Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two multi-drug-resistant protein 5 (MRP5) and three inositol pentose-phosphate kinases (IPK1). We characterized a variety of lines containing mutations on multiple IPK and MRP5 genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified two lines carrying single mutations in ipk1b and ipk1c, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single GmIPK1 genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance.
谷物种子中的植酸(PA)会降低单胃动物对营养元素的生物利用率,因此作物种子生物强化的一个重要目标就是降低种子中的PA含量。在这里,我们利用 CRISPR/Cas9 技术产生了一个 PA 突变体群体,其靶标是 PA 生物合成和转运基因,包括两个多重耐药蛋白 5(MRP5)和三个肌醇戊糖磷酸激酶(IPK1)。我们鉴定了多种含有 IPK 和 MRP5 多个基因突变的品系。在具有多重突变的高阶突变株系中,种子 PA 的下降更为明显。然而,这类突变株的农艺性状也很差。在群体中,我们发现了两个分别携带 ipk1b 和 ipk1c 单突变的品系。与野生型相比,这些突变体的 PA 含量适度降低,农艺性状正常。我们的研究表明,通过靶向单个 GmIPK1 基因适度降低 PA 含量,而不是进行多重诱变以实现超低 PA 含量,是低 PA 大豆的最佳策略,而且对产量表现的影响最小。
{"title":"Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield","authors":"Wenxin Lin, Mengyan Bai, Chunyan Peng, Huaqin Kuang, Fanjiang Kong, Yuefeng Guan","doi":"10.1007/s42994-024-00158-4","DOIUrl":"10.1007/s42994-024-00158-4","url":null,"abstract":"<div><p>Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two <i>multi-drug-resistant protein 5</i> (<i>MRP5</i>) and three <i>inositol pentose-phosphate kinases</i> (<i>IPK1</i>). We characterized a variety of lines containing mutations on multiple <i>IPK</i> and <i>MRP5</i> genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified two lines carrying single mutations in <i>ipk1b</i> and <i>ipk1c</i>, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single <i>GmIPK1</i> genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"196 - 201"},"PeriodicalIF":4.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00158-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1007/s42994-024-00169-1
Sishi Chen, Xuqi Lu, Hongda Fang, Anand Babu Perumal, Ruyue Li, Lei Feng, Mengcen Wang, Yufei Liu
Bakanae disease, caused by Fusarium fujikuroi, poses a significant threat to rice production and has been observed in most rice-growing regions. The disease symptoms caused by different pathogens may vary, including elongated and weak stems, slender and yellow leaves, and dwarfism, as example. Bakanae disease is likely to cause necrosis of diseased seedlings, and it may cause a large area of infection in the field through the transmission of conidia. Therefore, early disease surveillance plays a crucial role in securing rice production. Traditional monitoring methods are both time-consuming and labor-intensive and cannot be broadly applied. In this study, a combination of hyperspectral imaging technology and deep learning algorithms were used to achieve in situ detection of rice seedlings infected with bakanae disease. Phenotypic data were obtained on the 9th, 15th, and 21st day after rice infection to explore the physiological and biochemical performance, which helps to deepen the research on the disease mechanism. Hyperspectral data were obtained over these same periods of infection, and a deep learning model, named Rice Bakanae Disease-Visual Geometry Group (RBD-VGG), was established by leveraging hyperspectral imaging technology and deep learning algorithms. Based on this model, an average accuracy of 92.2% was achieved on the 21st day of infection. It also achieved an accuracy of 79.4% as early as the 9th day. Universal characteristic wavelengths were extracted to increase the feasibility of using portable spectral equipment for field surveillance. Collectively, the model offers an efficient and non-destructive surveillance methodology for monitoring bakanae disease, thereby providing an efficient avenue for disease prevention and control.
