首页 > 最新文献

aBIOTECH最新文献

英文 中文
Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis 玉米转录因子 ZmbHLH36 的异源表达可增强拟南芥的非生物胁迫耐受性
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-13 DOI: 10.1007/s42994-024-00159-3
Zhenggang Dai, Keyong Zhao, Dengyu Zheng, Siyu Guo, Huawen Zou, Zhongyi Wu, Chun Zhang

Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes, and in plants, they regulate many biological processes, such as cell differentiation, development, metabolism, and stress responses. Few studies have focused on the roles of bHLH transcription factors in regulating growth, development, and stress responses in maize (Zea mays), even though such information would greatly benefit maize breeding programs. In this study, we cloned the maize transcription factor gene ZmbHLH36 (Gene ID: 100193615, GRMZM2G008691). ZmbHLH36 possesses conserved domains characteristic of the bHLH family. RT-qPCR analysis revealed that ZmbHLH36 was expressed at the highest level in maize roots and exhibited different expression patterns under various abiotic stress conditions. Transgenic Arabidopsis (Arabidopsis thaliana) plants heterologously expressing ZmbHLH36 had significantly longer roots than the corresponding non-transgenic plants under 0.1 and 0.15 mol L−1 NaCl treatment as well as 0.2 mol L−1 mannitol treatment. Phenotypic analysis of soil-grown plants under stress showed that transgenic Arabidopsis plants harboring ZmbHLH36 exhibited significantly enhanced drought tolerance and salt tolerance compared to the corresponding non-transgenic plants. Malondialdehyde contents were lower and peroxidase activity was higher in ZmbHLH36-expressing Arabidopsis plants than in the corresponding non-transgenic plants. ZmbHLH36 localized to the nucleus when expressed in maize protoplasts. This study provides a systematic analysis of the effects of ZmbHLH36 on root growth, development, and stress responses in transgenic Arabidopsis, laying a foundation for further analysis of its roles and molecular mechanisms in maize.

