The partial singular value assignment problem stems from the development of observers for discrete-time descriptor systems and the resolution of ordinary differential equations. Conventional techniques mostly utilize singular value decomposition, which is unfeasible for large-scale systems owing to their relatively high complexity. By calculating the sparse basis of the null space associated with some orthogonal projections, the existence of the matrix in partial singular value assignment is proven and an algorithm is subsequently proposed for implementation, effectively avoiding the full singular value decomposition of the existing methods. Numerical examples exhibit the efficiency of the presented method.
{"title":"Partial Singular Value Assignment for Large-Scale Systems","authors":"Yiting Huang, Qiong Tang, Bo Yu","doi":"10.3390/axioms12111012","DOIUrl":"https://doi.org/10.3390/axioms12111012","url":null,"abstract":"The partial singular value assignment problem stems from the development of observers for discrete-time descriptor systems and the resolution of ordinary differential equations. Conventional techniques mostly utilize singular value decomposition, which is unfeasible for large-scale systems owing to their relatively high complexity. By calculating the sparse basis of the null space associated with some orthogonal projections, the existence of the matrix in partial singular value assignment is proven and an algorithm is subsequently proposed for implementation, effectively avoiding the full singular value decomposition of the existing methods. Numerical examples exhibit the efficiency of the presented method.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"2 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suresh Alapati, Wooseong Che, Sunkara Srinivasa Rao, Giang T. T. Phan
Mathematical modeling and analysis of biologically inspired systems has been a fascinating research topic in recent years. In this work, we present the results obtained from the simulation of an elastic rod (that mimics a flagellum axoneme) rotational motion in a viscous fluid by using the lattice Boltzmann method (LBM) combined with an immersed boundary method (IBM). A finite element model consists of a set of beam and truss elements used to discretize the flagellum axoneme while the fluid flow is solved by the well-known LBM. The hydrodynamic coupling to maintain the no-slip boundary condition between the fluid and the elastic rod is conducted with the IBM. The rod is actuated with a torque applied at its base cross-section that acts as a driving motor of the axoneme. We simulated the rotational dynamics of the rod for three different rotational frequencies (low, medium, and high) of the motor. To compare with previous publication results, we chose the sperm number Sp=L(4πμω)/(EI)1/4 as the validation parameter. We found that at the low rotational frequency, f = 1.5 Hz, the rod performs stable twirling motion after attaining an equilibrium state (the rod undergoes rigid rotation about its axis). At the medium frequency, f = 2.65 Hz, the rod undergoes whirling motion, where the tip of the rod rotates about the central rotational axis of the driving motor. When the frequency increases further, i.e., when it reaches the critical value, fc ≈ 2.7 Hz, the whirling motion becomes over-whirling, where the tip of the filament falls back to the base and performs a steady crank-shafting motion. All three rotational dynamics, twirling, whirling, and over-whirling, and the critical value of rotational frequency are in good agreement with the previously published results. We also observed that our present simulation technique is computationally more efficient than previous works.
{"title":"Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method","authors":"Suresh Alapati, Wooseong Che, Sunkara Srinivasa Rao, Giang T. T. Phan","doi":"10.3390/axioms12111011","DOIUrl":"https://doi.org/10.3390/axioms12111011","url":null,"abstract":"Mathematical modeling and analysis of biologically inspired systems has been a fascinating research topic in recent years. In this work, we present the results obtained from the simulation of an elastic rod (that mimics a flagellum axoneme) rotational motion in a viscous fluid by using the lattice Boltzmann method (LBM) combined with an immersed boundary method (IBM). A finite element model consists of a set of beam and truss elements used to discretize the flagellum axoneme while the fluid flow is solved by the well-known LBM. The hydrodynamic coupling to maintain the no-slip boundary condition between the fluid and the elastic rod is conducted with the IBM. The rod is actuated with a torque applied at its base cross-section that acts as a driving motor of the axoneme. We simulated the rotational dynamics of the rod for three different rotational frequencies (low, medium, and high) of the motor. To compare with previous publication results, we chose the sperm number Sp=L(4πμω)/(EI)1/4 as the validation parameter. We found that at the low rotational frequency, f = 1.5 Hz, the rod performs stable twirling motion after attaining an equilibrium state (the rod undergoes rigid rotation about its axis). At the medium frequency, f = 2.65 Hz, the rod undergoes whirling motion, where the tip of the rod rotates about the central rotational axis of the driving motor. When the frequency increases further, i.e., when it reaches the critical value, fc ≈ 2.7 Hz, the whirling motion becomes over-whirling, where the tip of the filament falls back to the base and performs a steady crank-shafting motion. All three rotational dynamics, twirling, whirling, and over-whirling, and the critical value of rotational frequency are in good agreement with the previously published results. We also observed that our present simulation technique is computationally more efficient than previous works.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this paper is to attain the existence of coincidences and common fixed points in four mappings satisfying (ψ,β,L)-generalized contractive conditions in the framework of partially ordered b-metric spaces. The main results presented in this paper generalize some recent results in the existing literature. Furthermore, a nontrivial example is presented to support the obtained results.