{"title":"Early surveillance of rice bakanae disease using deep learning and hyperspectral imaging","authors":"Sishi Chen, Xuqi Lu, Hongda Fang, Anand Babu Perumal, Ruyue Li, Lei Feng, Mengcen Wang, Yufei Liu","doi":"10.1007/s42994-024-00169-1","DOIUrl":"10.1007/s42994-024-00169-1","url":null,"abstract":"<div><p>Bakanae disease, caused by <i>Fusarium fujikuroi</i>, poses a significant threat to rice production and has been observed in most rice-growing regions. The disease symptoms caused by different pathogens may vary, including elongated and weak stems, slender and yellow leaves, and dwarfism, as example. Bakanae disease is likely to cause necrosis of diseased seedlings, and it may cause a large area of infection in the field through the transmission of conidia. Therefore, early disease surveillance plays a crucial role in securing rice production. Traditional monitoring methods are both time-consuming and labor-intensive and cannot be broadly applied. In this study, a combination of hyperspectral imaging technology and deep learning algorithms were used to achieve in situ detection of rice seedlings infected with bakanae disease. Phenotypic data were obtained on the 9th, 15th, and 21st day after rice infection to explore the physiological and biochemical performance, which helps to deepen the research on the disease mechanism. Hyperspectral data were obtained over these same periods of infection, and a deep learning model, named Rice Bakanae Disease-Visual Geometry Group (RBD-VGG), was established by leveraging hyperspectral imaging technology and deep learning algorithms. Based on this model, an average accuracy of 92.2% was achieved on the 21st day of infection. It also achieved an accuracy of 79.4% as early as the 9th day. Universal characteristic wavelengths were extracted to increase the feasibility of using portable spectral equipment for field surveillance. Collectively, the model offers an efficient and non-destructive surveillance methodology for monitoring bakanae disease, thereby providing an efficient avenue for disease prevention and control.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"281 - 297"},"PeriodicalIF":4.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00169-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141113777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1007/s42994-024-00167-3
Yiling Feng, Tristan Weers, Reuben J. Peters
Rice (Oryza sativa) produces numerous diterpenoid phytoalexins that are important in defense against pathogens. Surprisingly, despite extensive previous investigations, a major group of such phytoalexins, the abietoryzins, were only recently reported. These aromatic abietanes are presumably derived from ent-miltiradiene, but such biosynthetic capacity has not yet been reported in O. sativa. While wild rice has been reported to contain such an enzyme, specifically ent-kaurene synthase-like 10 (KSL10), the only characterized ortholog from O. sativa (OsKSL10), specifically from the well-studied cultivar (cv.) Nipponbare, instead has been shown to make ent-sandaracopimaradiene, precursor to the oryzalexins. Notably, in many other cultivars, OsKSL10 is accompanied by a tandem duplicate, termed here OsKSL14. Biochemical characterization of OsKLS14 from cv. Kitaake demonstrates that this produces the expected abietoryzin precursor ent-miltiradiene. Strikingly, phylogenetic analysis of OsKSL10 across the rice pan-genome reveals that from cv. Nipponbare is an outlier, whereas the alleles from most other cultivars group with those from wild rice, suggesting that these also might produce ent-miltiradiene. Indeed, OsKSL10 from cv. Kitaake exhibits such activity as well, consistent with its production of abietoryzins but not oryzalexins. Similarly consistent with these results is the lack of abietoryzin production by cv. Nipponbare. Although their equivalent product outcome might suggest redundancy, OsKSL10 and OsKSL14 were observed to exhibit distinct expression patterns, indicating such differences may underlie retention of these duplicated genes. Regardless, the results reported here clarify abietoryzin biosynthesis and provide insight into the evolution of rice diterpenoid phytoalexins.