碱性螺旋环螺旋(bHLH)转录因子广泛分布于真核生物中,在植物中,它们调控着许多生物过程,如细胞分化、发育、新陈代谢和应激反应。很少有研究关注 bHLH 转录因子在调控玉米(Zea mays)生长、发育和应激反应中的作用,尽管这些信息对玉米育种计划大有裨益。在这项研究中,我们克隆了玉米转录因子基因 ZmbHLH36(基因编号:100193615,GRMZM2G008691)。ZmbHLH36 具有 bHLH 家族特有的保守结构域。RT-qPCR 分析显示,ZmbHLH36 在玉米根部的表达水平最高,并且在各种非生物胁迫条件下表现出不同的表达模式。异源表达 ZmbHLH36 的转基因拟南芥(Arabidopsis thaliana)植株在 0.1 和 0.15 mol L-1 NaCl 处理以及 0.2 mol L-1 甘露醇处理下的根明显长于相应的非转基因植株。对胁迫下土壤生长植株的表型分析表明,与相应的非转基因植株相比,携带 ZmbHLH36 的转基因拟南芥植株的耐旱性和耐盐性明显增强。与相应的非转基因植株相比,表达 ZmbHLH36 的拟南芥植株丙二醛含量更低,过氧化物酶活性更高。ZmbHLH36 在玉米原生质体中表达时会定位于细胞核。本研究系统分析了ZmbHLH36对转基因拟南芥根系生长、发育和胁迫反应的影响,为进一步分析其在玉米中的作用和分子机制奠定了基础。
{"title":"Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis","authors":"Zhenggang Dai,&nbsp;Keyong Zhao,&nbsp;Dengyu Zheng,&nbsp;Siyu Guo,&nbsp;Huawen Zou,&nbsp;Zhongyi Wu,&nbsp;Chun Zhang","doi":"10.1007/s42994-024-00159-3","DOIUrl":"10.1007/s42994-024-00159-3","url":null,"abstract":"<div><p>Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes, and in plants, they regulate many biological processes, such as cell differentiation, development, metabolism, and stress responses. Few studies have focused on the roles of bHLH transcription factors in regulating growth, development, and stress responses in maize (<i>Zea mays</i>), even though such information would greatly benefit maize breeding programs. In this study, we cloned the maize transcription factor gene <i>ZmbHLH36</i> (Gene ID: 100193615, GRMZM2G008691). ZmbHLH36 possesses conserved domains characteristic of the bHLH family. RT-qPCR analysis revealed that <i>ZmbHLH36</i> was expressed at the highest level in maize roots and exhibited different expression patterns under various abiotic stress conditions. Transgenic <i>Arabidopsis</i> (<i>Arabidopsis thaliana</i>) plants heterologously expressing <i>ZmbHLH36</i> had significantly longer roots than the corresponding non-transgenic plants under 0.1 and 0.15 mol L<sup>−1</sup> NaCl treatment as well as 0.2 mol L<sup>−1</sup> mannitol treatment. Phenotypic analysis of soil-grown plants under stress showed that transgenic <i>Arabidopsis</i> plants harboring <i>ZmbHLH36</i> exhibited significantly enhanced drought tolerance and salt tolerance compared to the corresponding non-transgenic plants. Malondialdehyde contents were lower and peroxidase activity was higher in <i>ZmbHLH36</i>-expressing <i>Arabidopsis</i> plants than in the corresponding non-transgenic plants. ZmbHLH36 localized to the nucleus when expressed in maize protoplasts. This study provides a systematic analysis of the effects of ZmbHLH36 on root growth, development, and stress responses in transgenic <i>Arabidopsis</i>, laying a foundation for further analysis of its roles and molecular mechanisms in maize.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"339 - 350"},"PeriodicalIF":4.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00159-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies for adaptation to high light in plants 植物适应强光的策略
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-13 DOI: 10.1007/s42994-024-00164-6
Man Zhang, Yu Ming, Hong-Bin Wang, Hong-Lei Jin

Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.

植物通过叶绿体中的光合系统复合体吸收光能进行光合作用。然而,过强的光照会损坏光合系统,降低光合作用的输出,从而抑制植物的生长和发育。植物已经开发出一系列光适应策略,使它们能够抵御强光。在抵御强光的第一道防线中,叶片和叶绿体会远离光线,植物会积累过滤和反射光线的化合物。在被称为光保护的第二道防线中,植物通过非光化学淬灭、循环电子传递、光呼吸和清除过量活性氧来消散多余的光能。在光损伤后的第三道防线中,植物会启动一个光系统(主要是光系统 II)修复循环。叶绿体除了是光合作用的场所外,还能感知应激,尤其是光应激,并将应激信号转导到细胞核,从而调节参与应激反应的基因的表达。在这篇综述中,我们将讨论目前在理解植物抵御强光的策略和机制方面所取得的进展,这些策略和机制涉及整个植物、细胞、生理和分子水平的三道防线。
{"title":"Strategies for adaptation to high light in plants","authors":"Man Zhang,&nbsp;Yu Ming,&nbsp;Hong-Bin Wang,&nbsp;Hong-Lei Jin","doi":"10.1007/s42994-024-00164-6","DOIUrl":"10.1007/s42994-024-00164-6","url":null,"abstract":"<div><p>Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"381 - 393"},"PeriodicalIF":4.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00164-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting viral vectors to deliver genome editing reagents in plants 利用病毒载体为植物提供基因组编辑试剂
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-08 DOI: 10.1007/s42994-024-00147-7
Yilin Shen, Tao Ye, Zihan Li, Torotwa Herman Kimutai, Hao Song, Xiaoou Dong, Jianmin Wan

Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.