{"title":"Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces","authors":"Binghua Jiang, Huaping Huang, Stojan Radenović","doi":"10.3390/axioms12111008","DOIUrl":"https://doi.org/10.3390/axioms12111008","url":null,"abstract":"The purpose of this paper is to attain the existence of coincidences and common fixed points in four mappings satisfying (ψ,β,L)-generalized contractive conditions in the framework of partially ordered b-metric spaces. The main results presented in this paper generalize some recent results in the existing literature. Furthermore, a nontrivial example is presented to support the obtained results.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"31 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
International airports are responding to the threat of climate change and various man-made hazards by proposing impact protection measures. Airport managers and risk controllers should develop a comprehensive risk assessment model to measure the mutual influence relationships of resilience factors. In this paper, the problem of treating resilience factors as independent ones in previous studies is overcome. In this study, we not only develop a framework for assessing resilience factors in international airports based on an aviation safety perspective, but also develop the Fermatean fuzzy decision-making trial and evaluation laboratory (FF-DEMATEL) to identify the mutual influence relationships of resilience factors. Fermatean fuzzy sets are incorporated in DEMATEL to reflect information incompleteness and uncertainty. The critical resilience factors of international airports were identified through real-case analysis. In terms of importance, the results show that rescue capability is a core capability that is important for airport resilience. In addition, “security management system (SeMS) integrity”, “education and training of ground staff on airport safety awareness”, “first aid mechanism for the injured”, and “adequate maintenance equipment for rapid restoration tasks” are identified as key factors that are given more weights. On the other hand, in terms of influence strength, the detection capability has the highest total influence and significantly influenced the other resilience capabilities. Finally, the influential network relation map (INRM) is utilized to assist decisionmakers in swiftly comprehending the impact of factors and formulating viable strategies to enhance airport resilience. This enables airport managers and risk controllers to make informed decisions and allocate resources efficiently.
{"title":"Exploring the Mutual Influence Relationships of International Airport Resilience Factors from the Perspective of Aviation Safety: Using Fermatean Fuzzy DEMATEL Approach","authors":"Hsiu-Chen Huang, Chun-Nen Huang, Huai-Wei Lo, Tyan-Muh Thai","doi":"10.3390/axioms12111009","DOIUrl":"https://doi.org/10.3390/axioms12111009","url":null,"abstract":"International airports are responding to the threat of climate change and various man-made hazards by proposing impact protection measures. Airport managers and risk controllers should develop a comprehensive risk assessment model to measure the mutual influence relationships of resilience factors. In this paper, the problem of treating resilience factors as independent ones in previous studies is overcome. In this study, we not only develop a framework for assessing resilience factors in international airports based on an aviation safety perspective, but also develop the Fermatean fuzzy decision-making trial and evaluation laboratory (FF-DEMATEL) to identify the mutual influence relationships of resilience factors. Fermatean fuzzy sets are incorporated in DEMATEL to reflect information incompleteness and uncertainty. The critical resilience factors of international airports were identified through real-case analysis. In terms of importance, the results show that rescue capability is a core capability that is important for airport resilience. In addition, “security management system (SeMS) integrity”, “education and training of ground staff on airport safety awareness”, “first aid mechanism for the injured”, and “adequate maintenance equipment for rapid restoration tasks” are identified as key factors that are given more weights. On the other hand, in terms of influence strength, the detection capability has the highest total influence and significantly influenced the other resilience capabilities. Finally, the influential network relation map (INRM) is utilized to assist decisionmakers in swiftly comprehending the impact of factors and formulating viable strategies to enhance airport resilience. This enables airport managers and risk controllers to make informed decisions and allocate resources efficiently.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"38 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135013206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we considered arbitrary linear summation methods of Fourier series specified by a set of continuous functions dependent on the real parameter and established their approximation properties. We obtained asymptotic formulas for the exact upper bounds of the deviations of operators generated by λ-methods of Fourier series summation from the functions of the classes CβψHα under certain restrictions on the functions ψ.