{"title":"Double-barreled defense: dual ent-miltiradiene synthases in most rice cultivars","authors":"Yiling Feng, Tristan Weers, Reuben J. Peters","doi":"10.1007/s42994-024-00167-3","DOIUrl":"10.1007/s42994-024-00167-3","url":null,"abstract":"<div><p>Rice (<i>Oryza sativa</i>) produces numerous diterpenoid phytoalexins that are important in defense against pathogens. Surprisingly, despite extensive previous investigations, a major group of such phytoalexins, the abietoryzins, were only recently reported. These aromatic abietanes are presumably derived from <i>ent</i>-miltiradiene, but such biosynthetic capacity has not yet been reported in <i>O. sativa</i>. While wild rice has been reported to contain such an enzyme, specifically <i>ent</i>-kaurene synthase-like 10 (KSL10), the only characterized ortholog from <i>O. sativa</i> (<i>OsKSL10</i>), specifically from the well-studied cultivar (cv.) Nipponbare, instead has been shown to make <i>ent</i>-sandaracopimaradiene, precursor to the oryzalexins. Notably, in many other cultivars, <i>OsKSL10</i> is accompanied by a tandem duplicate, termed here <i>OsKSL14</i>. Biochemical characterization of OsKLS14 from cv. Kitaake demonstrates that this produces the expected abietoryzin precursor <i>ent</i>-miltiradiene. Strikingly, phylogenetic analysis of <i>OsKSL10</i> across the rice pan-genome reveals that from cv. Nipponbare is an outlier, whereas the alleles from most other cultivars group with those from wild rice, suggesting that these also might produce <i>ent</i>-miltiradiene. Indeed, OsKSL10 from cv. Kitaake exhibits such activity as well, consistent with its production of abietoryzins but not oryzalexins. Similarly consistent with these results is the lack of abietoryzin production by cv. Nipponbare. Although their equivalent product outcome might suggest redundancy, <i>OsKSL10</i> and <i>OsKSL14</i> were observed to exhibit distinct expression patterns, indicating such differences may underlie retention of these duplicated genes. Regardless, the results reported here clarify abietoryzin biosynthesis and provide insight into the evolution of rice diterpenoid phytoalexins.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"375 - 380"},"PeriodicalIF":4.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00167-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loss-of-function mutants are fundamental resources for gene function studies. However, it is difficult to generate viable and heritable knockout mutants for essential genes. Here, we show that targeted editing of the C-terminal sequence of the embryo lethal gene MITOGEN-ACTIVATED PROTEIN KINASES 1 (OsMPK1) results in weak mutants. This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations. Using the same C-terminal editing approach, we also obtained viable mutants for a wall-associated protein kinase (Os07g0493200) and a leucine-rich repeat receptor-like protein kinase (Os01g0239700), while the null mutations of these genes were lethal. These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus, which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering.
功能缺失突变体是基因功能研究的基本资源。然而,要产生可行且可遗传的重要基因敲除突变体却很困难。在这里,我们发现靶向编辑胚胎致死基因 MITOGEN-ACTIVATED PROTEIN KINASES 1(OsMPK1)的 C 端序列可产生弱突变体。这种C端编辑的osmpk1突变体表现出严重的发育缺陷和抗病性改变,但却能产生数十粒继承了突变基因的可存活种子。利用相同的 C 端编辑方法,我们还获得了一种壁相关蛋白激酶(Os07g0493200)和一种富亮氨酸重复受体样蛋白激酶(Os01g0239700)的可存活突变体,而这些基因的无效突变是致死的。这些数据表明,蛋白激酶的活性可以通过引入C端附近的移帧突变来降低,这可以为基因功能研究提供宝贵的资源,并为信号通路工程调控蛋白激酶的活性。
{"title":"C-terminal frameshift mutations generate viable knockout mutants with developmental defects for three essential protein kinases","authors":"Yun Zhang, Miao-Miao Cui, Run-Nan Ke, Yue-Dan Chen, Kabin Xie","doi":"10.1007/s42994-024-00165-5","DOIUrl":"10.1007/s42994-024-00165-5","url":null,"abstract":"<div><p>Loss-of-function mutants are fundamental resources for gene function studies. However, it is difficult to generate viable and heritable knockout mutants for essential genes. Here, we show that targeted editing of the C-terminal sequence of the embryo lethal gene <i>MITOGEN-ACTIVATED PROTEIN KINASES 1</i> (<i>OsMPK1</i>) results in weak mutants. This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations. Using the same C-terminal editing approach, we also obtained viable mutants for a wall-associated protein kinase (Os07g0493200) and a leucine-rich repeat receptor-like protein kinase (Os01g0239700), while the null mutations of these genes were lethal. These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus, which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"219 - 224"},"PeriodicalIF":4.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00165-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes, and in plants, they regulate many biological processes, such as cell differentiation, development, metabolism, and stress responses. Few studies have focused on the roles of bHLH transcription factors in regulating growth, development, and stress responses in maize (Zea mays), even though such information would greatly benefit maize breeding programs. In this study, we cloned the maize transcription factor gene ZmbHLH36 (Gene ID: 100193615, GRMZM2G008691). ZmbHLH36 possesses conserved domains characteristic of the bHLH family. RT-qPCR analysis revealed that ZmbHLH36 was expressed at the highest level in maize roots and exhibited different expression patterns under various abiotic stress conditions. Transgenic Arabidopsis (Arabidopsis thaliana) plants heterologously expressing ZmbHLH36 had significantly longer roots than the corresponding non-transgenic plants under 0.1 and 0.15 mol L−1 NaCl treatment as well as 0.2 mol L−1 mannitol treatment. Phenotypic analysis of soil-grown plants under stress showed that transgenic Arabidopsis plants harboring ZmbHLH36 exhibited significantly enhanced drought tolerance and salt tolerance compared to the corresponding non-transgenic plants. Malondialdehyde contents were lower and peroxidase activity was higher in ZmbHLH36-expressing Arabidopsis plants than in the corresponding non-transgenic plants. ZmbHLH36 localized to the nucleus when expressed in maize protoplasts. This study provides a systematic analysis of the effects of ZmbHLH36 on root growth, development, and stress responses in transgenic Arabidopsis, laying a foundation for further analysis of its roles and molecular mechanisms in maize.
