</sup>Sr/<sup>87</sup>Sr up to 0.705408) and variable Pb isotope compositions (<sup>206</sup>Pb/<sup>204</sup>Pb = 18.61–19.70, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.62–15.67 and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.89–39.76). Combined trace-element compositions of ONB-suite samples are in good agreement with results from batch melting models suggesting a hybrid composition of Eifel magmas formed through mixing 10% of a FOZO-like melt with 90% of a DMM-like melt, similar to melts from the Tertiary HEVF. However, radiogenic Sr–Nd–Pb isotope compositions of F-suite and EEVF and some ONB lavas require the admixture of melts from lithospheric mantle sources. Elevated Nb/Ta and Lu/Hf ratios in combination with variable <sup>187</sup>Os/<sup>188</sup>Os ratios can now demonstrate the presence of residual carbonated eclogite components, either in the lithosphere or in the asthenospheric mantle. Finally, by combining geochemical and temporal constraints of Tertiary and Quaternary volcanism it becomes evident that CEVP volcanism in central and western Germany has resulted from compositionally distinct magmatic pulses that tap separate mantle sources. Although the presence of a mantle plume can neither be fully confirmed nor excluded, plume-like melt pulses which partially tap carbonated eclogite domains that interact to variable extents with the lithosphere provide a viable explanatio","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1007/s00410-024-02136-x
Sebastian Schmidt, Andreas Hertwig, Katharina Cionoiu, Christof Schäfer, Axel K. Schmitt
Gem sapphire is commonly retrieved from primary and secondary deposits associated with alkali basaltic fields, but its source rocks are rarely preserved. The Eifel (Rhenish Massif, western Germany), although not producing gem sapphire, shares many petrologic and geochemical similarities with such fields worldwide. Due to the young age of volcanic deposits and active quarrying, sapphire-bearing rocks are readily accessible, along with detrital sapphire from modern sediments. Here, oxygen isotope and trace element compositions are reported for 223 sapphire grains, and rutile and zircon inclusions in sapphire were dated indicating crystallization synchronous with Paleogene–Quaternary volcanism. Endmembers in δ18O range are sapphires from syenites representing mantle-derived differentiated melts with minor crustal contamination (~4–6‰) and contact metamorphic mica schists (>10‰) as purely crustal source rocks. Intermediate values between ~6 and 10‰ require variable degrees of mantle-crust hybridization. Lower crustal granulite sources are dismissed based on their oxygen isotopic compositions being lower than most sapphire crystals. Diffusion modelling of sharp oxygen isotopic zonation in compositionally zoned crystals precludes crystal residence at >900 °C over the lifetime of evolved magma reservoirs in the Eifel (c. 50 ka). This argues against direct mantle or lower crustal sapphire origins. Instead, low temperature residence is consistent with sharp δ18O gradients, coexisting andalusite, and fluid inclusion barometry. Hence, Eifel sapphire crystallization is attributed to contact metamorphic aureoles around upper crustal (5–7 km) magma bodies where phonolite, trachyte, and carbonatite melts differentiated from mafic parental magmas, and reacted with metasedimentary wall rocks.
