Pub Date : 2024-09-01Epub Date: 2024-05-23DOI: 10.1080/00273171.2024.2354233
Kilian Hasselhorn, Charlotte Ottenstein, Thorsten Meiser, Tanja Lischetzke
Ambulatory assessment (AA) is becoming an increasingly popular research method in the fields of psychology and life science. Nevertheless, knowledge about the effects that design choices, such as questionnaire length (i.e., number of items per questionnaire), have on AA data quality is still surprisingly restricted. Additionally, response styles (RS), which threaten data quality, have hardly been analyzed in the context of AA. The aim of the current research was to experimentally manipulate questionnaire length and investigate the association between questionnaire length and RS in an AA study. We expected that the group with the longer (82-item) questionnaire would show greater reliance on RS relative to the substantive traits than the group with the shorter (33-item) questionnaire. Students (n = 284) received questionnaires three times a day for 14 days. We used a multigroup two-dimensional item response tree model in a multilevel structural equation modeling framework to estimate midpoint and extreme RS in our AA study. We found that the long questionnaire group showed a greater reliance on RS relative to trait-based processes than the short questionnaire group. Although further validation of our findings is necessary, we hope that researchers consider our findings when planning an AA study in the future.
在心理学和生命科学领域,非卧床评估(AA)正日益成为一种流行的研究方法。然而,有关问卷长度(即每份问卷的项目数)等设计选择对非卧床评估数据质量的影响的知识仍然非常有限。此外,威胁数据质量的应答方式(RS)也几乎没有在 AA 的背景下进行过分析。当前研究的目的是在一项 AA 研究中,通过实验操纵问卷长度,并调查问卷长度与 RS 之间的关联。我们预计,与问卷较短(33 个条目)的小组相比,问卷较长(82 个条目)的小组将表现出更多的对 RS 的依赖。学生(n = 284)在 14 天内每天接受三次问卷调查。在 AA 研究中,我们在多层次结构方程建模框架下使用了多组二维项目反应树模型来估计中点和极端 RS。我们发现,相对于基于特质的过程,长问卷组比短问卷组更依赖于 RS。尽管我们的研究结果还需要进一步验证,但我们希望研究人员今后在计划 AA 研究时能考虑到我们的研究结果。
{"title":"The Effects of Questionnaire Length on the Relative Impact of Response Styles in Ambulatory Assessment.","authors":"Kilian Hasselhorn, Charlotte Ottenstein, Thorsten Meiser, Tanja Lischetzke","doi":"10.1080/00273171.2024.2354233","DOIUrl":"10.1080/00273171.2024.2354233","url":null,"abstract":"<p><p>Ambulatory assessment (AA) is becoming an increasingly popular research method in the fields of psychology and life science. Nevertheless, knowledge about the effects that design choices, such as questionnaire length (i.e., number of items per questionnaire), have on AA data quality is still surprisingly restricted. Additionally, response styles (RS), which threaten data quality, have hardly been analyzed in the context of AA. The aim of the current research was to experimentally manipulate questionnaire length and investigate the association between questionnaire length and RS in an AA study. We expected that the group with the longer (82-item) questionnaire would show greater reliance on RS relative to the substantive traits than the group with the shorter (33-item) questionnaire. Students (<i>n</i> = 284) received questionnaires three times a day for 14 days. We used a multigroup two-dimensional item response tree model in a multilevel structural equation modeling framework to estimate midpoint and extreme RS in our AA study. We found that the long questionnaire group showed a greater reliance on RS relative to trait-based processes than the short questionnaire group. Although further validation of our findings is necessary, we hope that researchers consider our findings when planning an AA study in the future.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1043-1057"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-12DOI: 10.1080/00273171.2024.2372635
Emanuela Furfaro, Fushing Hsieh, Maureen R Weiss, Emilio Ferrer
We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.