基因组编辑为植物的分子育种带来了巨大希望,但由于缺乏简单有效的方法将基因组编辑试剂输送到植物体内,基因组编辑的应用受到了阻碍。将基因组编辑试剂输送到植物体内的传统植物转化方法往往涉及长时间的组织培养,对于许多优良作物栽培品种来说,这是一个劳动密集型且具有技术挑战性的过程。在本综述中,我们介绍了各种基于病毒的基因组编辑试剂输送方法,包括用于植物精准编辑的 CRISPR/Cas 机器和供体 DNA 的组件。我们介绍了这些方法的最新进展,以及最近在不同植物物种中通过病毒递送实现基因组编辑的成功实例,强调了这些递送方法的优势和局限性,并讨论了仍然存在的挑战。
{"title":"Exploiting viral vectors to deliver genome editing reagents in plants","authors":"Yilin Shen,&nbsp;Tao Ye,&nbsp;Zihan Li,&nbsp;Torotwa Herman Kimutai,&nbsp;Hao Song,&nbsp;Xiaoou Dong,&nbsp;Jianmin Wan","doi":"10.1007/s42994-024-00147-7","DOIUrl":"10.1007/s42994-024-00147-7","url":null,"abstract":"<div><p>Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"247 - 261"},"PeriodicalIF":4.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00147-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the microbiome for sustainable agriculture 解码微生物组,促进可持续农业
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-07 DOI: 10.1007/s42994-024-00162-8
Kai Sun, Wei Zhang, Xiaolin Wang, Chuan-Chao Dai

Root-associated microbiota profoundly affect crop health and productivity. Plants can selectively recruit beneficial microbes from the soil and actively balance microbe-triggered plant-growth promotion and stress tolerance enhancement. The cost associated with this is the root-mediated support of a certain number of specific microbes under nutrient limitation. Thus, it is important to consider the dynamic changes in microbial quantity when it comes to nutrient condition-induced root microbiome reassembly. Quantitative microbiome profiling (QMP) has recently emerged as a means to estimate the specific microbial load variation of a root microbiome (instead of the traditional approach quantifying relative microbial abundances) and data from the QMP approach can be more closely correlated with plant development and/or function. However, due to a lack of detailed-QMP data, how soil nutrient conditions affect quantitative changes in microbial assembly of the root-associated microbiome remains poorly understood. A recent study quantified the dynamics of the soybean root microbiome, under unbalanced fertilization, using QMP and provided data on the use of specific synthetic communities (SynComs) for sustaining crop productivity. In this editorial, we explore potential opportunities for utilizing QMP to decode the microbiome for sustainable agriculture.

