Pub Date : 2023-10-25DOI: 10.1007/s42994-023-00118-4
Lingmin Cai, Yuzhen Mei, Ruyi Ye, Yun Deng, Xuejun Zhang, Zhongyuan Hu, Xueping Zhou, Mingfang Zhang, Jinghua Yang
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops. To date, the virus has been reported to infect more than 11 cucurbit crops, in 16 countries and regions, causing severe yield losses. In autumn 2022, ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China. Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade, and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate (Accession no. OP356207) and the tomato New Delhi ToLCNDV-Severe isolate (Accession no. HM159454). In this review, we summarize the occurrence and distribution, host range, detection and diagnosis, control strategies, and genetic resistance of ToLCNDV in the Cucurbitaceae. We then summarize pathways that could be undertaken to improve our understanding of this emerging disease, with the objective to develop ToLCNDV-resistant cucurbit cultivars.
{"title":"Tomato leaf curl New Delhi virus: an emerging plant begomovirus threatening cucurbit production","authors":"Lingmin Cai, Yuzhen Mei, Ruyi Ye, Yun Deng, Xuejun Zhang, Zhongyuan Hu, Xueping Zhou, Mingfang Zhang, Jinghua Yang","doi":"10.1007/s42994-023-00118-4","DOIUrl":"10.1007/s42994-023-00118-4","url":null,"abstract":"<div><p>Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was first reported to infect tomato and has recently spread rapidly as an emerging disease to <i>Cucurbitaceae</i> crops. To date, the virus has been reported to infect more than 11 cucurbit crops, in 16 countries and regions, causing severe yield losses. In autumn 2022, ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China. Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade, and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate (Accession no. OP356207) and the tomato New Delhi ToLCNDV-Severe isolate (Accession no. HM159454). In this review, we summarize the occurrence and distribution, host range, detection and diagnosis, control strategies, and genetic resistance of ToLCNDV in the <i>Cucurbitaceae</i>. We then summarize pathways that could be undertaken to improve our understanding of this emerging disease, with the objective to develop ToLCNDV-resistant cucurbit cultivars<i>.</i></p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"257 - 266"},"PeriodicalIF":3.6,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134650458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of GR79 EPSPS (pGR79 EPSPS) and N-acetyltransferase (pGAT) genes, in alfalfa, via Agrobacterium-mediated transformation. We established that the pGR79 EPSPS-pGAT co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar. Our findings generate an elite herbicide-resistant germplasm for alfalfa breeding and provide a promising strategy for developing high-glyphosate-resistant and low-glyphosate-residue forages.
{"title":"Co-expression of GR79 EPSPS and GAT generates high glyphosate-resistant alfalfa with low glyphosate residues","authors":"Yingying Meng, Wenwen Zhang, Zhaoming Wang, Feng Yuan, Sandui Guo, Hao Lin, Lifang Niu","doi":"10.1007/s42994-023-00119-3","DOIUrl":"10.1007/s42994-023-00119-3","url":null,"abstract":"<div><p>Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of <i>GR79 EPSPS</i> (<i>pGR79 EPSPS</i>) and <i>N-acetyltransferase</i> (<i>pGAT</i>) genes, in alfalfa, via <i>Agrobacterium</i>-mediated transformation. We established that the <i>pGR79 EPSPS</i>-<i>pGAT</i> co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar. Our findings generate an elite herbicide-resistant germplasm for alfalfa breeding and provide a promising strategy for developing high-glyphosate-resistant and low-glyphosate-residue forages.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"352 - 358"},"PeriodicalIF":4.6,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00119-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135667760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1007/s42994-023-00116-6
Qiangbo Liu, Xian Sheng Zhang, Ying Hua Su
The genetic transformation plays an important role in plant gene functional analysis and its genetic improvement. However, only a limited number of maize germplasms can be routinely transformed. The maize gene Wuschel-like homeobox protein 2a (Wox2a) was shown to play a crucial role in promoting the formation of embryonic cells and enhancing the efficiency of genetic transformation in maize. This commentary discusses the mechanism by which the Wox2a gene contributes to the variation in embryogenic tissue culture response among different maize inbred lines. In addition, the frequency and intensity of Wox2a or Wus2/Bbm vector-induced somatic embryogenesis was also discussed. The application of Wox2a in transformation of recalcitrant maize genotypes could well accelerate the development of maize genetic improvement.