{"title":"Approximation of Functions of the Classes CβψHα by Linear Methods Summation of Their Fourier Series","authors":"Yurii Kharkevych, Inna Kal’chuk","doi":"10.3390/axioms12111010","DOIUrl":"https://doi.org/10.3390/axioms12111010","url":null,"abstract":"In this paper, we considered arbitrary linear summation methods of Fourier series specified by a set of continuous functions dependent on the real parameter and established their approximation properties. We obtained asymptotic formulas for the exact upper bounds of the deviations of operators generated by λ-methods of Fourier series summation from the functions of the classes CβψHα under certain restrictions on the functions ψ.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.
{"title":"Probabilistic Interval Ordering Prioritized Averaging Operator and Its Application in Bank Investment Decision Making","authors":"Chuanyang Ruan, Shicheng Gong, Xiangjing Chen","doi":"10.3390/axioms12111007","DOIUrl":"https://doi.org/10.3390/axioms12111007","url":null,"abstract":"Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136382225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hail S. Alrashdi, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Elmetwally M. Elabbasy
This paper presents an investigation into the qualitative behavior of solutions for a specific class of fourth-order half-linear neutral differential equations. The main objective of this study is to improve the relationship between the solution and its corresponding function. By developing improved relationships, a novel criterion is proposed to determine the oscillatory behavior of the studied equation. The exclusion of positive solutions is achieved through a comparative approach in which the examined equation is compared to second-order equations. Additionally, the significance of the obtained results is demonstrated by applying them to various illustrative examples.
{"title":"More Effective Conditions for Testing the Oscillatory Behavior of Solutions to a Class of Fourth-Order Functional Differential Equations","authors":"Hail S. Alrashdi, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Elmetwally M. Elabbasy","doi":"10.3390/axioms12111005","DOIUrl":"https://doi.org/10.3390/axioms12111005","url":null,"abstract":"This paper presents an investigation into the qualitative behavior of solutions for a specific class of fourth-order half-linear neutral differential equations. The main objective of this study is to improve the relationship between the solution and its corresponding function. By developing improved relationships, a novel criterion is proposed to determine the oscillatory behavior of the studied equation. The exclusion of positive solutions is achieved through a comparative approach in which the examined equation is compared to second-order equations. Additionally, the significance of the obtained results is demonstrated by applying them to various illustrative examples.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135166439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nonlinear coupled reaction–diffusion (NCRD) systems have played a crucial role in the emergence of spatiotemporal patterns across various scientific and engineering domains. The NCRD systems considered in this study encompass various models, such as linear, Gray–Scott, Brusselator, isothermal chemical, and Schnakenberg, with the aim of capturing the spatiotemporal patterns they generate. These models cover a diverse range of intricate spatiotemporal patterns found in nature, including spots, spot replication, stripes, hexagons, and more. A mixed-type modal discontinuous Galerkin approach is employed for solving one- and two-dimensional NCRD systems. This approach introduces a mathematical formulation to handle the occurrence of second-order derivatives in diffusion terms. For spatial discretization, hierarchical modal basis functions premised on orthogonal scaled Legendre polynomials are used. Moreover, a novel reaction term treatment is proposed for the NCRD systems, demonstrating an intrinsic feature of the new DG scheme and preventing erroneous solutions due to extremely nonlinear reaction terms. The proposed approach reduces the NCRD systems into a framework of ordinary differential equations in time, which are addressed by an explicit third-order TVD Runge–Kutta algorithm. The spatiotemporal patterns generated with the present approach are comparable to those found in the literature. This approach can readily be expanded to handle large multi-dimensional problems that appear as model equations in developed biological and chemical applications.