宝石蓝宝石通常是从与碱性玄武岩矿田相关的原生和次生矿床中提取的,但其原岩很少保存下来。埃菲尔(德国西部的莱茵山丘)虽然不出产宝石蓝宝石,但在岩石学和地球化学方面与世界各地的此类矿场有许多相似之处。由于火山沉积物的年龄较小,采石活动活跃,因此很容易获得含蓝宝石的岩石以及现代沉积物中的蓝宝石碎屑。这里报告了223颗蓝宝石的氧同位素和微量元素组成,并对蓝宝石中的金红石和锆石包裹体进行了年代测定,表明其结晶与古近纪-第四纪火山活动同步。在δ18O范围内的最终成员是来自正长岩的蓝宝石,正长岩代表来自地幔的分异熔体,有少量地壳污染(约4-6‰),而接触变质云母片岩(>10‰)则是纯粹的地壳源岩。介于~6‰和10‰之间的中间值需要不同程度的地幔-地壳杂化。下地壳花岗岩的氧同位素组成低于大多数蓝宝石晶体,因此被排除在外。对成分分带晶体中尖锐的氧同位素分带进行扩散建模,排除了在埃菲尔(Eifel)地区演化岩浆储层的生命周期(约 50 ka)内晶体停留在 >900 °C 的可能性。这就否定了蓝宝石直接来源于地幔或下地壳的说法。相反,低温驻留与尖锐的δ18O梯度、共存的安山岩以及流体包裹体的巴氏度是一致的。因此,埃菲尔蓝宝石的结晶可归因于上地壳(5-7 千米)岩浆体周围的接触变质宙,在这些岩浆体中,辉绿岩、闪长岩和碳酸盐岩熔体从黑云母母岩浆中分化出来,并与变质岩壁岩发生反应。
{"title":"Petrologically controlled oxygen isotopic classification of cogenetic magmatic and metamorphic sapphire from Quaternary volcanic fields in the Eifel, Germany","authors":"Sebastian Schmidt, Andreas Hertwig, Katharina Cionoiu, Christof Schäfer, Axel K. Schmitt","doi":"10.1007/s00410-024-02136-x","DOIUrl":"10.1007/s00410-024-02136-x","url":null,"abstract":"<div><p>Gem sapphire is commonly retrieved from primary and secondary deposits associated with alkali basaltic fields, but its source rocks are rarely preserved. The Eifel (Rhenish Massif, western Germany), although not producing gem sapphire, shares many petrologic and geochemical similarities with such fields worldwide. Due to the young age of volcanic deposits and active quarrying, sapphire-bearing rocks are readily accessible, along with detrital sapphire from modern sediments. Here, oxygen isotope and trace element compositions are reported for 223 sapphire grains, and rutile and zircon inclusions in sapphire were dated indicating crystallization synchronous with Paleogene–Quaternary volcanism. Endmembers in δ<sup>18</sup>O range are sapphires from syenites representing mantle-derived differentiated melts with minor crustal contamination (~4–6‰) and contact metamorphic mica schists (>10‰) as purely crustal source rocks. Intermediate values between ~6 and 10‰ require variable degrees of mantle-crust hybridization. Lower crustal granulite sources are dismissed based on their oxygen isotopic compositions being lower than most sapphire crystals. Diffusion modelling of sharp oxygen isotopic zonation in compositionally zoned crystals precludes crystal residence at >900 °C over the lifetime of evolved magma reservoirs in the Eifel (c. 50 ka). This argues against direct mantle or lower crustal sapphire origins. Instead, low temperature residence is consistent with sharp δ<sup>18</sup>O gradients, coexisting andalusite, and fluid inclusion barometry. Hence, Eifel sapphire crystallization is attributed to contact metamorphic aureoles around upper crustal (5–7 km) magma bodies where phonolite, trachyte, and carbonatite melts differentiated from mafic parental magmas, and reacted with metasedimentary wall rocks.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 6","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02136-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1007/s00410-024-02138-9
Carlo Pelullo, Sumit Chakraborty, Chiara Paola Montagna, Ilenia Arienzo, Richard James Brown, Massimo D’Antonio, Sandro de Vita, Claudia D’Oriano, Manuela Nazzari, Lucia Pappalardo, Paola Petrosino
Determining the time spans of processes related to the assembly of eruptible magma at active volcanoes is fundamental to understand magma chamber dynamics and assess volcanic hazard. This information can be recorded in the chemical zoning of crystals. Nevertheless, this kind of study is still poorly employed for the active volcanoes of the Neapolitan area (Southern Italy), in particular, for Ischia island where the risk is extremely high and this information can provide the basis for probabilistic volcanic hazard assessment. For these reasons, we acquired chemical composition on clinopyroxene crystals erupted at Ischia during the Zaro eruption (6.6 ± 2.2 ka) and performed numerical simulations of the input of mafic magma into a trachytic reservoir, in order to investigate various aspects of pre-eruptive dynamics occurring at different timescales. This event emplaced a ~ 0.1 km3 lava complex, in which the main trachytic lava flows host abundant mafic to felsic enclaves. Previous petrological investigation suggested that mafic magma(s) mixed/mingled with a trachytic one, before the eruption. In this work, the clinopyroxene zoning patterns depict the growth of crystals in different magmatic environments, recording sequential changes occurred in the plumbing system before the eruption. The evolution of the plumbing system involved a hierarchy of timescales: a few hours for magma mingling caused by mafic recharge(s) and likely occurred multiple times over a decade during which a dominant magmatic environment was sustained before the eruption. Such timescales must be considered in volcanic hazard assessment at Ischia and similar active volcanoes in densely populated areas.