{"title":"Application of Wox2a in transformation of recalcitrant maize genotypes","authors":"Qiangbo Liu, Xian Sheng Zhang, Ying Hua Su","doi":"10.1007/s42994-023-00116-6","DOIUrl":"10.1007/s42994-023-00116-6","url":null,"abstract":"<div><p>The genetic transformation plays an important role in plant gene functional analysis and its genetic improvement. However, only a limited number of maize germplasms can be routinely transformed. The maize gene <i>Wuschel-like homeobox protein 2a</i> (<i>Wox2a</i>) was shown to play a crucial role in promoting the formation of embryonic cells and enhancing the efficiency of genetic transformation in maize. This commentary discusses the mechanism by which the <i>Wox2a</i> gene contributes to the variation in embryogenic tissue culture response among different maize inbred lines. In addition, the frequency and intensity of <i>Wox2a</i> or <i>Wus2</i>/<i>Bbm</i> vector-induced somatic embryogenesis was also discussed. The application of <i>Wox2a</i> in transformation of recalcitrant maize genotypes could well accelerate the development of maize genetic improvement.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"386 - 388"},"PeriodicalIF":4.6,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00116-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.1007/s42994-023-00115-7
Xiao-Yu Huang, Ying Xiang, Yu-Wen Zhao, Chu-Kun Wang, Jia-Hui Wang, Wen-Yan Wang, Xiao-Long Liu, Quan Sun, Da-Gang Hu
As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH.
{"title":"Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification","authors":"Xiao-Yu Huang, Ying Xiang, Yu-Wen Zhao, Chu-Kun Wang, Jia-Hui Wang, Wen-Yan Wang, Xiao-Long Liu, Quan Sun, Da-Gang Hu","doi":"10.1007/s42994-023-00115-7","DOIUrl":"10.1007/s42994-023-00115-7","url":null,"abstract":"<div><p>As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of <i>MdPH5</i>, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of <i>MdPH5</i>, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"303 - 314"},"PeriodicalIF":4.6,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00115-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136059473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a conserved epigenetic mark, DNA cytosine methylation, at the 5’ position (5-mC), plays important roles in multiple biological processes, including plant immunity. However, the involvement of DNA methylation in the determinants of virulence of phytopathogenic fungi remains elusive. In this study, we profiled the DNA methylation patterns of the phytopathogenic fungus Verticillium dahliae, one of the major causal pathogens of Verticillium wilt disease that causes great losses in many crops, and explored its contribution in fungal pathogenicity. We reveal that DNA methylation modification is present in V. dahliae and is required for its full virulence in host plants. The major enzymes responsible for the establishment of DNA methylation in V. dahliae were identified. We provided evidence that DNA methyltransferase-mediated establishment of DNA methylation pattern positively regulates fungal virulence, mainly through repressing a conserved protein kinase VdRim15-mediated Ca2+ signaling and ROS production, which is essential for the penetration activity of V. dahliae. In addition, we further demonstrated that histone H3 lysine 9 trimethylation (H3K9me3), another heterochromatin marker that is closely associated with 5-mC in eukaryotes, also participates in the regulation of V. dahliae pathogenicity, through a similar mechanism. More importantly, DNA methyltransferase genes VdRid, VdDnmt5, as well as H3K9me3 methyltransferase genes, were greatly induced during the early infection phase, implying that a dynamic regulation of 5-mC and H3K9me3 homeostasis is required for an efficient infection. Collectively, our findings uncover an epigenetic mechanism in the regulation of phytopathogenic fungal virulence.
{"title":"DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants","authors":"Yun-Ya Chen, Chen Zhu, Jian-Hua Zhao, Ting Liu, Feng Gao, Ying-Chao Zhang, Cheng-Guo Duan","doi":"10.1007/s42994-023-00117-5","DOIUrl":"10.1007/s42994-023-00117-5","url":null,"abstract":"<div><p>As a conserved epigenetic mark, DNA cytosine methylation, at the 5’ position (5-mC), plays important roles in multiple biological processes, including plant immunity. However, the involvement of DNA methylation in the determinants of virulence of phytopathogenic fungi remains elusive. In this study, we profiled the DNA methylation patterns of the phytopathogenic fungus <i>Verticillium dahliae</i>, one of the major causal pathogens of <i>Verticillium</i> wilt disease that causes great losses in many crops, and explored its contribution in fungal pathogenicity. We reveal that DNA methylation modification is present in <i>V. dahliae</i> and is required for its full virulence in host plants. The major enzymes responsible for the establishment of DNA methylation in <i>V. dahliae</i> were identified. We provided evidence that DNA methyltransferase-mediated establishment of DNA methylation pattern positively regulates fungal virulence, mainly through repressing a conserved protein kinase VdRim15-mediated Ca<sup>2+</sup> signaling and ROS production, which is essential for the penetration activity of <i>V. dahliae</i>. In addition, we further demonstrated that histone H3 lysine 9 trimethylation (H3K9me3), another heterochromatin marker that is closely associated with 5-mC in eukaryotes, also participates in the regulation of <i>V. dahliae</i> pathogenicity, through a similar mechanism. More importantly, DNA methyltransferase genes <i>VdRid</i>, <i>VdDnmt5,</i> as well as H3K9me3 methyltransferase genes, were greatly induced during the early infection phase, implying that a dynamic regulation of 5-mC and H3K9me3 homeostasis is required for an efficient infection. Collectively, our findings uncover an epigenetic mechanism in the regulation of phytopathogenic fungal virulence.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"185 - 201"},"PeriodicalIF":3.6,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134650523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1007/s42994-023-00112-w
Zhigang Liu, Tongfei Qin, Michaella Atienza, Yang Zhao, Hanh Nguyen, Huajin Sheng, Toluwase Olukayode, Hao Song, Karim Panjvani, Jurandir Magalhaes, William J. Lucas, Leon V. Kochian
Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops.