{"title":"On the Spatiotemporal Pattern Formation in Nonlinear Coupled Reaction–Diffusion Systems","authors":"Satyvir Singh, Ahmed Hussein Msmali","doi":"10.3390/axioms12111004","DOIUrl":"https://doi.org/10.3390/axioms12111004","url":null,"abstract":"Nonlinear coupled reaction–diffusion (NCRD) systems have played a crucial role in the emergence of spatiotemporal patterns across various scientific and engineering domains. The NCRD systems considered in this study encompass various models, such as linear, Gray–Scott, Brusselator, isothermal chemical, and Schnakenberg, with the aim of capturing the spatiotemporal patterns they generate. These models cover a diverse range of intricate spatiotemporal patterns found in nature, including spots, spot replication, stripes, hexagons, and more. A mixed-type modal discontinuous Galerkin approach is employed for solving one- and two-dimensional NCRD systems. This approach introduces a mathematical formulation to handle the occurrence of second-order derivatives in diffusion terms. For spatial discretization, hierarchical modal basis functions premised on orthogonal scaled Legendre polynomials are used. Moreover, a novel reaction term treatment is proposed for the NCRD systems, demonstrating an intrinsic feature of the new DG scheme and preventing erroneous solutions due to extremely nonlinear reaction terms. The proposed approach reduces the NCRD systems into a framework of ordinary differential equations in time, which are addressed by an explicit third-order TVD Runge–Kutta algorithm. The spatiotemporal patterns generated with the present approach are comparable to those found in the literature. This approach can readily be expanded to handle large multi-dimensional problems that appear as model equations in developed biological and chemical applications.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"1 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baodong Li, Jiafu Su, Boqiao Yuan, Lvcheng Li, Yihuan Zhao, Zhidan Qin, Li Qian
During the development process of complex products, selecting the best desirable alternative supplier is a challenge since an improperly selected alternative may cause losing capacity and increasing the cycle time and cost of development for a company. For this multiple-attribute decision-making problem of supplier selection, in this paper, a supplier selection problem in which the decision data are hesitant fuzzy information and the attribute weight is unknown in complex product development is investigated, and a supplier selection decision-making approach based on hesitant fuzzy information is proposed. Firstly, a bidirectional projection based on hesitant fuzzy information is established, and then the measurement equation for the degree of closeness is improved. Further, an attribute weight determination model which minimizes the projection total deviation for the hesitant fuzzy elements is constructed. By solving this model, scientific and reasonable attribute weights are provided. Subsequently, an illustrative example is employed to not only give the ranking result of alternative suppliers but also demonstrate the validity and feasibility of the developed approach. Meanwhile, sensitivity analysis and comparative analysis are put forward to illustrate the stability of the given final ranking result and the advantages and reliability of the constructed method. For alternative or strategy selection, this proposed approach can be used as a decision-making means when uncertainties are inherent.