根系相关微生物群对作物的健康和产量有着深远的影响。植物可以有选择性地从土壤中招募有益微生物,并在微生物触发的植物生长促进和抗逆性增强之间积极取得平衡。与此相关的代价是,在养分限制条件下,根系会支持一定数量的特定微生物。因此,在营养条件诱导根系微生物组重新组合时,必须考虑微生物数量的动态变化。定量微生物组剖析(QMP)是最近出现的一种估算根系微生物组特定微生物负荷变化的方法(而不是量化微生物相对丰度的传统方法),QMP 方法得出的数据可以与植物的生长发育和/或功能更密切地相关联。然而,由于缺乏详细的 QMP 数据,人们对土壤养分条件如何影响根相关微生物群微生物组合的定量变化仍然知之甚少。最近的一项研究利用 QMP 量化了不平衡施肥条件下大豆根系微生物群的动态,并提供了利用特定合成群落(SynComs)维持作物生产力的数据。在这篇社论中,我们将探讨利用 QMP 解码微生物组以实现可持续农业的潜在机会。
{"title":"Decoding the microbiome for sustainable agriculture","authors":"Kai Sun,&nbsp;Wei Zhang,&nbsp;Xiaolin Wang,&nbsp;Chuan-Chao Dai","doi":"10.1007/s42994-024-00162-8","DOIUrl":"10.1007/s42994-024-00162-8","url":null,"abstract":"<div><p>Root-associated microbiota profoundly affect crop health and productivity. Plants can selectively recruit beneficial microbes from the soil and actively balance microbe-triggered plant-growth promotion and stress tolerance enhancement. The cost associated with this is the root-mediated support of a certain number of specific microbes under nutrient limitation. Thus, it is important to consider the dynamic changes in microbial quantity when it comes to nutrient condition-induced root microbiome reassembly. Quantitative microbiome profiling (QMP) has recently emerged as a means to estimate the specific microbial load variation of a root microbiome (instead of the traditional approach quantifying relative microbial abundances) and data from the QMP approach can be more closely correlated with plant development and/or function. However, due to a lack of detailed-QMP data, how soil nutrient conditions affect quantitative changes in microbial assembly of the root-associated microbiome remains poorly understood. A recent study quantified the dynamics of the soybean root microbiome, under unbalanced fertilization, using QMP and provided data on the use of specific synthetic communities (SynComs) for sustaining crop productivity. In this editorial, we explore potential opportunities for utilizing QMP to decode the microbiome for sustainable agriculture.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"408 - 412"},"PeriodicalIF":4.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Removal of the C4-domain preserves the drought tolerance enhanced by CsMYB4a and eliminates the negative impact of this transcription factor on plant growth 错误:出版者更正:移除 C4 域可保留 CsMYB4a 增强的耐旱性,并消除该转录因子对植物生长的负面影响。
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-06 DOI: 10.1007/s42994-024-00163-7
Mingzhuo Li, Guoliang Ma, Xiu Li, Lili Guo, Yanzhi Li, Yajun Liu, Wenzhao Wang, Xiaolan Jiang, De-Yu Xie, Liping Gao, Tao Xia
{"title":"Publisher Correction: Removal of the C4-domain preserves the drought tolerance enhanced by CsMYB4a and eliminates the negative impact of this transcription factor on plant growth","authors":"Mingzhuo Li,&nbsp;Guoliang Ma,&nbsp;Xiu Li,&nbsp;Lili Guo,&nbsp;Yanzhi Li,&nbsp;Yajun Liu,&nbsp;Wenzhao Wang,&nbsp;Xiaolan Jiang,&nbsp;De-Yu Xie,&nbsp;Liping Gao,&nbsp;Tao Xia","doi":"10.1007/s42994-024-00163-7","DOIUrl":"10.1007/s42994-024-00163-7","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"414 - 416"},"PeriodicalIF":4.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Current overview on the genetic basis of key genes involved in soybean domestication 更正:大豆驯化关键基因的遗传基础概述。
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-30 DOI: 10.1007/s42994-024-00161-9
Sijia Lu, Chao Fang, Jun Abe, Fanjiang Kong, Baohui Liu
{"title":"Correction: Current overview on the genetic basis of key genes involved in soybean domestication","authors":"Sijia Lu,&nbsp;Chao Fang,&nbsp;Jun Abe,&nbsp;Fanjiang Kong,&nbsp;Baohui Liu","doi":"10.1007/s42994-024-00161-9","DOIUrl":"10.1007/s42994-024-00161-9","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"279 - 279"},"PeriodicalIF":4.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and precise genomic deletion in rice using enhanced prime editing 利用增强的质粒编辑技术高效、精确地删除水稻基因组。
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-29 DOI: 10.1007/s42994-024-00153-9
Mengyuan Liu, Xiang Zhang, Wen Xu, Guiting Kang, Ya Liu, Xinxiang Liu, Wen Ren, Jiuran Zhao, Jinxiao Yang

Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.

