首页 > 最新文献

Faktor Exacta最新文献

英文 中文
ANALISIS GROUND VIBRATION DENGAN METODE PEAK PARTICLE VELOCITY (PPV) 地面振动分析登干法峰值粒子速度(ppv)
Pub Date : 2021-03-30 DOI: 10.30998/faktorexacta.v14i1.7833
Hari Hadi S, E. Wati, Tomas Kristiono

Measurement of Peak Particle Velocity (PPV) mm / sec in the Sabo dam construction project was carried out using seismic accelerometers. This study is to determine the value of PPV produced by construction equipment and then compared with the BS 6472-2: 2008 standard. The measurement method is carried out based on the applicable rules. PPV measurement results produced by each machine are different. In heavy equipment dump trucks, excavators, and front end loaders show PPV values at distances of 50 m, 100 m, 150 m and 200 m under safe conditions referring to the standard which is still in the range of 0.2 - 0.4 mm / sec. while for the pile driving device, demolition, vibrator pile driver at a distance of 50 meters are in unsafe conditions, because more than the range of 0.2 - 0.4 mm / sec, but at a distance of 100, 150, and 200 m PPV values are at safe condition


Key words: PPV, Ground Vibration, Dam sabo

 


利用地震加速度计测量了沙波大坝建设工程中的峰值粒子速度(PPV) mm / sec。本研究是确定施工设备产生的PPV值,然后与BS 6472-2: 2008标准进行比较。测量方法是根据适用的规则进行的。每台机器产生的PPV测量结果是不同的。在重型设备自卸卡车、挖掘机和前端装载机PPV显示值在50米的距离,100米,150米和200米在安全条件下指的是标准仍在时间间隔为0.2 - 0.4毫米/秒的范围虽然打桩设备,拆除,振动打桩机在50米的距离是在不安全的条件下,因为超过0.2 - 0.4毫米/秒的范围,但是在100,150,和200 PPV值安全conditionKey的话:PPV,地面振动,大坝振动
{"title":"ANALISIS GROUND VIBRATION DENGAN METODE PEAK PARTICLE VELOCITY (PPV)","authors":"Hari Hadi S, E. Wati, Tomas Kristiono","doi":"10.30998/faktorexacta.v14i1.7833","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i1.7833","url":null,"abstract":"<p><em>Measurement of Peak Particle Velocity (PPV) mm / sec in the Sabo dam construction project was carried out using seismic accelerometers. This study is to determine the value of PPV produced by construction equipment and then compared with the BS 6472-2: 2008 standard. The measurement method is carried out based on the applicable rules. PPV measurement results produced by each machine are different. In heavy equipment dump trucks, excavators, and front end loaders show PPV values at distances of 50 m, 100 m, 150 m and 200 m under safe conditions referring to the standard which is still in the range of 0.2 - 0.4 mm / sec. while for the pile driving device, demolition, vibrator pile driver at a distance of 50 meters are in unsafe conditions, because more than the range of 0.2 - 0.4 mm / sec, but at a distance of 100, 150, and 200 m PPV values are at safe condition</em></p><p><em><br /></em></p><p>Key words<strong>: </strong><em>PPV, Ground Vibration, Dam sabo</em></p><p><strong> </strong></p><p><em><br /></em></p>","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42362458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CNN UNTUK SISTEM PENGENALAN WAJAH CNN下的深度学习在一个变道系统中的实现
Pub Date : 2021-03-30 DOI: 10.30998/faktorexacta.v14i1.8989
N. Dewi, Fiqih Ismawan
Received: Feb 15, 2021 Revised: Feb 22, 2021 Accepted: Mach 12, 2021 Face recognition system is generally divided into two stages, face detection system, which is a pre-processing step followed by a facial recognition system. This step will quickly be done by humans but it takes a long time for the computer. This ability of humans is what researchers want to duplicate in the last few years as biometric technology in computer vision to create a model of face recognition in computer. Deep learning becomes a spotlight in developing machine learning, the reason because deep learning has reached an extraordinary result in computer vision. Based on that, the author came up with an idea to create a face recognition system by implementing deep learning using the CNN method and applying library openFace. The CNN methods are still superior and widely used because they have good accuracy. The initial process was taking a picture of the face to be used as a dataset. From this dataset, face preprocessing will be carried out, that is, to extract the facial vector features into 128-d and to classify the facial vector. The contribution of this research is the addition of features to improve the accuracy of the facial recognition system using the CNN method. The results of this research get a precision value of 98.4%, a recall of 98% and an accuracy of 99.84%.
