首页 > 最新文献

Faktor Exacta最新文献

英文 中文
ALGORITMA NEURAL NETWORK BACKPROPAGATION UNTUK PREDIKSI HARGA SAHAM PADA TIGA GOLONGAN PERUSAHAAN BERDASARKAN KAPITALISASINYA 工作原理预测的神经网络反向传播算法
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.9365
Nopri Santi, Suryarini Widodo
{"title":"ALGORITMA NEURAL NETWORK BACKPROPAGATION UNTUK PREDIKSI HARGA SAHAM PADA TIGA GOLONGAN PERUSAHAAN BERDASARKAN KAPITALISASINYA","authors":"Nopri Santi, Suryarini Widodo","doi":"10.30998/faktorexacta.v14i3.9365","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.9365","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46624523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analisis Model Pengukuran Tinggi Permukaan Air Dengan Metode Canny Edge Detection dan Image Contouring Sebagai Indikator Peringatan Dini Bencana Banjir Canny边缘检测方法和等高线图像作为世界洪水预警指标的分析模型高地测量
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.9567
Frederick Alexander, I. Imelda
Received Apr 14, 2021 Revised Agus 1, 2021 Accepted Sep 06, 2021 Flood disaster remains a natural phenomenon that often occurs in Indonesia, especially in the Wisma Tajur Housing Complex area, Tangerang City which causes property losses including the safety of the souls of the affected community. The difficulty experienced so far is how to measure the water level to obtain alert status information as an indicator of flood warning. As a solution in overcoming these problems, this research proposes a method based on digital image processing with canny edge detection algorithms and image contouring to measure river water levels. Canny edge detection and image contouring were chosen due to their accuracy in detecting the edges of the image and the ease of the computation process. The steps taken in this research are to conduct a simulation experiment of measuring the water level using a water container that can describe the situation in the river, then doing field testing. Canny edge detection produces an outline that can then be detected by the contour, then water level measurements can be made on the bounding rectangle that is formed and changes dynamically with fluctuations in water level. The contribution of this research is the use of black measuring lines that are processed using thresholding techniques to facilitate the process of measuring water level using a combination of canny edge detection and image contouring techniques as well as adding attributes/features using threshold, MinVal, and MaxVal values on the canny edge. Sampling testing produces an accuracy of 99.96%, prototype testing produces 100% accuracy, and direct testing produces an accuracy of 99.85%.
2021年4月14日收到修订版Agus 2021年1日接受2021年9月6日洪水灾害仍然是印度尼西亚经常发生的自然现象,尤其是在唐格朗市的Wisma Tajur住宅区,它会造成财产损失,包括受影响社区的灵魂安全。到目前为止,遇到的困难是如何测量水位以获得警报状态信息作为洪水警报的指标。为了解决这些问题,本研究提出了一种基于数字图像处理的方法,结合精明的边缘检测算法和图像轮廓来测量河流水位。选择Canny边缘检测和图像轮廓是因为它们在检测图像边缘方面的准确性和计算过程的容易性。本研究采取的步骤是进行模拟实验,使用能够描述河流情况的盛水器测量水位,然后进行现场测试。Canny边缘检测产生一个轮廓,然后可以通过轮廓来检测,然后可以在形成的边界矩形上进行水位测量,该边界矩形随着水位的波动而动态变化。这项研究的贡献是使用了使用阈值技术处理的黑色测量线,以促进使用精明边缘检测和图像轮廓技术的组合测量水位的过程,以及使用精明边缘上的阈值、MinVal和MaxVal值添加属性/特征。抽样测试的准确度为99.96%,原型测试的准确率为100%,直接测试的准确程度为99.85%。
{"title":"Analisis Model Pengukuran Tinggi Permukaan Air Dengan Metode Canny Edge Detection dan Image Contouring Sebagai Indikator Peringatan Dini Bencana Banjir","authors":"Frederick Alexander, I. Imelda","doi":"10.30998/faktorexacta.v14i3.9567","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.9567","url":null,"abstract":"Received Apr 14, 2021 Revised Agus 1, 2021 Accepted Sep 06, 2021 Flood disaster remains a natural phenomenon that often occurs in Indonesia, especially in the Wisma Tajur Housing Complex area, Tangerang City which causes property losses including the safety of the souls of the affected community. The difficulty experienced so far is how to measure the water level to obtain alert status information as an indicator of flood warning. As a solution in overcoming these problems, this research proposes a method based on digital image processing with canny edge detection algorithms and image contouring to measure river water levels. Canny edge detection and image contouring were chosen due to their accuracy in detecting the edges of the image and the ease of the computation process. The steps taken in this research are to conduct a simulation experiment of measuring the water level using a water container that can describe the situation in the river, then doing field testing. Canny edge detection