{"title":"Constitutive basis of root system architecture: uncovering a promising trait for breeding nutrient- and drought-resilient crops","authors":"Zhigang Liu, Tongfei Qin, Michaella Atienza, Yang Zhao, Hanh Nguyen, Huajin Sheng, Toluwase Olukayode, Hao Song, Karim Panjvani, Jurandir Magalhaes, William J. Lucas, Leon V. Kochian","doi":"10.1007/s42994-023-00112-w","DOIUrl":"10.1007/s42994-023-00112-w","url":null,"abstract":"<div><p>Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"315 - 331"},"PeriodicalIF":4.6,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00112-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135435265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1007/s42994-023-00114-8
Shengyan Li, Pengcheng Li, Xiangyin Li, Ning Wen, Yinxiao Wang, Wei Lu, Min Lin, Zhihong Lang
Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (Zea mays L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, gat, and the enolpyruvyl-shikimate-3-phosphate synthase gene, gr79-epsps, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of gat and gr79-epsps were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC–MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the epsps gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of gat and gr79-epsps, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding.
{"title":"In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues","authors":"Shengyan Li, Pengcheng Li, Xiangyin Li, Ning Wen, Yinxiao Wang, Wei Lu, Min Lin, Zhihong Lang","doi":"10.1007/s42994-023-00114-8","DOIUrl":"10.1007/s42994-023-00114-8","url":null,"abstract":"<div><p>Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (<i>Zea mays</i> L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, <i>gat</i>, and the enolpyruvyl-shikimate-3-phosphate synthase gene, <i>gr79-epsps</i>, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of <i>gat</i> and <i>gr79-epsps</i> were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC–MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the <i>epsps</i> gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of <i>gat</i> and <i>gr79-epsps</i>, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"277 - 290"},"PeriodicalIF":4.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81852192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.1007/s42994-023-00111-x
Ruyi Wang, Guo-Liang Wang, Yuese Ning
The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.
{"title":"Harnessing nanobodies to expand the recognition spectrum of plant NLRs for diverse pathogens","authors":"Ruyi Wang, Guo-Liang Wang, Yuese Ning","doi":"10.1007/s42994-023-00111-x","DOIUrl":"10.1007/s42994-023-00111-x","url":null,"abstract":"<div><p>The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"272 - 276"},"PeriodicalIF":3.6,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77135469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.1007/s42994-023-00109-5
Luca Comai
Conversion of potato from a tetraploid, heterozygous, vegetatively propagated crop to a diploid F1 hybrid, propagated via botanical seed, would constitute a considerable advance for global agriculture, but faces multiple challenges. One such challenge is the difficulty in inbreeding potato, which involves purging deleterious alleles from its genome. This commentary discusses possible reasons for this difficulty and highlights a recent sequence-based effort to classify SNP variation, in potato germplasm, according to its deleterious potential. Tools and strategies connected to this database may facilitate development of F1 hybrids.
{"title":"Unlikely heroes on the long and winding road to potato inbreeding","authors":"Luca Comai","doi":"10.1007/s42994-023-00109-5","DOIUrl":"10.1007/s42994-023-00109-5","url":null,"abstract":"<div><p>Conversion of potato from a tetraploid, heterozygous, vegetatively propagated crop to a diploid F1 hybrid, propagated via botanical seed, would constitute a considerable advance for global agriculture, but faces multiple challenges. One such challenge is the difficulty in inbreeding potato, which involves purging deleterious alleles from its genome. This commentary discusses possible reasons for this difficulty and highlights a recent sequence-based effort to classify SNP variation, in potato germplasm, according to its deleterious potential. Tools and strategies connected to this database may facilitate development of F1 hybrids.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"267 - 271"},"PeriodicalIF":3.6,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74189653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-02DOI: 10.1007/s42994-023-00106-8
Peitong Wang, Jian Feng Ma
{"title":"Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops","authors":"Peitong Wang, Jian Feng Ma","doi":"10.1007/s42994-023-00106-8","DOIUrl":"10.1007/s42994-023-00106-8","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"180 - 183"},"PeriodicalIF":3.6,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00106-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}