{"title":"A multi-methodological approach to record dynamics and timescales of the plumbing system of Zaro (Ischia Island, Italy)","authors":"Carlo Pelullo, Sumit Chakraborty, Chiara Paola Montagna, Ilenia Arienzo, Richard James Brown, Massimo D’Antonio, Sandro de Vita, Claudia D’Oriano, Manuela Nazzari, Lucia Pappalardo, Paola Petrosino","doi":"10.1007/s00410-024-02138-9","DOIUrl":"10.1007/s00410-024-02138-9","url":null,"abstract":"<div><p>Determining the time spans of processes related to the assembly of eruptible magma at active volcanoes is fundamental to understand magma chamber dynamics and assess volcanic hazard. This information can be recorded in the chemical zoning of crystals. Nevertheless, this kind of study is still poorly employed for the active volcanoes of the Neapolitan area (Southern Italy), in particular, for Ischia island where the risk is extremely high and this information can provide the basis for probabilistic volcanic hazard assessment. For these reasons, we acquired chemical composition on clinopyroxene crystals erupted at Ischia during the Zaro eruption (6.6 ± 2.2 ka) and performed numerical simulations of the input of mafic magma into a trachytic reservoir, in order to investigate various aspects of pre-eruptive dynamics occurring at different timescales. This event emplaced a ~ 0.1 km<sup>3</sup> lava complex, in which the main trachytic lava flows host abundant mafic to felsic enclaves. Previous petrological investigation suggested that mafic magma(s) mixed/mingled with a trachytic one, before the eruption. In this work, the clinopyroxene zoning patterns depict the growth of crystals in different magmatic environments, recording sequential changes occurred in the plumbing system before the eruption. The evolution of the plumbing system involved a hierarchy of timescales: <i>a few hours</i> for magma mingling caused by mafic recharge(s) and likely occurred multiple times over <i>a decade</i> during which a dominant magmatic environment was sustained before the eruption. Such timescales must be considered in volcanic hazard assessment at Ischia and similar active volcanoes in densely populated areas.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02138-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1007/s00410-024-02135-y
Tong Liu, Chuan-Zhou Liu, Zhen-Yu Zhang, Wei-Qi Zhang, Wen-Bin Ji, Chang Zhang, Ross N. Mitchell
The dynamics and magma transport at the boundary between the upper and lower oceanic crusts (i.e., the dike–gabbro transition) are crucial for understanding the crustal accretion beneath mid-ocean ridges, which however have been studied at quite a few sites such as the East Pacific Rise and ophiolites like Troodos and Oman. Here we present detailed geological, petrological, and geochemical data for the dike–gabbro transition and associated basalts in the Yunzhug ophiolite, central Tibet, to constrain the complex magmatic processes in this specific horizon. The Yunzhug ophiolite contains a large (~ 20 km2) well-exposed sheeted dike complex, which is rooted in a dike–gabbro transition that consists of diverse lithologies, including diabase, gabbro, and minor porphyritic diabase. Petrographically, the Yunzhug gabbros could be grouped into the dominant Plg (plagioclase)-euhedral gabbros (euhedral–subhedral plagioclases enclosed in clinopyroxene oikocrysts) and a small amount of Cpx (clinopyroxene)-euhedral gabbros (with abundant euhedral clinopyroxenes). Plagioclases and their equilibrated melts of the two types of gabbros are similar, whereas clinopyroxenes and their equilibrated melts of the Cpx-euhedral gabbros are more primary and depleted than those of the Plg-euhedral gabbros. These petrographic and geochemical features suggest an earlier crystallization of clinopyroxene for the Cpx-euhedral