produces an outline that can then be detected by the contour, then water level measurements can be made on the bounding rectangle that is formed and changes dynamically with fluctuations in water level. The contribution of this research is the use of black measuring lines that are processed using thresholding techniques to facilitate the process of measuring water level using a combination of canny edge detection and image contouring techniques as well as adding attributes/features using threshold, MinVal, and MaxVal values on the canny edge. Sampling testing produces an accuracy of 99.96%, prototype testing produces 100% accuracy, and direct testing produces an accuracy of 99.85%.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48969347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear 巴氏涂片分类中的雷斯纳50与雷斯纳101结构比较
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.10010
Za’imatun Niswati, Rahayuning Hardatin, Meia Noer Muslimah, S. Hasanah
{"title":"Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear","authors":"Za’imatun Niswati, Rahayuning Hardatin, Meia Noer Muslimah, S. Hasanah","doi":"10.30998/faktorexacta.v14i3.10010","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.10010","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47278305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
ANALISIS SENTIMEN PENGARUH PEMBELAJARAN DARING TERHADAP MOTIVASI BELAJAR DI MASA PANDEMI MENGGUNAKAN NAIVE BAYES DAN SVM 利用天真的BAYES和SVM对大流行学术性学习动机的在线学习影响分析
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.10325
Ariansyah Ariansyah, Mira Kusmira
{"title":"ANALISIS SENTIMEN PENGARUH PEMBELAJARAN DARING TERHADAP MOTIVASI BELAJAR DI MASA PANDEMI MENGGUNAKAN NAIVE BAYES DAN SVM","authors":"Ariansyah Ariansyah, Mira Kusmira","doi":"10.30998/faktorexacta.v14i3.10325","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.10325","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48800889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Teknologi Pengolahan Citra Digital Untuk Ekstraksi Ciri pada Citra Daun untuk Identifikasi Tumbuhan Obat 处理数字图像以提取叶子的特征以识别草本植物的技术
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.9841
T. Harjanti, Himawan Himawan
{"title":"Teknologi Pengolahan Citra Digital Untuk Ekstraksi Ciri pada Citra Daun untuk Identifikasi Tumbuhan Obat","authors":"T. Harjanti, Himawan Himawan","doi":"10.30998/faktorexacta.v14i3.9841","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.9841","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47483265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RANCANG BANGUN PROTOTYPE PENGENDALIAN LENGAN ROBOT (ROBOTIC ARM) SEBAGAI PEMINDAH BARANG BERBASIS INTERNET OF THINGS
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.9807
Syah Alam, Gunawan Tjahjadi, Nur Rahma Yenita, S. Supriyadi
{"title":"RANCANG BANGUN PROTOTYPE PENGENDALIAN LENGAN ROBOT (ROBOTIC ARM) SEBAGAI PEMINDAH BARANG BERBASIS INTERNET OF THINGS","authors":"Syah Alam, Gunawan Tjahjadi, Nur Rahma Yenita, S. Supriyadi","doi":"10.30998/faktorexacta.v14i3.9807","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.9807","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42434198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processing The Ground Motion Signal Recording Using Correction Instrument Method 用校正仪法处理地震动信号记录
Pub Date : 2021-08-10 DOI: 10.30998/faktorexacta.v14i2.8482
E. K. Wati
The instrument correction method is a way to eliminate interference with the signal from the recording instrument response. Signal processing by the instrument correction method using the inverse filter method created using the MATLAB program. In this research using Honshu earthquake data, Japan with Mw 7.4 (dated September 5, 2004) recorded by the MERAMEX seismometer type L4C-3D type short seismometer and Japan Tohoku-Oki earthquake with a strength of Mw 9.0 (March 11, 2011) the data from four seismic stations in Padang, West Sumatra with a DS-4A type short-period seismometer. From the research known, the signal can clearly show the phase of the P and S waves. This can help to determine the parameters of the hypocenter, receiver function, moment tensors, studies of .  The surface wave phase can be reconstructed well. This is very useful for studies using surface wave data, moment tensor solutions, seismic wave dispersion studies. Based on the amplitude of the instrument correction results compared with theoretical data, the gain or amplification .