{"title":"IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CNN UNTUK SISTEM PENGENALAN WAJAH","authors":"N. Dewi, Fiqih Ismawan","doi":"10.30998/faktorexacta.v14i1.8989","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i1.8989","url":null,"abstract":"Received: Feb 15, 2021 Revised: Feb 22, 2021 Accepted: Mach 12, 2021 Face recognition system is generally divided into two stages, face detection system, which is a pre-processing step followed by a facial recognition system. This step will quickly be done by humans but it takes a long time for the computer. This ability of humans is what researchers want to duplicate in the last few years as biometric technology in computer vision to create a model of face recognition in computer. Deep learning becomes a spotlight in developing machine learning, the reason because deep learning has reached an extraordinary result in computer vision. Based on that, the author came up with an idea to create a face recognition system by implementing deep learning using the CNN method and applying library openFace. The CNN methods are still superior and widely used because they have good accuracy. The initial process was taking a picture of the face to be used as a dataset. From this dataset, face preprocessing will be carried out, that is, to extract the facial vector features into 128-d and to classify the facial vector. The contribution of this research is the addition of features to improve the accuracy of the facial recognition system using the CNN method. The results of this research get a precision value of 98.4%, a recall of 98% and an accuracy of 99.84%.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48684107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PERANCANGAN MACHINE VISION UNTUK PEMILAH KUALITAS PRODUK AIR MINUM DALAM BOTOL 600ML DI WTP PUTOI PNJ 为PNJ水处理厂600ML瓶装水中的微小空气质量场提供视觉机器
Pub Date : 2021-03-30 DOI: 10.30998/faktorexacta.v14i1.7652
Nur Alam, Dian Figana
{"title":"PERANCANGAN MACHINE VISION UNTUK PEMILAH KUALITAS PRODUK AIR MINUM DALAM BOTOL 600ML DI WTP PUTOI PNJ","authors":"Nur Alam, Dian Figana","doi":"10.30998/faktorexacta.v14i1.7652","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i1.7652","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45747144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EVALUASI KUALITAS APLIKASI SISTEM INFORMASI MANAJEMEN KEIMIGRASIAN (SIMKIM) VERSI 2.0 BERBASIS WEB MENGGUNAKAN METODE HUMAN ORGANIZATION TECHNOLOGY FIT (Studi Kasus pada Kantor Imigrasi) 基于WEB的信息管理系统(SIMKIM)的应用程序质量评估使用人类组织技术健康方法(一个案例研究)
Pub Date : 2021-03-30 DOI: 10.30998/faktorexacta.v14i1.8630
Arham Bakri, Anggraeni Ridwan
{"title":"EVALUASI KUALITAS APLIKASI SISTEM INFORMASI MANAJEMEN KEIMIGRASIAN (SIMKIM) VERSI 2.0 BERBASIS WEB MENGGUNAKAN METODE HUMAN ORGANIZATION TECHNOLOGY FIT (Studi Kasus pada Kantor Imigrasi)","authors":"Arham Bakri, Anggraeni Ridwan","doi":"10.30998/faktorexacta.v14i1.8630","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i1.8630","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44263760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Pendukung Keputusan Pemilihan Siswa Berprestasi Menggunakan Metode Profile Matching 职业学生剖析方法的支持决策系统
Pub Date : 2021-03-30 DOI: 10.30998/faktorexacta.v14i1.9057