{"title":"A Supplier Selection Decision-Making Approach for Complex Product Development Based on Hesitant Fuzzy Information","authors":"Baodong Li, Jiafu Su, Boqiao Yuan, Lvcheng Li, Yihuan Zhao, Zhidan Qin, Li Qian","doi":"10.3390/axioms12111006","DOIUrl":"https://doi.org/10.3390/axioms12111006","url":null,"abstract":"During the development process of complex products, selecting the best desirable alternative supplier is a challenge since an improperly selected alternative may cause losing capacity and increasing the cycle time and cost of development for a company. For this multiple-attribute decision-making problem of supplier selection, in this paper, a supplier selection problem in which the decision data are hesitant fuzzy information and the attribute weight is unknown in complex product development is investigated, and a supplier selection decision-making approach based on hesitant fuzzy information is proposed. Firstly, a bidirectional projection based on hesitant fuzzy information is established, and then the measurement equation for the degree of closeness is improved. Further, an attribute weight determination model which minimizes the projection total deviation for the hesitant fuzzy elements is constructed. By solving this model, scientific and reasonable attribute weights are provided. Subsequently, an illustrative example is employed to not only give the ranking result of alternative suppliers but also demonstrate the validity and feasibility of the developed approach. Meanwhile, sensitivity analysis and comparative analysis are put forward to illustrate the stability of the given final ranking result and the advantages and reliability of the constructed method. For alternative or strategy selection, this proposed approach can be used as a decision-making means when uncertainties are inherent.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"37 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135168417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wajid Ali, Tanzeela Shaheen, Hamza Toor, Tmader Alballa, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa
The Decision-Theoretic Rough Set model stands as a compelling advancement in the realm of rough sets, offering a broader scope of applicability. This approach, deeply rooted in Bayesian theory, contributes significantly to delineating regions of minimal risk. Within the Decision-Theoretic Rough Set paradigm, the universal set undergoes a tripartite division, where distinct regions emerge and losses are intelligently distributed through the utilization of membership functions. This research endeavors to present an enhanced and more encompassing iteration of the Decision-Theoretic Rough Set framework. Our work culminates in the creation of the Generalized Intuitionistic Decision-Theoretic Rough Set (GI-DTRS), a fusion that melds the principles of Decision-Theoretic Rough Sets and intuitionistic fuzzy sets. Notably, this synthesis bridges the gaps that exist within the conventional approach. The innovation lies in the incorporation of an error function tailored to the hesitancy grade inherent in intuitionistic fuzzy sets. This integration harmonizes seamlessly with the contours of the membership function. Furthermore, our methodology deviates from established norms by constructing similarity classes based on similarity measures, as opposed to relying on equivalence classes. This shift holds particular relevance in the context of aggregating information systems, effectively circumventing the challenges associated with the process. To demonstrate the practical efficacy of our proposed approach, we delve into a concrete experiment within the information technology domain. Through this empirical exploration, the real-world utility of our approach becomes vividly apparent. Additionally, a comprehensive comparative analysis is undertaken, juxtaposing our approach against existing techniques for aggregation and decision modeling. The culmination of our efforts is a well-rounded article, punctuated by the insights, recommendations, and future directions delineated by the authors.
{"title":"An Improved Intuitionistic Fuzzy Decision-Theoretic Rough Set Model and Its Application","authors":"Wajid Ali, Tanzeela Shaheen, Hamza Toor, Tmader Alballa, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa","doi":"10.3390/axioms12111003","DOIUrl":"https://doi.org/10.3390/axioms12111003","url":null,"abstract":"The Decision-Theoretic Rough Set model stands as a compelling advancement in the realm of rough sets, offering a broader scope of applicability. This approach, deeply rooted in Bayesian theory, contributes significantly to delineating regions of minimal risk. Within the Decision-Theoretic Rough Set paradigm, the universal set undergoes a tripartite division, where distinct regions emerge and losses are intelligently distributed through the utilization of membership functions. This research endeavors to present an enhanced and more encompassing iteration of the Decision-Theoretic Rough Set framework. Our work culminates in the creation of the Generalized Intuitionistic Decision-Theoretic Rough Set (GI-DTRS), a fusion that melds the principles of Decision-Theoretic Rough Sets and intuitionistic fuzzy sets. Notably, this synthesis bridges the gaps that exist within the conventional approach. The innovation lies in the incorporation of an error function tailored to the hesitancy grade inherent in intuitionistic fuzzy sets. This integration harmonizes seamlessly with the contours of the membership function. Furthermore, our methodology deviates from established norms by constructing similarity classes based on similarity measures, as opposed to relying on equivalence classes. This shift holds particular relevance in the context of aggregating information systems, effectively circumventing the challenges associated with the process. To demonstrate the practical efficacy of our proposed approach, we delve into a concrete experiment within the information technology domain. Through this empirical exploration, the real-world utility of our approach becomes vividly apparent. Additionally, a comprehensive comparative analysis is undertaken, juxtaposing our approach against existing techniques for aggregation and decision modeling. The culmination of our efforts is a well-rounded article, punctuated by the insights, recommendations, and future directions delineated by the authors.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"1 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}