仪器校正方法是一种消除记录仪器响应对信号干扰的方法。信号处理采用仪器校正法,采用逆滤波法,利用MATLAB编写程序。本研究利用MERAMEX L4C-3D型短周期地震仪记录的2004年9月5日日本本州7.4级地震资料和2011年3月11日日本东北冲9.0级地震资料,利用DS-4A型短周期地震仪在西苏门答腊巴东4个地震台站采集的数据。从已知的研究来看,该信号可以清楚地显示P波和S波的相位。这可以帮助确定震源的参数,接收函数,矩张量,研究。表面波相位可以很好地重建。这是非常有用的研究使用表面波数据,矩张量解,地震波色散研究。根据仪器的振幅修正结果与理论数据进行比较,得到增益或放大。
{"title":"Processing The Ground Motion Signal Recording Using Correction Instrument Method","authors":"E. K. Wati","doi":"10.30998/faktorexacta.v14i2.8482","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i2.8482","url":null,"abstract":"The instrument correction method is a way to eliminate interference with the signal from the recording instrument response. Signal processing by the instrument correction method using the inverse filter method created using the MATLAB program. In this research using Honshu earthquake data, Japan with Mw 7.4 (dated September 5, 2004) recorded by the MERAMEX seismometer type L4C-3D type short seismometer and Japan Tohoku-Oki earthquake with a strength of Mw 9.0 (March 11, 2011) the data from four seismic stations in Padang, West Sumatra with a DS-4A type short-period seismometer. From the research known, the signal can clearly show the phase of the P and S waves. This can help to determine the parameters of the hypocenter, receiver function, moment tensors, studies of .  The surface wave phase can be reconstructed well. This is very useful for studies using surface wave data, moment tensor solutions, seismic wave dispersion studies. Based on the amplitude of the instrument correction results compared with theoretical data, the gain or amplification .","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48938900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Metode K-Medoids Untuk Masalah Intrusion Detection System Menggunakan Bahasa Pemrograman Matlab 使用Matlab编程语言执行任务
Pub Date : 2021-08-10 DOI: 10.30998/faktorexacta.v14i2.9429
Octaviani Hutapea, Aini Suri Talita
Received April 6, 2021 Revised July 17, 2021 Accepted July 22, 2021 Based on data from the National Cyber And Crypto Agency (BSSN) of the Republic of Indonesia from 2018 to 2021, the threat of cyber attacks continues to experience a significant increase. In 2021, a significant change that is likely to be faced is with the emergence of new smart devices, which are more than just end-users and remotely connected networked devices. Surely, gives it the attention of all parties. There are many types of cyberattacks including Malware, Phishing, Ransomeware, etc. IDS (Intrusion Detection System) is a method that can detect suspicious activity in a system or network. Implementation of the Fuzzy K-Medoids method by using the Matlab programming language that retrieves data from KDDCUP’99 which has been normalized. The data used are normal data and anomaly attack data which are categorized as DoS, Probe, R2L, and U2R. From the research conducted the accuracy percentage is around 6089% with three types of data preprocessing.
根据印度尼西亚共和国国家网络和加密机构(BSSN) 2018年至2021年的数据,网络攻击的威胁继续显著增加。到2021年,可能面临的一个重大变化是新的智能设备的出现,这不仅仅是终端用户和远程连接的网络设备。当然,这会引起各方的注意。有许多类型的网络攻击,包括恶意软件,网络钓鱼,勒索软件等。入侵检测系统(IDS)是一种检测系统或网络中可疑活动的方法。利用Matlab编程语言实现了模糊k - mediids方法,检索了经过归一化处理的KDDCUP ' 99的数据。使用的数据为正常数据和异常攻击数据,分为DoS、Probe、R2L和U2R。从所进行的研究来看,通过三种类型的数据预处理,准确率约为6089%。
{"title":"Implementasi Metode K-Medoids Untuk Masalah Intrusion Detection System Menggunakan Bahasa Pemrograman Matlab","authors":"Octaviani Hutapea, Aini Suri Talita","doi":"10.30998/faktorexacta.v14i2.9429","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i2.9429","url":null,"abstract":"Received April 6, 2021 Revised July 17, 2021 Accepted July 22, 2021 Based on data from the National Cyber And Crypto Agency (BSSN) of the Republic of Indonesia from 2018 to 2021, the threat of cyber attacks continues to experience a significant increase. In 2021, a significant change that is likely to be faced is with the emergence of new smart devices, which are more than just end-users and remotely connected networked devices. Surely, gives it the attention of all parties. There are many types of cyberattacks including Malware, Phishing, Ransomeware, etc. IDS (Intrusion Detection System) is a method that can detect suspicious activity in a system or network. Implementation of the Fuzzy K-Medoids method by using the Matlab programming language that retrieves data from KDDCUP’99 which has been normalized. The data used are normal data and anomaly attack data which are categorized as DoS, Probe, R2L, and U2R. From the research conducted the accuracy percentage is around 6089% with three types of data preprocessing.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43559229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc 情感分析Halodoc应用中Naive Bayes算法、支持向量机和K近邻的实现
Pub Date : 2021-08-10 DOI: 10.30998/faktorexacta.v14i2.9697
Elly Indrayuni, Acmad Nurhadi, Dinar Ajeng Kristiyanti
Received May 1, 2021 Revised May 25, 2021 Accepted May 28, 2021 During the Covid-19 pandemic, many people access information and even consult health problems online with the best doctors via smartphones. The Halodoc application is considered the most popular with 18 million users in 2020. So that many people have reviewed the application on the Google Play Store application provider. It may take a while to read the full review. However, if only a few comments are read, they are biased. For that, a platform is needed which can automatically identify positive or negative opinions. Sentiment analysis is a solution for the technique of classifying texts or sentiments into positive or negative opinion categories. The method used in this research is an experiment using the Naive Bayes algorithm, Support Vector Machine, and K-Nearest Neighbors. Evaluation is carried out using 10 Fold Cross-Validation. The results showed that K-Nearest Neighbors (KNN) had the best and most accurate performance in the sentiment classification because it produced the highest accuracy value of 95.00% and the largest AUC value of 0.985 compared to the Naive Bayes and Support Vector Machine algorithm.