gabbros, which is best explained by occasional water input in the magmatic system. Nevertheless, the modeled equilibrated melts of the two types of gabbros have compositions indistinguishable from the whole rock compositions of diabases and basalts, indicating a direct genetic linkage between these rocks. The unusual porphyritic diabases, on the other hand, provide evidence supporting for plagioclase accumulation and aggregation during magma upward migration, thus may have served as a unique way for magma to transport from the lower to upper crust. Studies of the Yunzhug ophiolite thus provide some key constraints on the complex magmatic processes in the oceanic dike–gabbro transition, regarding its dynamic accretion and magmatic plumbing mechanisms.
{"title":"Dynamics of the oceanic dike–gabbro transition revealed by petrology and geochemistry of the Yunzhug ophiolite, central Tibet","authors":"Tong Liu, Chuan-Zhou Liu, Zhen-Yu Zhang, Wei-Qi Zhang, Wen-Bin Ji, Chang Zhang, Ross N. Mitchell","doi":"10.1007/s00410-024-02135-y","DOIUrl":"10.1007/s00410-024-02135-y","url":null,"abstract":"<div><p>The dynamics and magma transport at the boundary between the upper and lower oceanic crusts (i.e., the dike–gabbro transition) are crucial for understanding the crustal accretion beneath mid-ocean ridges, which however have been studied at quite a few sites such as the East Pacific Rise and ophiolites like Troodos and Oman. Here we present detailed geological, petrological, and geochemical data for the dike–gabbro transition and associated basalts in the Yunzhug ophiolite, central Tibet, to constrain the complex magmatic processes in this specific horizon. The Yunzhug ophiolite contains a large (~ 20 km<sup>2</sup>) well-exposed sheeted dike complex, which is rooted in a dike–gabbro transition that consists of diverse lithologies, including diabase, gabbro, and minor porphyritic diabase. Petrographically, the Yunzhug gabbros could be grouped into the dominant Plg (plagioclase)-euhedral gabbros (euhedral–subhedral plagioclases enclosed in clinopyroxene oikocrysts) and a small amount of Cpx (clinopyroxene)-euhedral gabbros (with abundant euhedral clinopyroxenes). Plagioclases and their equilibrated melts of the two types of gabbros are similar, whereas clinopyroxenes and their equilibrated melts of the Cpx-euhedral gabbros are more primary and depleted than those of the Plg-euhedral gabbros. These petrographic and geochemical features suggest an earlier crystallization of clinopyroxene for the Cpx-euhedral gabbros, which is best explained by occasional water input in the magmatic system. Nevertheless, the modeled equilibrated melts of the two types of gabbros have compositions indistinguishable from the whole rock compositions of diabases and basalts, indicating a direct genetic linkage between these rocks. The unusual porphyritic diabases, on the other hand, provide evidence supporting for plagioclase accumulation and aggregation during magma upward migration, thus may have served as a unique way for magma to transport from the lower to upper crust. Studies of the Yunzhug ophiolite thus provide some key constraints on the complex magmatic processes in the oceanic dike–gabbro transition, regarding its dynamic accretion and magmatic plumbing mechanisms.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1007/s00410-024-02129-w
Elena-Marie Rogmann, Eleanor S. Jennings, Jennifer Ross, Nobuyoshi Miyajima, Michael J. Walter, Simon C. Kohn, Oliver T. Lord