Dwi Dani Apriyani
{"title":"Sistem Pendukung Keputusan Pemilihan Siswa Berprestasi Menggunakan Metode Profile Matching","authors":"Dwi Dani Apriyani","doi":"10.30998/faktorexacta.v14i1.9057","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i1.9057","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42310694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analisis Dan Perancangan Simulasi Algoritma Paillier Cryptosystem Pada Pesan Text Dengan Presentation Format Binary, Octal, Hexadecimal dan Base64 二进制、八进制、十六进制和Base64表示格式文本消息的Paillier密码系统算法分析与设计仿真
Pub Date : 2021-02-16 DOI: 10.30998/faktorexacta.v13i4.7429
Muhamad Femy Mulya, Nofita Rismawati, Dedy Trisanto
{"title":"Analisis Dan Perancangan Simulasi Algoritma Paillier Cryptosystem Pada Pesan Text Dengan Presentation Format Binary, Octal, Hexadecimal dan Base64","authors":"Muhamad Femy Mulya, Nofita Rismawati, Dedy Trisanto","doi":"10.30998/faktorexacta.v13i4.7429","DOIUrl":"https://doi.org/10.30998/faktorexacta.v13i4.7429","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49355701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SISTEM BERBASIS CLOUD COMPUTING UNTUK IDENTIFIKASI RESEP DOKTER “BARSEP” 用于呼吸科医生BARSEP识别的BERBASIS云计算系统
Pub Date : 2021-02-16 DOI: 10.30998/faktorexacta.v13i4.7569
I. Saputra, Andi Saryoko, Ganda Wijaya, Meilynda Trisiana, Asep Mulyana, Dandi Yusbial Bayani, Dharma Winata, Vilsafa Khoirunnisak
{"title":"SISTEM BERBASIS CLOUD COMPUTING UNTUK IDENTIFIKASI RESEP DOKTER “BARSEP”","authors":"I. Saputra, Andi Saryoko, Ganda Wijaya, Meilynda Trisiana, Asep Mulyana, Dandi Yusbial Bayani, Dharma Winata, Vilsafa Khoirunnisak","doi":"10.30998/faktorexacta.v13i4.7569","DOIUrl":"https://doi.org/10.30998/faktorexacta.v13i4.7569","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42344055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PROTOTYPE SISTEM KENDALI ROBOT ARM GRIPPER MANIPULATOR MENGGUNAKAN FLEX SENSOR DAN MPU6050 BERBASIS INTERNET OF THINGS 原型系统kendali机器人手臂夹持器机械手menggunakan挠性传感器Dan mpu6050基于物联网
Pub Date : 2021-02-16 DOI: 10.30998/faktorexacta.v13i4.6598
Habib Nurfaizal, Makhsun Makhsun, Yan Mitha Djaksana
Received July 07, 2020 Revised Feb 06, 2021 Accepted Feb 08, 2021 In this sophisticated era, a lot of human work has begun to be replaced by robots. Physical limitations and human concentration in doing repetitive or dangerous work are important factors in the development of robots. One of the robots that was created to make work easier is a robot that has the ability like a human arm called the arm gripper manipulator robot. This manipulator gripper arm consists of interconnected arms, namely link, joint and endeffector. This research designed a control system of the robot arm gripper manipulator with 2 modes, gesture mode and IoT mode. The microcontroller used is Arduino Mega 2560 with flex sensor control and MPU 6050 inertia measurement unit sensor in gesture mode attached to the glove. And Iot control using a smartphone, the result of testing the error of the average travel time in 5 movements is 2.08%. The overall test results of the robot arm gripper manipulator can be controlled with gesture mode and IoT mode. The hope is that this solution will be useful for humans in reducing the risk of injury when doing heavy work.