收到日期2021年5月1日修订日期2021年05月25日接受日期2021年08月28日在新冠肺炎大流行期间,许多人通过智能手机访问信息,甚至与最好的医生在线咨询健康问题。Halodoc应用程序被认为是2020年最受欢迎的应用程序,拥有1800万用户。因此,许多人已经在谷歌Play商店应用程序提供商上查看了该应用程序。阅读完整的评论可能需要一段时间。然而,如果只读了几条评论,它们就有偏见。为此,需要一个能够自动识别积极或消极意见的平台。情绪分析是一种将文本或情绪分为积极或消极观点类别的技术解决方案。本研究中使用的方法是使用Naive Bayes算法、支持向量机和K-最近邻进行的实验。使用10倍交叉验证进行评估。结果表明,与Naive Bayes和支持向量机算法相比,K-最近邻(KNN)在情感分类中具有最好和最准确的性能,因为它产生了95.00%的最高准确率值和0.985的最大AUC值。
{"title":"Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc","authors":"Elly Indrayuni, Acmad Nurhadi, Dinar Ajeng Kristiyanti","doi":"10.30998/faktorexacta.v14i2.9697","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i2.9697","url":null,"abstract":"Received May 1, 2021 Revised May 25, 2021 Accepted May 28, 2021 During the Covid-19 pandemic, many people access information and even consult health problems online with the best doctors via smartphones. The Halodoc application is considered the most popular with 18 million users in 2020. So that many people have reviewed the application on the Google Play Store application provider. It may take a while to read the full review. However, if only a few comments are read, they are biased. For that, a platform is needed which can automatically identify positive or negative opinions. Sentiment analysis is a solution for the technique of classifying texts or sentiments into positive or negative opinion categories. The method used in this research is an experiment using the Naive Bayes algorithm, Support Vector Machine, and K-Nearest Neighbors. Evaluation is carried out using 10 Fold Cross-Validation. The results showed that K-Nearest Neighbors (KNN) had the best and most accurate performance in the sentiment classification because it produced the highest accuracy value of 95.00% and the largest AUC value of 0.985 compared to the Naive Bayes and Support Vector Machine algorithm.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49187690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes 使用Naive Bayes分类算法对潜在客户的预测方法的应用
Pub Date : 2021-08-10 DOI: 10.30998/faktorexacta.v14i2.9297
Devi Fitrianah, Saruni Dwiasnati, Hanny Hikmayanti H, Kiki Ahmad Baihaqi
Received March 20, 2021 Revised June 4, 2021 Accepted June 13, 2021 Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or NonPotential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.
2021年3月20日收到2021年6月4日修订2021年6月份13日接受客户是指相信银行或其他金融服务方对其资金的管理将用于银行业务运营的人,从而期望其储蓄以金钱的形式获得回报。为了获取信息以增加公司利润,需要一种能够提供支持公司现有数据的知识的方法。该模型可以通过使用对被分类为潜在或非潜在的客户数据的预测数据处理来获得。数据处理可以使用机器学习,即分类技术来完成。该技术将产生一个流失预测模型,用于确定属于潜在或非潜在类别的客户类别,并通过使用朴素贝叶斯算法应用分类技术来找出将产生的准确度值。本研究中使用的参数为性别、年龄、婚姻状况、受抚养人、职业、地区、信息。使用的数据是来自参与储蓄计划的客户的150个数据,以确定该客户是潜在客户还是非潜在客户。使用这些数据产生的准确度结果是Rapidminner使用的工具的86.17%。
{"title":"Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes","authors":"Devi Fitrianah, Saruni Dwiasnati, Hanny Hikmayanti H, Kiki Ahmad Baihaqi","doi":"10.30998/faktorexacta.v14i2.9297","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i2.9297","url":null,"abstract":"Received March 20, 2021 Revised June 4, 2021 Accepted June 13, 2021 Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or NonPotential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45925587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Faktor Exacta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1