{"title":"Using Conditional Entropy Networks of Ordinal Measures to Examine Changes in Self-Worth Among Adolescent Students in High School.","authors":"Emanuela Furfaro, Fushing Hsieh, Maureen R Weiss, Emilio Ferrer","doi":"10.1080/00273171.2024.2372635","DOIUrl":"10.1080/00273171.2024.2372635","url":null,"abstract":"<p><p>We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1077-1097"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-31DOI: 10.1080/00273171.2024.2347959
Young Won Cho, Sy-Miin Chow, Christina M Marini, Lynn M Martire
Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.
使用微分方程进行连续时间建模是一种很有前途的技术,可用于对纵向数据的变化过程进行建模。在拟合这种模型的方法中,潜在微分结构方程建模(LDSEM)方法在结构方程建模(SEM)框架内定义了潜在的衍生变量,从而使研究人员能够利用 SEM 框架的优势来建立模型、进行估计、推理和比较。但仍有一些问题尚未解决,包括 LDSEM 的多层次变化在较短时间长度(如 14 个时间点)下的表现,尤其是在涉及耦合多变量过程和时变协变量时。此外,使用贝叶斯估计法来促进具有复杂和高维随机效应结构的多层次 LDSEM(M-LDSEM)模型估计的可能性尚未得到研究。我们进行了一系列蒙特卡罗模拟,评估了拟合 M-LDSEM 的三种可能方法,包括:频数主义单水平和双水平稳健估计法以及贝叶斯双水平估计法。我们的研究结果表明,贝叶斯方法优于其他频数法。时变协变量的影响得到了很好的恢复,耦合参数的偏差最小,特别是使用贝叶斯估计器的高阶导数信息。最后,我们提供了一个实证例子来说明该方法的适用性。
{"title":"Multilevel Latent Differential Structural Equation Model with Short Time Series and Time-Varying Covariates: A Comparison of Frequentist and Bayesian Estimators.","authors":"Young Won Cho, Sy-Miin Chow, Christina M Marini, Lynn M Martire","doi":"10.1080/00273171.2024.2347959","DOIUrl":"10.1080/00273171.2024.2347959","url":null,"abstract":"<p><p>Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"934-956"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1080/00273171.2024.2385336
Øystein Sørensen
We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
我们介绍 R 软件包 galamm,它的目标是为结构方程建模和混合效应模型提供共同基础。它支持使用任意数量的交叉或嵌套随机效应、平滑样条、混合响应类型、因子结构、异方差残差和随机缺失数据对模型进行估计。使用稀疏矩阵方法和自动微分实现,确保了计算效率。在此,我们将简要介绍实现方法,概述软件包并举例说明其使用方法。
{"title":"Multilevel Semiparametric Latent Variable Modeling in R with \"galamm\".","authors":"Øystein Sørensen","doi":"10.1080/00273171.2024.2385336","DOIUrl":"10.1080/00273171.2024.2385336","url":null,"abstract":"<p><p>We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1098-1105"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-11DOI: 10.1080/00273171.2024.2345915
Nikola Sekulovski, Sara Keetelaar, Karoline Huth, Eric-Jan Wagenmakers, Riet van Bork, Don van den Bergh, Maarten Marsman
Network psychometrics uses graphical models to assess the network structure of psychological variables. An important task in their analysis is determining which variables are unrelated in the network, i.e., are independent given the rest of the network variables. This conditional independence structure is a gateway to understanding the causal structure underlying psychological processes. Thus, it is crucial to have an appropriate method for evaluating conditional independence and dependence hypotheses. Bayesian approaches to testing such hypotheses allow researchers to differentiate between absence of evidence and evidence of absence of connections (edges) between pairs of variables in a network. Three Bayesian approaches to assessing conditional independence have been proposed in the network psychometrics literature. We believe that their theoretical foundations are not widely known, and therefore we provide a conceptual review of the proposed methods and highlight their strengths and limitations through a simulation study. We also illustrate the methods using an empirical example with data on Dark Triad Personality. Finally, we provide recommendations on how to choose the optimal method and discuss the current gaps in the literature on this important topic.