在这个复杂的时代,很多人类的工作已经开始被机器人所取代。在机器人的发展中,物理限制和人类在重复或危险工作中的集中是重要的因素。其中一种机器人是为了使工作更容易而创造的,它有像人的手臂一样的能力,被称为手臂抓取机械手机器人。该机械手夹持臂由连接臂组成,即连杆、关节和伸臂。本研究设计了一种具有手势模式和物联网模式两种模式的机械臂抓取机械手控制系统。使用的微控制器是Arduino Mega 2560,带有弯曲传感器控制和MPU 6050惯性测量单元传感器,在手势模式下连接在手套上。并且使用智能手机进行物联网控制,测试结果显示5次运动中平均行程时间的误差为2.08%。机器人手臂夹持机械手的整体测试结果可以通过手势模式和物联网模式进行控制。希望这一解决方案将有助于人类在从事繁重工作时减少受伤的风险。
{"title":"PROTOTYPE SISTEM KENDALI ROBOT ARM GRIPPER MANIPULATOR MENGGUNAKAN FLEX SENSOR DAN MPU6050 BERBASIS INTERNET OF THINGS","authors":"Habib Nurfaizal, Makhsun Makhsun, Yan Mitha Djaksana","doi":"10.30998/faktorexacta.v13i4.6598","DOIUrl":"https://doi.org/10.30998/faktorexacta.v13i4.6598","url":null,"abstract":"Received July 07, 2020 Revised Feb 06, 2021 Accepted Feb 08, 2021 In this sophisticated era, a lot of human work has begun to be replaced by robots. Physical limitations and human concentration in doing repetitive or dangerous work are important factors in the development of robots. One of the robots that was created to make work easier is a robot that has the ability like a human arm called the arm gripper manipulator robot. This manipulator gripper arm consists of interconnected arms, namely link, joint and endeffector. This research designed a control system of the robot arm gripper manipulator with 2 modes, gesture mode and IoT mode. The microcontroller used is Arduino Mega 2560 with flex sensor control and MPU 6050 inertia measurement unit sensor in gesture mode attached to the glove. And Iot control using a smartphone, the result of testing the error of the average travel time in 5 movements is 2.08%. The overall test results of the robot arm gripper manipulator can be controlled with gesture mode and IoT mode. The hope is that this solution will be useful for humans in reducing the risk of injury when doing heavy work.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42938588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning 基于机器学习的情绪分析开放包市场用户和推特上的Tokopedia
Pub Date : 2021-02-16 DOI: 10.30998/faktorexacta.v13i4.7074
I. Saputra, Rahmad Singgih AJI PAMBUDI, Hanafi Eko Darono, Fachri Amsury, Muhammad Rizki Fahdia, Benni Ramadhan, Anggi Ardiansyah
Received Sep 9, 2019 Revised May 20, 2020 Accepted December 27, 2020 A collection of tweets from Twitter users about Marketplace Bukalapak and Tokopedia can be used as a sentiment analysis. The data obtained is processed using data mining techniques, in which there is a process of mining the text, tokenize, transformation, classification, stem, etc. Then calculated into three different algorithms to be compared, the algorithm used is the Decision Tree, K-NN, and Naïve Bayes Classifier with the aim of finding the best accuracy. Rapidminer application is also used to facilitate writers in processing data. The highest results from this study are Decision Tree algorithm with 82% accuracy, 81.95% precision and 86% recall.