{"title":"Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis","authors":"Zhenggang Dai, Keyong Zhao, Dengyu Zheng, Siyu Guo, Huawen Zou, Zhongyi Wu, Chun Zhang","doi":"10.1007/s42994-024-00159-3","DOIUrl":"10.1007/s42994-024-00159-3","url":null,"abstract":"<div><p>Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes, and in plants, they regulate many biological processes, such as cell differentiation, development, metabolism, and stress responses. Few studies have focused on the roles of bHLH transcription factors in regulating growth, development, and stress responses in maize (<i>Zea mays</i>), even though such information would greatly benefit maize breeding programs. In this study, we cloned the maize transcription factor gene <i>ZmbHLH36</i> (Gene ID: 100193615, GRMZM2G008691). ZmbHLH36 possesses conserved domains characteristic of the bHLH family. RT-qPCR analysis revealed that <i>ZmbHLH36</i> was expressed at the highest level in maize roots and exhibited different expression patterns under various abiotic stress conditions. Transgenic <i>Arabidopsis</i> (<i>Arabidopsis thaliana</i>) plants heterologously expressing <i>ZmbHLH36</i> had significantly longer roots than the corresponding non-transgenic plants under 0.1 and 0.15 mol L<sup>−1</sup> NaCl treatment as well as 0.2 mol L<sup>−1</sup> mannitol treatment. Phenotypic analysis of soil-grown plants under stress showed that transgenic <i>Arabidopsis</i> plants harboring <i>ZmbHLH36</i> exhibited significantly enhanced drought tolerance and salt tolerance compared to the corresponding non-transgenic plants. Malondialdehyde contents were lower and peroxidase activity was higher in <i>ZmbHLH36</i>-expressing <i>Arabidopsis</i> plants than in the corresponding non-transgenic plants. ZmbHLH36 localized to the nucleus when expressed in maize protoplasts. This study provides a systematic analysis of the effects of ZmbHLH36 on root growth, development, and stress responses in transgenic <i>Arabidopsis</i>, laying a foundation for further analysis of its roles and molecular mechanisms in maize.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"339 - 350"},"PeriodicalIF":4.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00159-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1007/s42994-024-00164-6
Man Zhang, Yu Ming, Hong-Bin Wang, Hong-Lei Jin
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
{"title":"Strategies for adaptation to high light in plants","authors":"Man Zhang, Yu Ming, Hong-Bin Wang, Hong-Lei Jin","doi":"10.1007/s42994-024-00164-6","DOIUrl":"10.1007/s42994-024-00164-6","url":null,"abstract":"<div><p>Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"381 - 393"},"PeriodicalIF":4.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00164-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1007/s42994-024-00147-7
Yilin Shen, Tao Ye, Zihan Li, Torotwa Herman Kimutai, Hao Song, Xiaoou Dong, Jianmin Wan
Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.
