首页 > 最新文献

aBIOTECH最新文献

英文 中文
The RUBY reporter for visual selection in soybean genome editing 用于大豆基因组编辑视觉选择的 RUBY 报告器
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-18 DOI: 10.1007/s42994-024-00148-6
Li Chen, Yupeng Cai, Xiaoqian Liu, Weiwei Yao, Shuiqing Wu, Wensheng Hou

Current systems to screen for transgenic soybeans (Glycine max) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The RUBY reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the RUBY reporter for visual verification during soybean transformation. We show that RUBY can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the RUBY system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the RUBY system, we quickly identified a transgene-free Gmwaxy mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.

目前筛选转基因大豆(Glycine max)的系统涉及费力的分子检测或荧光标记的表达,而荧光标记在大豆植株中很难看到。因此,用于早期筛选转基因植物的可视系统将提高通过基因组编辑改良作物的效率。RUBY 报告系统由三个编码甜菜红素生物合成酶的基因组成,可导致转基因组织中紫色色素的积累,已在一些植物和二核真菌中使用。在此,我们对 RUBY 报告物进行了评估,以便在大豆转化过程中进行视觉验证。我们的研究表明,RUBY 可以在大豆中表达,从而无需专门设备即可对转基因事件进行视觉确认。在任何组织中都能看到紫色色素积累的植株被成功转化,这证实了 RUBY 系统作为视觉指标的准确性。我们还利用后代的子叶评估了转基因在不同世代间的遗传稳定性。不含转基因的幼苗具有明显的绿色,便于选择经过基因组编辑但不含转基因的大豆幼苗进行收获。利用 RUBY 系统,我们很快就在 T1 代中鉴定出了无转基因的 Gmwaxy 突变体。因此,该系统为大豆基因组编辑提供了一种高效便捷的工具。
{"title":"The RUBY reporter for visual selection in soybean genome editing","authors":"Li Chen,&nbsp;Yupeng Cai,&nbsp;Xiaoqian Liu,&nbsp;Weiwei Yao,&nbsp;Shuiqing Wu,&nbsp;Wensheng Hou","doi":"10.1007/s42994-024-00148-6","DOIUrl":"10.1007/s42994-024-00148-6","url":null,"abstract":"<div><p>Current systems to screen for transgenic soybeans (<i>Glycine max</i>) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The <i>RUBY</i> reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the <i>RUBY</i> reporter for visual verification during soybean transformation. We show that <i>RUBY</i> can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the <i>RUBY</i> system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the <i>RUBY</i> system, we quickly identified a transgene-free <i>Gmwaxy</i> mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"209 - 213"},"PeriodicalIF":4.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140231507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis 急性热胁迫对拟南芥线粒体功能、超微结构和心磷脂分布的影响
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-15 DOI: 10.1007/s42994-024-00151-x
Yukang Wang, Ronghui Pan, Jianping Hu

Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.

线粒体除了为维持生命提供能量外,还在应激反应和细胞程序性死亡中发挥着至关重要的作用。线粒体的标志性脂质--心磷脂(CL)对线粒体结构和功能的维持至关重要。然而,线粒体和 CL 如何参与应激反应在植物中还没有像在动物和酵母细胞中那样明确。我们之前揭示了 CL 在拟南芥线粒体裂变和热胁迫响应中的作用。为了进一步确定线粒体和 CL 在植物热响应中的作用,我们对拟南芥幼苗进行了不同时间长度的急性热胁迫处理。这些处理导致线粒体膜电位下降、线粒体超微结构破坏、线粒体活性氧(ROS)积累、CL重新分布到线粒体外膜和一种新型囊泡。观察到的变化程度与热应激的严重程度相关,表明这些过程与应激反应密切相关。我们的发现为研究线粒体和 CL 在植物胁迫响应中的作用机制奠定了基础。
{"title":"Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis","authors":"Yukang Wang,&nbsp;Ronghui Pan,&nbsp;Jianping Hu","doi":"10.1007/s42994-024-00151-x","DOIUrl":"10.1007/s42994-024-00151-x","url":null,"abstract":"<div><p>Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in <i>Arabidopsis</i>. To further determine the involvement of mitochondria and CL in plant heat response, here we treated <i>Arabidopsis</i> seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"362 - 367"},"PeriodicalIF":4.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00151-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140237712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maize ZmCPK39-ZmKnox2 module regulates plant height 玉米 ZmCPK39-ZmKnox2 模块调控植株高度
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-15 DOI: 10.1007/s42994-024-00150-y
Mang Zhu, Chenyu Guo, Xiaohui Zhang, Yulin Liu, Xiaohui Jiang, Limei Chen, Mingliang Xu