The aluminous calcium-ferrite type phase (CF) and new aluminous phase (NAL) are thought to hold the excess alumina produced by the decomposition of garnet in MORB compositions in the lower mantle. The respective stabilities of CF and NAL in the nepheline-spinel binary (NaAlSiO(_{4})–MgAl(_{2})O(_{4})) are well established. However with the addition of further components the phase relations at lower mantle conditions remain unclear. Here we investigate a range of compositions around the nepheline apex of the nepheline-kalsilite-spinel compositional join (NaAlSiO(_{4})–KAlSiO(_{4})–MgAl(_{2})O(_{4})) at 28–78 GPa and 2000 K. Our experiments indicate that even small amounts of a kalsilite (KAlSiO(_{4})) component dramatically impact phase relations. We find NAL to be stable up to at least 71 GPa in potassium-bearing compositions. This demonstrates the stabilizing effect of potassium on NAL, because NAL is not observed at pressures above 48 GPa on the nepheline-spinel binary. We also observe a broadening of the CF stability field to incorporate larger amounts of potassium with increasing pressure. For pressures below 50 GPa only minor amounts ((<0.011(1)frac{K}{K+Na+Mg})) of potassium are soluble in CF, whereas at 68 GPa, we find a solubility in CF of at least (0.088(3)frac{K}{K+Na+Mg}). This indicates that CF and NAL are suitable hosts of the alkali content of MORB compositions at lower mantle conditions. For sedimentary compositions at lower mantle pressures, we expect K-Hollandite to be stable in addition to CF and NAL for pressures of 28–48 GPa, based on our simplified compositions.
{"title":"The effect of potassium on aluminous phase stability in the lower mantle","authors":"Elena-Marie Rogmann, Eleanor S. Jennings, Jennifer Ross, Nobuyoshi Miyajima, Michael J. Walter, Simon C. Kohn, Oliver T. Lord","doi":"10.1007/s00410-024-02129-w","DOIUrl":"10.1007/s00410-024-02129-w","url":null,"abstract":"<div><p>The aluminous calcium-ferrite type phase (CF) and new aluminous phase (NAL) are thought to hold the excess alumina produced by the decomposition of garnet in MORB compositions in the lower mantle. The respective stabilities of CF and NAL in the nepheline-spinel binary (NaAlSiO<span>(_{4})</span>–MgAl<span>(_{2})</span>O<span>(_{4})</span>) are well established. However with the addition of further components the phase relations at lower mantle conditions remain unclear. Here we investigate a range of compositions around the nepheline apex of the nepheline-kalsilite-spinel compositional join (NaAlSiO<span>(_{4})</span>–KAlSiO<span>(_{4})</span>–MgAl<span>(_{2})</span>O<span>(_{4})</span>) at 28–78 GPa and 2000 K. Our experiments indicate that even small amounts of a kalsilite (KAlSiO<span>(_{4})</span>) component dramatically impact phase relations. We find NAL to be stable up to at least 71 GPa in potassium-bearing compositions. This demonstrates the stabilizing effect of potassium on NAL, because NAL is not observed at pressures above 48 GPa on the nepheline-spinel binary. We also observe a broadening of the CF stability field to incorporate larger amounts of potassium with increasing pressure. For pressures below 50 GPa only minor amounts (<span>(<0.011(1)frac{K}{K+Na+Mg})</span>) of potassium are soluble in CF, whereas at 68 GPa, we find a solubility in CF of at least <span>(0.088(3)frac{K}{K+Na+Mg})</span>. This indicates that CF and NAL are suitable hosts of the alkali content of MORB compositions at lower mantle conditions. For sedimentary compositions at lower mantle pressures, we expect K-Hollandite to be stable in addition to CF and NAL for pressures of 28–48 GPa, based on our simplified compositions.