Pub Date : 2024-03-18DOI: 10.1007/s42994-024-00140-0
Zhihao Hou, Wenpeng Deng, Alun Li, Ya Zhang, Jianye Chang, Xinyue Guan, Yuxiao Chang, Kaile Wang, Xinjie Wang, Jue Ruan
MicroRNAs (miRNAs) and short RNA fragments (18–25 nt) are crucial biomarkers in biological research and disease diagnostics. However, their accurate and rapid detection remains a challenge, largely due to their low abundance, short length, and sequence similarities. In this study, we report on a highly sensitive, one-step RNA O-circle amplification (ROA) assay for rapid and accurate miRNA detection. The ROA assay commences with the hybridization of a circular probe with the test RNA, followed by a linear rolling circle amplification (RCA) using dUTP. This amplification process is facilitated by U-nick reactions, which lead to an exponential amplification for readout. Under optimized conditions, assays can be completed within an hour, producing an amplification yield up to the microgram level, with a detection limit as low as 0.15 fmol (6 pM). Notably, the ROA assay requires only one step, and the results can be easily read visually, making it user-friendly. This ROA assay has proven effective in detecting various miRNAs and phage ssRNA. Overall, the ROA assay offers a user-friendly, rapid, and accurate solution for miRNA detection.
{"title":"A sensitive one-pot ROA assay for rapid miRNA detection","authors":"Zhihao Hou, Wenpeng Deng, Alun Li, Ya Zhang, Jianye Chang, Xinyue Guan, Yuxiao Chang, Kaile Wang, Xinjie Wang, Jue Ruan","doi":"10.1007/s42994-024-00140-0","DOIUrl":"10.1007/s42994-024-00140-0","url":null,"abstract":"<div><p>MicroRNAs (miRNAs) and short RNA fragments (18–25 nt) are crucial biomarkers in biological research and disease diagnostics. However, their accurate and rapid detection remains a challenge, largely due to their low abundance, short length, and sequence similarities. In this study, we report on a highly sensitive, one-step RNA O-circle amplification (ROA) assay for rapid and accurate miRNA detection. The ROA assay commences with the hybridization of a circular probe with the test RNA, followed by a linear rolling circle amplification (RCA) using dUTP. This amplification process is facilitated by U-nick reactions, which lead to an exponential amplification for readout. Under optimized conditions, assays can be completed within an hour, producing an amplification yield up to the microgram level, with a detection limit as low as 0.15 fmol (6 pM). Notably, the ROA assay requires only one step, and the results can be easily read visually, making it user-friendly. This ROA assay has proven effective in detecting various miRNAs and phage ssRNA. Overall, the ROA assay offers a user-friendly, rapid, and accurate solution for miRNA detection.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"298 - 308"},"PeriodicalIF":4.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00140-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140233780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current systems to screen for transgenic soybeans (Glycine max) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The RUBY reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the RUBY reporter for visual verification during soybean transformation. We show that RUBY can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the RUBY system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the RUBY system, we quickly identified a transgene-free Gmwaxy mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.
{"title":"The RUBY reporter for visual selection in soybean genome editing","authors":"Li Chen, Yupeng Cai, Xiaoqian Liu, Weiwei Yao, Shuiqing Wu, Wensheng Hou","doi":"10.1007/s42994-024-00148-6","DOIUrl":"10.1007/s42994-024-00148-6","url":null,"abstract":"<div><p>Current systems to screen for transgenic soybeans (<i>Glycine max</i>) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The <i>RUBY</i> reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the <i>RUBY</i> reporter for visual verification during soybean transformation. We show that <i>RUBY</i> can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the <i>RUBY</i> system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the <i>RUBY</i> system, we quickly identified a transgene-free <i>Gmwaxy</i> mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"209 - 213"},"PeriodicalIF":4.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140231507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1007/s42994-024-00151-x
Yukang Wang, Ronghui Pan, Jianping Hu
Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.
{"title":"Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis","authors":"Yukang Wang, Ronghui Pan, Jianping Hu","doi":"10.1007/s42994-024-00151-x","DOIUrl":"10.1007/s42994-024-00151-x","url":null,"abstract":"<div><p>Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in <i>Arabidopsis</i>. To further determine the involvement of mitochondria and CL in plant heat response, here we treated <i>Arabidopsis</i> seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"362 - 367"},"PeriodicalIF":4.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00151-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140237712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant height is an important agronomic trait that affects high-density tolerance and lodging resistance. However, the regulators and their underlying molecular mechanisms controlling plant height in maize remain understudied. Here, we report that knockout mutants of the calcium-dependent protein kinase gene ZmCPK39 (ZmCPK39-KO) exhibit dramatically reduced plant height, characterized by shorter internodes and a slight decrease in node numbers. Furthermore, we identified a ZmCPK39-interacting protein, the knotted-related homeobox (ZmKnox2), and observed that plant height was also significantly reduced in a mutator transposon-inserted mutant of ZmKnox2 (ZmKnox2-Mu). Combined analysis of transcriptomic and metabonomic data indicates that multiple phytohormone signaling and photosynthesis pathways are disrupted in both ZmCPK39-KO and ZmKnox2-Mu mutants. Taken together, these results provide new insights into the function of ZmCPK39 and identify potential targets for breeding lodging-resistant and high-density tolerant maize cultivars.