Plant height is an important agronomic trait that affects high-density tolerance and lodging resistance. However, the regulators and their underlying molecular mechanisms controlling plant height in maize remain understudied. Here, we report that knockout mutants of the calcium-dependent protein kinase gene ZmCPK39 (ZmCPK39-KO) exhibit dramatically reduced plant height, characterized by shorter internodes and a slight decrease in node numbers. Furthermore, we identified a ZmCPK39-interacting protein, the knotted-related homeobox (ZmKnox2), and observed that plant height was also significantly reduced in a mutator transposon-inserted mutant of ZmKnox2 (ZmKnox2-Mu). Combined analysis of transcriptomic and metabonomic data indicates that multiple phytohormone signaling and photosynthesis pathways are disrupted in both ZmCPK39-KO and ZmKnox2-Mu mutants. Taken together, these results provide new insights into the function of ZmCPK39 and identify potential targets for breeding lodging-resistant and high-density tolerant maize cultivars.

株高是影响高密度耐受性和抗倒伏性的重要农艺性状。然而,控制玉米株高的调节因子及其潜在的分子机制仍未得到充分研究。在此,我们报告了钙依赖性蛋白激酶基因 ZmCPK39(ZmCPK39-KO)的基因敲除突变体表现出显著的植株高度降低,其特征是节间变短和节数略有减少。此外,我们还发现了一种与 ZmCPK39 相互作用的蛋白--结相关同源染色体(ZmKnox2),并观察到 ZmKnox2 的突变体转座子插入突变体(ZmKnox2-Mu)的株高也显著降低。对转录组和代谢组数据的综合分析表明,ZmCPK39-KO和ZmKnox2-Mu突变体的多种植物激素信号转导和光合作用途径都受到了干扰。综上所述,这些结果为了解 ZmCPK39 的功能提供了新的视角,并为培育抗倒伏和高密度耐受性玉米栽培品种确定了潜在的目标。
{"title":"The maize ZmCPK39-ZmKnox2 module regulates plant height","authors":"Mang Zhu,&nbsp;Chenyu Guo,&nbsp;Xiaohui Zhang,&nbsp;Yulin Liu,&nbsp;Xiaohui Jiang,&nbsp;Limei Chen,&nbsp;Mingliang Xu","doi":"10.1007/s42994-024-00150-y","DOIUrl":"10.1007/s42994-024-00150-y","url":null,"abstract":"<div><p>Plant height is an important agronomic trait that affects high-density tolerance and lodging resistance. However, the regulators and their underlying molecular mechanisms controlling plant height in maize remain understudied. Here, we report that knockout mutants of the calcium-dependent protein kinase gene <i>ZmCPK39</i> (<i>ZmCPK39</i>-KO) exhibit dramatically reduced plant height, characterized by shorter internodes and a slight decrease in node numbers. Furthermore, we identified a ZmCPK39-interacting protein, the knotted-related homeobox (ZmKnox2), and observed that plant height was also significantly reduced in a <i>mutator</i> transposon-inserted mutant of <i>ZmKnox2</i> (<i>ZmKnox2</i>-Mu). Combined analysis of transcriptomic and metabonomic data indicates that multiple phytohormone signaling and photosynthesis pathways are disrupted in both <i>ZmCPK39</i>-KO and <i>ZmKnox2</i>-Mu mutants. Taken together, these results provide new insights into the function of <i>ZmCPK39</i> and identify potential targets for breeding lodging-resistant and high-density tolerant maize cultivars.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"356 - 361"},"PeriodicalIF":4.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00150-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140239168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating machine learning and genome editing for crop improvement 将机器学习与基因组编辑相结合,促进作物改良
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-29 DOI: 10.1007/s42994-023-00133-5
Long Chen, Guanqing Liu, Tao Zhang

Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.