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02129-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Slab-derived supercritical liquids separate into aqueous fluids and hydrous melts during their migration. Separated aqueous fluids further release melt components that cannot be dissolved during ascent. During these processes, elemental partitioning occurs, which may contribute to the geochemical evolution of subduction-zone fluids. Here, we report new experimental results of partition coefficients between a hydrous dacitic melt and Cl-free or Cl-rich aqueous fluids (Dfluid/melt) for 26 elements at a temperature of 1100°C and pressures of 0.3 and 0.7 GPa using internally-heated pressure vessels. Our results reveal that high-field strength elements (HFSE), except Th, are hardly partitioned into aqueous fluids, regardless of their salinity and pressure conditions. In contrast, the partitioning of other elements varies depending on the fluid salinity. Dfluid/melt of large-ion lithophile elements (LILE) and U increases with salinity, whereas that of rare earth elements (REE) and Th decreases. These results predict that slab-derived aqueous fluids can evolve to become richer in LILE and U and poorer in HFSE and REE by separating melt components, which explains the LILE- and U-rich and HFSE- and REE-poor characteristics of subduction-zone magmas. This also explains the higher LILE/HFSE and LILE/REE ratios in frontal-arc basalts than in rear-arc basalts: frontal-arc basalts can be generated by the addition of aqueous fluids that sufficiently separate the melt components at shallower depths, whereas rear-arc basalts are generated by the addition of supercritical liquids or aqueous fluid that insufficiently separate the melt components at greater depths. Such separation of melt components from ascending slab-derived fluid can determine the geochemical signature and across-arc compositional variation of subduction-zone magmas.
{"title":"Compositional evolution of slab-derived fluids during ascent: implications from trace-element partition between hydrous melts and Cl-free or Cl-rich aqueous fluids","authors":"Hajime Taniuchi, Tatsuhiko Kawamoto, Takayuki Nakatani, Osamu Ishizuka, Toshihiro Suzuki, Akihiko Tomiya","doi":"10.1007/s00410-024-02122-3","DOIUrl":"10.1007/s00410-024-02122-3","url":null,"abstract":"<div><p>Slab-derived supercritical liquids separate into aqueous fluids and hydrous melts during their migration. Separated aqueous fluids further release melt components that cannot be dissolved during ascent. During these processes, elemental partitioning occurs, which may contribute to the geochemical evolution of subduction-zone fluids. Here, we report new experimental results of partition coefficients between a hydrous dacitic melt and Cl-free or Cl-rich aqueous fluids (D<sup>fluid/melt</sup>) for 26 elements at a temperature of 1100°C and pressures of 0.3 and 0.7 GPa using internally-heated pressure vessels. Our results reveal that high-field strength elements (HFSE), except Th, are hardly partitioned into aqueous fluids, regardless of their salinity and pressure conditions. In contrast, the partitioning of other elements varies depending on the fluid salinity. D<sup>fluid/melt</sup> of large-ion lithophile elements (LILE) and U increases with salinity, whereas that of rare earth elements (REE) and Th decreases. These results predict that slab-derived aqueous fluids can evolve to become richer in LILE and U and poorer in HFSE and REE by separating melt components, which explains the LILE- and U-rich and HFSE- and REE-poor characteristics of subduction-zone magmas. This also explains the higher LILE/HFSE and LILE/REE ratios in frontal-arc basalts than in rear-arc basalts: frontal-arc basalts can be generated by the addition of aqueous fluids that sufficiently separate the melt components at shallower depths, whereas rear-arc basalts are generated by the addition of supercritical liquids or aqueous fluid that insufficiently separate the melt components at greater depths. Such separation of melt components from ascending slab-derived fluid can determine the geochemical signature and across-arc compositional variation of subduction-zone magmas.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}