收到日期:2019年9月9日修订日期:2020年5月20日接受日期:2020月27日推特用户关于Marketplace Bukalapak和Tokopedia的推文集合可用于情绪分析。使用数据挖掘技术对获得的数据进行处理,其中包括文本挖掘、标记化、转换、分类、词干等过程。然后计算出三种不同的算法进行比较,所使用的算法是决策树、K-NN和朴素贝叶斯分类器,目的是找到最佳精度。Rapidminer应用程序还用于方便写入程序处理数据。本研究的最高结果是决策树算法,其准确率为82%,准确率为81.95%,召回率为86%。
{"title":"Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning","authors":"I. Saputra, Rahmad Singgih AJI PAMBUDI, Hanafi Eko Darono, Fachri Amsury, Muhammad Rizki Fahdia, Benni Ramadhan, Anggi Ardiansyah","doi":"10.30998/faktorexacta.v13i4.7074","DOIUrl":"https://doi.org/10.30998/faktorexacta.v13i4.7074","url":null,"abstract":"Received Sep 9, 2019 Revised May 20, 2020 Accepted December 27, 2020 A collection of tweets from Twitter users about Marketplace Bukalapak and Tokopedia can be used as a sentiment analysis. The data obtained is processed using data mining techniques, in which there is a process of mining the text, tokenize, transformation, classification, stem, etc. Then calculated into three different algorithms to be compared, the algorithm used is the Decision Tree, K-NN, and Naïve Bayes Classifier with the aim of finding the best accuracy. Rapidminer application is also used to facilitate writers in processing data. The highest results from this study are Decision Tree algorithm with 82% accuracy, 81.95% precision and 86% recall.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49221624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Membangun Pythagoras Sebagai Visualisasi Random Forest Untuk Pemodelan Pohon Keputusan 建造毕达哥拉斯作为随机想象森林为决策树建构
Pub Date : 2020-11-30 DOI: 10.30998/faktorexacta.v13i3.6513
Erlin Windia Ambarsari, Herlinda Herlinda
Received June 24, 2020 Revised Oct 14, 2020 Accepted Oct 26, 2020 Students observed Pythagoras for using a plane Geometry and 3D Geometry. However, Pythagoras can also be built for decision trees. Our research regarding Instagram Usage Habit with construct Pythagoras for a single decision tree. The study's results obtained are ambiguous attribute values. Therefore, it is continued with research to build Pythagoras for Random Forest. The purpose of the study is to facilitate the tracking of ambiguous data contained in the attributes. The results obtained that the relationship between characteristics of the target class, thus resulting in misclassification. This error caused invalid data; for example, there are three times the separation of data on the same attribute for age's target for a group of 20. However, although there are misclassifications caused by invalid data, based on the Pythagorean construction for Random Forest, the data is more easily traced to errors, which cannot be done by a single decision tree.
接收2020年6月24日修订2020年10月14日接受2020年10月26日学生观察毕达哥拉斯使用平面几何和三维几何。然而,也可以为决策树构建毕达哥拉斯。我们的关于Instagram使用习惯的研究与构造一个单一决策树的毕达哥拉斯。研究得到的结果是模糊的属性值。因此,继续研究随机森林的毕达哥拉斯模型。研究的目的是为了方便对属性中包含的模糊数据进行跟踪。结果得出目标类特征之间的关系,从而导致误分类。此错误导致无效数据;例如,对于一组20人的年龄目标,同一属性上的数据间隔为三倍。然而,尽管存在无效数据导致的错误分类,但基于随机森林的毕达哥拉斯构造,数据更容易追踪到错误,这是单一决策树无法完成的。
{"title":"Membangun Pythagoras Sebagai Visualisasi Random Forest Untuk Pemodelan Pohon Keputusan","authors":"Erlin Windia Ambarsari, Herlinda Herlinda","doi":"10.30998/faktorexacta.v13i3.6513","DOIUrl":"https://doi.org/10.30998/faktorexacta.v13i3.6513","url":null,"abstract":"Received June 24, 2020 Revised Oct 14, 2020 Accepted Oct 26, 2020 Students observed Pythagoras for using a plane Geometry and 3D Geometry. However, Pythagoras can also be built for decision trees. Our research regarding Instagram Usage Habit with construct Pythagoras for a single decision tree. The study's results obtained are ambiguous attribute values. Therefore, it is continued with research to build Pythagoras for Random Forest. The purpose of the study is to facilitate the tracking of ambiguous data contained in the attributes. The results obtained that the relationship between characteristics of the target class, thus resulting in misclassification. This error caused invalid data; for example, there are three times the separation of data on the same attribute for age's target for a group of 20. However, although there are misclassifications caused by invalid data, based on the Pythagorean construction for Random Forest, the data is more easily traced to errors, which cannot be done by a single decision tree.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46472626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faktor Exacta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1