基因组编辑是一项前景广阔的技术,已被广泛用于基础基因功能研究和性状改良。与此同时,计算能力和大数据的指数级增长促进了机器学习在生物学研究中的应用。在这方面,机器学习在完善基因组编辑系统和作物改良方面显示出巨大潜力。在此,我们回顾了机器学习在基因组编辑优化方面的进展,重点是编辑效率和特异性的提高。此外,我们还展示了机器学习如何通过精确的关键位点检测和导向 RNA 设计,在基因组编辑和作物育种之间架起桥梁。最后,我们讨论了这两种技术在作物改良中目前面临的挑战和前景。通过将先进的基因组编辑技术与机器学习相结合,未来将进一步加快作物育种的进展。
{"title":"Integrating machine learning and genome editing for crop improvement","authors":"Long Chen,&nbsp;Guanqing Liu,&nbsp;Tao Zhang","doi":"10.1007/s42994-023-00133-5","DOIUrl":"10.1007/s42994-023-00133-5","url":null,"abstract":"<div><p>Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"262 - 277"},"PeriodicalIF":4.6,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00133-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140409716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative computational tools provide new insights into the polyploid wheat genome 创新计算工具为多倍体小麦基因组提供了新见解
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-07 DOI: 10.1007/s42994-023-00131-7
Yongming Chen, Wenxi Wang, Zhengzhao Yang, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo

Bread wheat (Triticum aestivum) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.

面包小麦(Triticum aestivum)是一种重要的农作物,是全球人类蛋白质和热量的重要来源。然而,其庞大的全多倍体基因组对遗传改良造成了限制。复杂的网状进化历史和错综复杂的基因组资源使得破译功能基因组的难度大大增加。最近,我们开发了一系列多功能计算工具,并整合了统计模型,用于剖析多倍体小麦基因组。在此,我们总结了这些工具和数据库在方法上的创新和应用。一系列循序渐进的例子说明了如何利用这些工具剖析小麦种质资源并揭示与重要农艺性状相关的功能基因。此外,考虑到面包小麦的独特性,我们概述了新的先进工具和数据库的未来前景,以加速基因组辅助小麦育种。
{"title":"Innovative computational tools provide new insights into the polyploid wheat genome","authors":"Yongming Chen,&nbsp;Wenxi Wang,&nbsp;Zhengzhao Yang,&nbsp;Huiru Peng,&nbsp;Zhongfu Ni,&nbsp;Qixin Sun,&nbsp;Weilong Guo","doi":"10.1007/s42994-023-00131-7","DOIUrl":"10.1007/s42994-023-00131-7","url":null,"abstract":"<div><p>Bread wheat (<i>Triticum aestivum</i>) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"52 - 70"},"PeriodicalIF":4.6,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00131-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DGS1 improves rice disease resistance by elevating pathogen-associated molecular pattern-triggered immunity DGS1 通过提高病原体相关分子模式触发的免疫力来提高水稻的抗病性
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-06 DOI: 10.1007/s42994-024-00137-9
Yu Wang, Chuan Zheng, You-liang Peng, Qian Chen

Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. Decreased grain size1 (DGS1), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2–E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding.

水稻产量和抗病性是决定一个基因是否适合农业育种的两个关键因素。研究发现,编码 RING 型 E3 连接酶的减粒 1(DGS1)通过调节水稻粒数和千粒重对水稻产量有积极影响。然而,DGS1 在水稻稻瘟病抗性中的作用尚不清楚。在本研究中,我们报告了 DGS1 通过改善 PTI 反应(包括更强的 ROS 暴发和 MAPK 激活)以及增加防御相关基因的表达来增强抗病性。此外,DGS1 与泛素连接酶 OsUBC45 作为一对 E2-E3 共同作用,促进 OsGSK3 和 OsPIP2;1 的泛素依赖性降解,从而分别影响水稻产量和免疫力。因此,DGS1-OsUBC45 模块具有促进水稻农业育种的潜力。
{"title":"DGS1 improves rice disease resistance by elevating pathogen-associated molecular pattern-triggered immunity","authors":"Yu Wang,&nbsp;Chuan Zheng,&nbsp;You-liang Peng,&nbsp;Qian Chen","doi":"10.1007/s42994-024-00137-9","DOIUrl":"10.1007/s42994-024-00137-9","url":null,"abstract":"<div><p>Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. <i>Decreased grain size1</i> (<i>DGS1</i>), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2–E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"46 - 51"},"PeriodicalIF":4.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00137-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant genomic resources at National Genomics Data Center: assisting in data-driven breeding applications 国家基因组数据中心的植物基因组资源:协助数据驱动的育种应用
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-02 DOI: 10.1007/s42994-023-00134-4
Dongmei Tian, Tianyi Xu, Hailong Kang, Hong Luo, Yanqing Wang, Meili Chen, Rujiao Li, Lina Ma, Zhonghuang Wang, Lili Hao, Bixia Tang, Dong Zou, Jingfa Xiao, Wenming Zhao, Yiming Bao, Zhang Zhang, Shuhui Song

Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.

基因组数据是揭示高等植物系统复杂性的宝贵资源,包括物种内部和物种之间的组成要素。隶属于中国生物信息中心(CNCB)的国家基因组数据中心(NGDC)通过在基因组数据归档、整合分析和增值管理方面的各种努力,成功建立并维护了大量数据库资源。国家基因组数据中心的这一专门举措促进了一个数据丰富的生态系统,极大地加强和支持了基因组研究工作。在此,我们将全面概述致力于归档、展示和共享植物组学数据的中央资源库,介绍专注于变异或基于基因的功能洞察的知识库,重点介绍特定物种的多组学数据库资源,并简要评述在线应用工具。我们希望本综述可作为植物研究人员的指导地图,帮助他们从国家基因数据中心选择有效的数据资源,用于其特定的研究领域。
{"title":"Plant genomic resources at National Genomics Data Center: assisting in data-driven breeding applications","authors":"Dongmei Tian,&nbsp;Tianyi Xu,&nbsp;Hailong Kang,&nbsp;Hong Luo,&nbsp;Yanqing Wang,&nbsp;Meili Chen,&nbsp;Rujiao Li,&nbsp;Lina Ma,&nbsp;Zhonghuang Wang,&nbsp;Lili Hao,&nbsp;Bixia Tang,&nbsp;Dong Zou,&nbsp;Jingfa Xiao,&nbsp;Wenming Zhao,&nbsp;Yiming Bao,&nbsp;Zhang Zhang,&nbsp;Shuhui Song","doi":"10.1007/s42994-023-00134-4","DOIUrl":"10.1007/s42994-023-00134-4","url":null,"abstract":"<div><p>Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"94 - 106"},"PeriodicalIF":4.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00134-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities 豌豆功能基因组学和分子育种的创新:探索进展与机遇
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-30 DOI: 10.1007/s42994-023-00129-1
Baizhi Chen, Yan Shi, Yuchen Sun, Lu Lu, Luyao Wang, Zijian Liu, Shifeng Cheng

The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.

园豌豆(Pisum sativum L.)是一种重要的冷季型豆科植物,是重要的食物来源、动物饲料和工业原料。过去二十年来,功能基因组学的发展为豌豆育种提供了坚实的理论基础并取得了重大进展。值得一提的是,豌豆参考基因组的发布增强了我们对植物结构、共生固氮(SNF)、花期、花器官发育、种子发育和抗逆性的了解。然而,豌豆功能基因组学与分子育种之间仍存在相当大的差距。本综述总结了当前豌豆功能基因组学和育种的进展,同时强调了豌豆分子育种未来面临的挑战。
{"title":"Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities","authors":"Baizhi Chen,&nbsp;Yan Shi,&nbsp;Yuchen Sun,&nbsp;Lu Lu,&nbsp;Luyao Wang,&nbsp;Zijian Liu,&nbsp;Shifeng Cheng","doi":"10.1007/s42994-023-00129-1","DOIUrl":"10.1007/s42994-023-00129-1","url":null,"abstract":"<div><p>The garden pea (<i>Pisum sativum</i> L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"71 - 93"},"PeriodicalIF":4.6,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00129-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139591459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Co-expression of GR79 EPSPS and GAT generates high glyphosate-resistant alfalfa with low glyphosate residues 更正:GR79 EPSPS 和 GAT 的共表达产生了低草甘膦残留的高抗草甘膦紫花苜蓿
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-29 DOI: 10.1007/s42994-023-00135-3
Yingying Meng, Wenwen Zhang, Zhaoming Wang, Feng Yuan, Sandui Guo, Hao Lin, Lifang Niu
{"title":"Correction: Co-expression of GR79 EPSPS and GAT generates high glyphosate-resistant alfalfa with low glyphosate residues","authors":"Yingying Meng,&nbsp;Wenwen Zhang,&nbsp;Zhaoming Wang,&nbsp;Feng Yuan,&nbsp;Sandui Guo,&nbsp;Hao Lin,&nbsp;Lifang Niu","doi":"10.1007/s42994-023-00135-3","DOIUrl":"10.1007/s42994-023-00135-3","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"116 - 116"},"PeriodicalIF":4.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00135-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140488294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in Arabidopsis 双功能选择系统可实现拟南芥多基因 CRISPR 突变体的正向选择和无 Cas9 后代的负向选择
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-22 DOI: 10.1007/s42994-023-00132-6
Feng-Zhu Wang, Ying Bao, Zhenxiang Li, Xiangyu Xiong, Jian-Feng Li