高效、精确的基因组缺失为植物研究中的蛋白质功能调查和提高农业性状带来了希望。在这项研究中,我们测试了 PRIME-Del (PDel) 策略,该策略使用一对以相反 DNA 链为目标的质粒编辑向导 RNA(pegRNA),在 6 个内源靶点的 60 bp 片段缺失中实现了 55.8% 的平均缺失效率。此外,在转基因水稻植株中,对 OsGS1 位点 2000 bp 片段的精确删除效率高达 84.2%。为了添加两个核酸序列之间被无意删除的碱基,我们采用了 PDel/Syn 策略,在 RT 模板中需要修补的区域引入多个同义碱基突变。PDel/Syn策略在六个内源性靶点平均实现了58.1%的删除效率,高于PDel策略。本研究提出的策略有助于在转基因水稻植物中实现更准确、更灵活的删除:在线版本包含补充材料,可查阅 10.1007/s42994-024-00153-9。
{"title":"Efficient and precise genomic deletion in rice using enhanced prime editing","authors":"Mengyuan Liu,&nbsp;Xiang Zhang,&nbsp;Wen Xu,&nbsp;Guiting Kang,&nbsp;Ya Liu,&nbsp;Xinxiang Liu,&nbsp;Wen Ren,&nbsp;Jiuran Zhao,&nbsp;Jinxiao Yang","doi":"10.1007/s42994-024-00153-9","DOIUrl":"10.1007/s42994-024-00153-9","url":null,"abstract":"<div><p>Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the <i>OsGS1</i> site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"214 - 218"},"PeriodicalIF":4.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a CRISPR/FrCas9 system for core promoter editing in rice 开发用于水稻核心启动子编辑的 CRISPR/FrCas9 系统
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-22 DOI: 10.1007/s42994-024-00157-5
Hui Wang, Jian Ding, Jingyan Zhu, Xiaoshuang Liu, Rongfang Xu, Ruiying Qin, Dongfang Gu, Min Li, Pengcheng Wei, Juan Li

Small mutations in the core promoter region of a gene may result in substantial changes in expression strengths. However, targeting TA-rich sequences of core promoters may pose a challenge for Cas9 variants such as SpCas9 and other G-rich PAM-compatible Cas9s. In this study, we engineered a unique FrCas9 system derived from Faecalibaculum rodentium for plant genome editing. Our findings indicate that this system is efficient in rice when the TATA sequence is used as a PAM. In addition, FrCas9 demonstrated activity against all 16 possible NNTA PAMs, achieving an efficiency of up to 35.3% in calli and generating homozygous or biallelic mutations in 31.3% of the T0 transgenic plants. A proof-of-concept experiment to examine editing of the rice WX core promoter confirmed that FrCas9-induced mutations could modify gene expression and amylose content. Multiplex mutations and deletions were produced by bidirectional editing, mediated by FrCas9, using a single palindromic TATA sequence as a PAM. Moreover, we developed FrCas9-derived base editors capable of programmable conversion between A·T and G·C pairs in plants. This study highlights a versatile FrCas9 toolset for plant core promoter editing, offering great potential for the fine-tuning of gene expression and creating of new germplasms.