{"title":"The maize ZmCPK39-ZmKnox2 module regulates plant height","authors":"Mang Zhu, Chenyu Guo, Xiaohui Zhang, Yulin Liu, Xiaohui Jiang, Limei Chen, Mingliang Xu","doi":"10.1007/s42994-024-00150-y","DOIUrl":"10.1007/s42994-024-00150-y","url":null,"abstract":"<div><p>Plant height is an important agronomic trait that affects high-density tolerance and lodging resistance. However, the regulators and their underlying molecular mechanisms controlling plant height in maize remain understudied. Here, we report that knockout mutants of the calcium-dependent protein kinase gene <i>ZmCPK39</i> (<i>ZmCPK39</i>-KO) exhibit dramatically reduced plant height, characterized by shorter internodes and a slight decrease in node numbers. Furthermore, we identified a ZmCPK39-interacting protein, the knotted-related homeobox (ZmKnox2), and observed that plant height was also significantly reduced in a <i>mutator</i> transposon-inserted mutant of <i>ZmKnox2</i> (<i>ZmKnox2</i>-Mu). Combined analysis of transcriptomic and metabonomic data indicates that multiple phytohormone signaling and photosynthesis pathways are disrupted in both <i>ZmCPK39</i>-KO and <i>ZmKnox2</i>-Mu mutants. Taken together, these results provide new insights into the function of <i>ZmCPK39</i> and identify potential targets for breeding lodging-resistant and high-density tolerant maize cultivars.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 3","pages":"356 - 361"},"PeriodicalIF":4.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00150-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140239168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1007/s42994-023-00133-5
Long Chen, Guanqing Liu, Tao Zhang
Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
{"title":"Integrating machine learning and genome editing for crop improvement","authors":"Long Chen, Guanqing Liu, Tao Zhang","doi":"10.1007/s42994-023-00133-5","DOIUrl":"10.1007/s42994-023-00133-5","url":null,"abstract":"<div><p>Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"262 - 277"},"PeriodicalIF":4.6,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00133-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140409716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bread wheat (Triticum aestivum) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.
{"title":"Innovative computational tools provide new insights into the polyploid wheat genome","authors":"Yongming Chen, Wenxi Wang, Zhengzhao Yang, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo","doi":"10.1007/s42994-023-00131-7","DOIUrl":"10.1007/s42994-023-00131-7","url":null,"abstract":"<div><p>Bread wheat (<i>Triticum aestivum</i>) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"52 - 70"},"PeriodicalIF":4.6,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00131-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.1007/s42994-024-00137-9
Yu Wang, Chuan Zheng, You-liang Peng, Qian Chen
Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. Decreased grain size1 (DGS1), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2–E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding.
{"title":"DGS1 improves rice disease resistance by elevating pathogen-associated molecular pattern-triggered immunity","authors":"Yu Wang, Chuan Zheng, You-liang Peng, Qian Chen","doi":"10.1007/s42994-024-00137-9","DOIUrl":"10.1007/s42994-024-00137-9","url":null,"abstract":"<div><p>Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. <i>Decreased grain size1</i> (<i>DGS1</i>), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2–E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"46 - 51"},"PeriodicalIF":4.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00137-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.
{"title":"Plant genomic resources at National Genomics Data Center: assisting in data-driven breeding applications","authors":"Dongmei Tian, Tianyi Xu, Hailong Kang, Hong Luo, Yanqing Wang, Meili Chen, Rujiao Li, Lina Ma, Zhonghuang Wang, Lili Hao, Bixia Tang, Dong Zou, Jingfa Xiao, Wenming Zhao, Yiming Bao, Zhang Zhang, Shuhui Song","doi":"10.1007/s42994-023-00134-4","DOIUrl":"10.1007/s42994-023-00134-4","url":null,"abstract":"<div><p>Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"94 - 106"},"PeriodicalIF":4.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00134-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1007/s42994-023-00129-1
Baizhi Chen, Yan Shi, Yuchen Sun, Lu Lu, Luyao Wang, Zijian Liu, Shifeng Cheng
The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.
{"title":"Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities","authors":"Baizhi Chen, Yan Shi, Yuchen Sun, Lu Lu, Luyao Wang, Zijian Liu, Shifeng Cheng","doi":"10.1007/s42994-023-00129-1","DOIUrl":"10.1007/s42994-023-00129-1","url":null,"abstract":"<div><p>The garden pea (<i>Pisum sativum</i> L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 1","pages":"71 - 93"},"PeriodicalIF":4.6,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00129-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139591459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}