The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants.

CRISPR/Cas9 技术彻底改变了包括植物在内的多种生物体的定向基因敲除技术。然而,从抗除草剂或抗生素的转基因植物中筛选编辑过的等位基因,特别是那些多重编辑的等位基因,以及分离出 Cas9 转基因,是两个费力的过程。目前促进这些过程的解决方案依赖于不同的选择标记。在这里,通过利用 d-氨基酸氧化酶(DAO)在解毒 d-丝氨酸和将无毒 d-缬氨酸代谢为细胞毒性产物方面的相反功能,我们开发了一种基于 DAO 的选择系统,它能同时在拟南芥中富集多基因编辑的等位基因并淘汰含有 Cas9 的后代。在大肠杆菌中测试的五种 DAO 中,拟南芥变种(TvDAO)编码的 DAO 比其他同源物能赋予稍强的 d-丝氨酸抗性。在拟南芥中转基因表达 TvDAO 可以在 d-丝氨酸条件正选择和 d-缬氨酸条件负选择中明确区分转基因植物和非转基因植物。作为概念验证,我们将 CRISPR 诱导的对死亡 TvDAO 的单链退火修复与基于 d-丝氨酸的正向选择相结合,以帮助鉴定具有多重编辑功能的转基因植株。随后,基于 d-缬氨酸的负选择成功地从携带遗传突变的存活后代中移除了 Cas9 和 TvDAO 转基因。总之,这项工作提供了一种新的策略,利用单一选择标记简化了CRISPR突变体的鉴定和Cas9转基因的消除,有望在植物中实现更高效、更简化的多重CRISPR编辑。
{"title":"A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in Arabidopsis","authors":"Feng-Zhu Wang,&nbsp;Ying Bao,&nbsp;Zhenxiang Li,&nbsp;Xiangyu Xiong,&nbsp;Jian-Feng Li","doi":"10.1007/s42994-023-00132-6","DOIUrl":"10.1007/s42994-023-00132-6","url":null,"abstract":"<div><p>The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the <i>Cas9</i> transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a <span>d</span>-amino acid oxidase (DAO) in detoxifying <span>d</span>-serine and in metabolizing non-toxic <span>d</span>-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of <i>Cas9</i>-containing progeny in <i>Arabidopsis thaliana</i>. Among five DAOs tested in <i>Escherichia coli</i>, the one encoded by <i>Trigonopsis variabilis</i> (TvDAO) could confer slightly stronger <span>d</span>-serine resistance than other homologs. Transgenic expression of <i>TvDAO</i> in <i>Arabidopsis</i> allowed a clear distinction between transgenic and non-transgenic plants in both <span>d</span>-serine-conditioned positive selection and <span>d</span>-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead <i>TvDAO</i> with <span>d</span>-serine-based positive selection to help identify transgenic plants with multiplex editing, where <span>d</span>-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, <span>d</span>-valine-based negative selection successfully removed <i>Cas9</i> and <i>TvDAO</i> transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and <i>Cas9</i> transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"140 - 150"},"PeriodicalIF":4.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00132-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139523263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
aBIOTECH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1