基因核心启动子区域的微小突变可能会导致表达强度发生重大变化。然而,靶向核心启动子中富含 TA 的序列可能会给 SpCas9 和其他富含 G 的 PAM 兼容 Cas9 等 Cas9 变体带来挑战。在这项研究中,我们为植物基因组编辑设计了一种独特的 FrCas9 系统,该系统来源于啮齿动物粪杆菌。我们的研究结果表明,当使用 TATA 序列作为 PAM 时,该系统在水稻中是有效的。此外,FrCas9 对所有 16 种可能的 NNTA PAM 都具有活性,在胼胝体中的效率高达 35.3%,并在 31.3% 的 T0 转基因植株中产生同源或双拷贝突变。一项研究水稻 WX 核心启动子编辑的概念验证实验证实,FrCas9 诱导的突变可改变基因表达和直链淀粉含量。通过 FrCas9 介导的双向编辑,以单个 palindromic TATA 序列作为 PAM,产生了多重突变和缺失。此外,我们还开发了源于 FrCas9 的碱基编辑器,能够在植物的 A-T 和 G-C 对之间进行可编程转换。这项研究强调了用于植物核心启动子编辑的多功能 FrCas9 工具集,为基因表达的微调和新种质的创造提供了巨大的潜力。
{"title":"Developing a CRISPR/FrCas9 system for core promoter editing in rice","authors":"Hui Wang,&nbsp;Jian Ding,&nbsp;Jingyan Zhu,&nbsp;Xiaoshuang Liu,&nbsp;Rongfang Xu,&nbsp;Ruiying Qin,&nbsp;Dongfang Gu,&nbsp;Min Li,&nbsp;Pengcheng Wei,&nbsp;Juan Li","doi":"10.1007/s42994-024-00157-5","DOIUrl":"10.1007/s42994-024-00157-5","url":null,"abstract":"<div><p>Small mutations in the core promoter region of a gene may result in substantial changes in expression strengths. However, targeting TA-rich sequences of core promoters may pose a challenge for Cas9 variants such as SpCas9 and other G-rich PAM-compatible Cas9s. In this study, we engineered a unique FrCas9 system derived from <i>Faecalibaculum rodentium</i> for plant genome editing. Our findings indicate that this system is efficient in rice when the TATA sequence is used as a PAM. In addition, FrCas9 demonstrated activity against all 16 possible NNTA PAMs, achieving an efficiency of up to 35.3% in calli and generating homozygous or biallelic mutations in 31.3% of the T<sub>0</sub> transgenic plants. A proof-of-concept experiment to examine editing of the rice <i>WX</i> core promoter confirmed that FrCas9-induced mutations could modify gene expression and amylose content. Multiplex mutations and deletions were produced by bidirectional editing, mediated by FrCas9, using a single palindromic TATA sequence as a PAM. Moreover, we developed FrCas9-derived base editors capable of programmable conversion between A·T and G·C pairs in plants. This study highlights a versatile FrCas9 toolset for plant core promoter editing, offering great potential for the fine-tuning of gene expression and creating of new germplasms.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"189 - 195"},"PeriodicalIF":4.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00157-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural GmACO1 allelic variations confer drought tolerance and influence nodule formation in soybean 天然 GmACO1 等位基因变异赋予大豆耐旱性并影响其结核形成
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-18 DOI: 10.1007/s42994-024-00160-w
Zhifang Zhang, Junkui Ma, Xia Yang, Shan Liang, Yucheng Liu, Yaqin Yuan, Qianjin Liang, Yanting Shen, Guoan Zhou, Min Zhang, Zhixi Tian, Shulin Liu

Soybean [Glycine max (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that GmACO1, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that GmACO1 expression was reduced after rhizobial infection, and that GmACO1 negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding.