基因组编辑为植物的分子育种带来了巨大希望,但由于缺乏简单有效的方法将基因组编辑试剂输送到植物体内,基因组编辑的应用受到了阻碍。将基因组编辑试剂输送到植物体内的传统植物转化方法往往涉及长时间的组织培养,对于许多优良作物栽培品种来说,这是一个劳动密集型且具有技术挑战性的过程。在本综述中,我们介绍了各种基于病毒的基因组编辑试剂输送方法,包括用于植物精准编辑的 CRISPR/Cas 机器和供体 DNA 的组件。我们介绍了这些方法的最新进展,以及最近在不同植物物种中通过病毒递送实现基因组编辑的成功实例,强调了这些递送方法的优势和局限性,并讨论了仍然存在的挑战。
{"title":"Exploiting viral vectors to deliver genome editing reagents in plants","authors":"Yilin Shen, Tao Ye, Zihan Li, Torotwa Herman Kimutai, Hao Song, Xiaoou Dong, Jianmin Wan","doi":"10.1007/s42994-024-00147-7","DOIUrl":"10.1007/s42994-024-00147-7","url":null,"abstract":"<div><p>Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"247 - 261"},"PeriodicalIF":4.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00147-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1007/s42994-024-00162-8
Kai Sun, Wei Zhang, Xiaolin Wang, Chuan-Chao Dai
Root-associated microbiota profoundly affect crop health and productivity. Plants can selectively recruit beneficial microbes from the soil and actively balance microbe-triggered plant-growth promotion and stress tolerance enhancement. The cost associated with this is the root-mediated support of a certain number of specific microbes under nutrient limitation. Thus, it is important to consider the dynamic changes in microbial quantity when it comes to nutrient condition-induced root microbiome reassembly. Quantitative microbiome profiling (QMP) has recently emerged as a means to estimate the specific microbial load variation of a root microbiome (instead of the traditional approach quantifying relative microbial abundances) and data from the QMP approach can be more closely correlated with plant development and/or function. However, due to a lack of detailed-QMP data, how soil nutrient conditions affect quantitative changes in microbial assembly of the root-associated microbiome remains poorly understood. A recent study quantified the dynamics of the soybean root microbiome, under unbalanced fertilization, using QMP and provided data on the use of specific synthetic communities (SynComs) for sustaining crop productivity. In this editorial, we explore potential opportunities for utilizing QMP to decode the microbiome for sustainable agriculture.
{"title":"Decoding the microbiome for sustainable agriculture","authors":"Kai Sun, Wei Zhang, Xiaolin Wang, Chuan-Chao Dai","doi":"10.1007/s42994-024-00162-8","DOIUrl":"10.1007/s42994-024-00162-8","url":null,"abstract":"<div><p>Root-associated microbiota profoundly affect crop health and productivity. Plants can selectively recruit beneficial microbes from the soil and actively balance microbe-triggered plant-growth promotion and stress tolerance enhancement. The cost associated with this is the root-mediated support of a certain number of specific microbes under nutrient limitation. Thus, it is important to consider the dynamic changes in microbial quantity when it comes to nutrient condition-induced root microbiome reassembly. Quantitative microbiome profiling (QMP) has recently emerged as a means to estimate the specific microbial load variation of a root microbiome (instead of the traditional approach quantifying relative microbial abundances) and data from the QMP approach can be more closely correlated with plant development and/or function. However, due to a lack of detailed-QMP data, how soil nutrient conditions affect quantitative changes in microbial assembly of the root-associated microbiome remains poorly understood. A recent study quantified the dynamics of the soybean root microbiome, under unbalanced fertilization, using QMP and provided data on the use of specific synthetic communities (SynComs) for sustaining crop productivity. In this editorial, we explore potential opportunities for utilizing QMP to decode the microbiome for sustainable agriculture.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"408 - 412"},"PeriodicalIF":4.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction: Removal of the C4-domain preserves the drought tolerance enhanced by CsMYB4a and eliminates the negative impact of this transcription factor on plant growth","authors":"Mingzhuo Li, Guoliang Ma, Xiu Li, Lili Guo, Yanzhi Li, Yajun Liu, Wenzhao Wang, Xiaolan Jiang, De-Yu Xie, Liping Gao, Tao Xia","doi":"10.1007/s42994-024-00163-7","DOIUrl":"10.1007/s42994-024-00163-7","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"414 - 416"},"PeriodicalIF":4.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1007/s42994-024-00161-9
Sijia Lu, Chao Fang, Jun Abe, Fanjiang Kong, Baohui Liu
{"title":"Correction: Current overview on the genetic basis of key genes involved in soybean domestication","authors":"Sijia Lu, Chao Fang, Jun Abe, Fanjiang Kong, Baohui Liu","doi":"10.1007/s42994-024-00161-9","DOIUrl":"10.1007/s42994-024-00161-9","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"279 - 279"},"PeriodicalIF":4.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}