大豆 [Glycine max (L.) Merr.] 是最重要的作物之一,但也是对干旱敏感的作物。鉴定控制耐旱性的基因对大豆育种非常重要。在此,通过全基因组关联研究,我们发现了一个重要的关联位点,该位点位于第 8 号染色体上,能在一个天然大豆群体中产生耐旱性变异。等位基因分析和遗传验证表明,编码 1-aminocyclopropane-1-carboxylate oxidase 的 GmACO1 是该关联位点的致病基因,对大豆的抗旱性具有正向调控作用。同时,我们发现根瘤菌感染后 GmACO1 的表达量减少,并且 GmACO1 对大豆结瘤的形成有负向调控作用。总之,我们的研究结果为大豆栽培品种的未来育种提供了启示。
{"title":"Natural GmACO1 allelic variations confer drought tolerance and influence nodule formation in soybean","authors":"Zhifang Zhang,&nbsp;Junkui Ma,&nbsp;Xia Yang,&nbsp;Shan Liang,&nbsp;Yucheng Liu,&nbsp;Yaqin Yuan,&nbsp;Qianjin Liang,&nbsp;Yanting Shen,&nbsp;Guoan Zhou,&nbsp;Min Zhang,&nbsp;Zhixi Tian,&nbsp;Shulin Liu","doi":"10.1007/s42994-024-00160-w","DOIUrl":"10.1007/s42994-024-00160-w","url":null,"abstract":"<div><p>Soybean [<i>Glycine max</i> (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that <i>GmACO1</i>, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that <i>GmACO1</i> expression was reduced after rhizobial infection, and that <i>GmACO1</i> negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"351 - 355"},"PeriodicalIF":4.6,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00160-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140688805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot 优化原生质体分离和转染断点:加速单子叶植物和双子叶植物中 Cas9/sgRNA 的裂解效率验证
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-15 DOI: 10.1007/s42994-024-00139-7
Debasmita Panda, Subhasis Karmakar, Manaswini Dash, Swagat Kumar Tripathy, Priya Das, Sagar Banerjee, Yiping Qi, Sanghamitra Samantaray, Pradipta Kumar Mohapatra, Mirza J. Baig, Kutubuddin A. Molla

The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications.

CRISPR-Cas 基因组编辑工具以其简便、精确的能力修改目标基因组位点,正在给农业和基础生物学带来革命性的变化。软件预测的引导 RNA(gRNA)往往无法在目标基因座上诱导有效的裂解。由于染色质结构复杂,许多目标基因位点无法访问。目前,还没有合适的工具来预测基因组目标位点的结构及其可及性。因此,大量的时间和资源都花在了低效引导的编辑实验上。虽然体外裂解检测可以粗略评估 gRNA 的效率,但它在很大程度上排除了原生基因组环境的干扰。瞬时体内测试能正确评估编辑试剂在原生基因组环境中的裂解能力。在这里,我们开发了一种改良方案,利用蔗糖梯度从水稻、拟南芥和鹰嘴豆中高效分离原生质体,使用 PEG(聚乙二醇)转染,并验证 CRISPR-Cas9 的单导 RNA(sgRNA)裂解效率。我们优化了 PEG 介导的原生质体转染的各种参数,并利用我们的方案在单子叶植物和双子叶植物中实现了高转染效率。我们在水稻、拟南芥和鹰嘴豆原生质体中引入了含有 Cas9 和 sgRNA 的质粒载体。利用双 sgRNA,我们的 CRISPR 缺失策略可以通过简单的琼脂糖凝胶电泳直接检测基因组编辑是否成功。PCR 产物的 Sanger 测序证实了特定 sgRNA 的编辑效率。值得注意的是,我们证明分离出的原生质体可以保存 24/48 小时而几乎不丧失活力,这样就可以在分离和转染之间暂停一段时间。这种高效的原生质体分离和转染方案可以在进行稳定转化之前快速(少于 7 天)验证 sgRNA 的裂解效率。这种分离和转染方法还可用于快速验证编辑策略、评估各种编辑试剂、从转染的原生质体再生植物、基因表达研究、蛋白质定位和功能分析以及其他应用。
{"title":"Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot","authors":"Debasmita Panda,&nbsp;Subhasis Karmakar,&nbsp;Manaswini Dash,&nbsp;Swagat Kumar Tripathy,&nbsp;Priya Das,&nbsp;Sagar Banerjee,&nbsp;Yiping Qi,&nbsp;Sanghamitra Samantaray,&nbsp;Pradipta Kumar Mohapatra,&nbsp;Mirza J. Baig,&nbsp;Kutubuddin A. Molla","doi":"10.1007/s42994-024-00139-7","DOIUrl":"10.1007/s42994-024-00139-7","url":null,"abstract":"<div><p>The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, <i>Arabidopsis,</i> and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, <i>Arabidopsis,</i> and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"151 - 168"},"PeriodicalIF":4.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00139-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140702659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
aBIOTECH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1