{"title":"Testing Conditional Independence in Psychometric Networks: An Analysis of Three Bayesian Methods.","authors":"Nikola Sekulovski, Sara Keetelaar, Karoline Huth, Eric-Jan Wagenmakers, Riet van Bork, Don van den Bergh, Maarten Marsman","doi":"10.1080/00273171.2024.2345915","DOIUrl":"10.1080/00273171.2024.2345915","url":null,"abstract":"<p><p>Network psychometrics uses graphical models to assess the network structure of psychological variables. An important task in their analysis is determining which variables are unrelated in the network, i.e., are independent given the rest of the network variables. This conditional independence structure is a gateway to understanding the causal structure underlying psychological processes. Thus, it is crucial to have an appropriate method for evaluating conditional independence and dependence hypotheses. Bayesian approaches to testing such hypotheses allow researchers to differentiate between absence of evidence and evidence of absence of connections (edges) between pairs of variables in a network. Three Bayesian approaches to assessing conditional independence have been proposed in the network psychometrics literature. We believe that their theoretical foundations are not widely known, and therefore we provide a conceptual review of the proposed methods and highlight their strengths and limitations through a simulation study. We also illustrate the methods using an empirical example with data on Dark Triad Personality. Finally, we provide recommendations on how to choose the optimal method and discuss the current gaps in the literature on this important topic.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"913-933"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-23DOI: 10.1080/00273171.2024.2358233
Yonggang Lu, Qiujie Zheng, Kevin Henning
While Bayesian methodology is increasingly favored in behavioral research for its clear probabilistic inference and model structure, its widespread acceptance as a standard meta-analysis approach remains limited. Although some conventional Bayesian hierarchical models are frequently used for analysis, their performance has not been thoroughly examined. This study evaluates two commonly used Bayesian models for meta-analysis of standardized mean difference and identifies significant issues with these models. In response, we introduce a new Bayesian model equipped with novel features that address existing model concerns and a broader limitation of the current Bayesian meta-analysis. Furthermore, we introduce a simple computational approach to construct simultaneous credible intervals for the summary effect and between-study heterogeneity, based on their joint posterior samples. This fully captures the joint uncertainty in these parameters, a task that is challenging or impractical with frequentist models. Through simulation studies rooted in a joint Bayesian/frequentist paradigm, we compare our model's performance against existing ones under conditions that mirror realistic research scenarios. The results reveal that our new model outperforms others and shows enhanced statistical properties. We also demonstrate the practicality of our models using real-world examples, highlighting how our approach strengthens the robustness of inferences regarding the summary effect.
{"title":"An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals.","authors":"Yonggang Lu, Qiujie Zheng, Kevin Henning","doi":"10.1080/00273171.2024.2358233","DOIUrl":"10.1080/00273171.2024.2358233","url":null,"abstract":"<p><p>While Bayesian methodology is increasingly favored in behavioral research for its clear probabilistic inference and model structure, its widespread acceptance as a standard meta-analysis approach remains limited. Although some conventional Bayesian hierarchical models are frequently used for analysis, their performance has not been thoroughly examined. This study evaluates two commonly used Bayesian models for meta-analysis of standardized mean difference and identifies significant issues with these models. In response, we introduce a new Bayesian model equipped with novel features that address existing model concerns and a broader limitation of the current Bayesian meta-analysis. Furthermore, we introduce a simple computational approach to construct simultaneous credible intervals for the summary effect and between-study heterogeneity, based on their joint posterior samples. This fully captures the joint uncertainty in these parameters, a task that is challenging or impractical with frequentist models. Through simulation studies rooted in a joint Bayesian/frequentist paradigm, we compare our model's performance against existing ones under conditions that mirror realistic research scenarios. The results reveal that our new model outperforms others and shows enhanced statistical properties. We also demonstrate the practicality of our models using real-world examples, highlighting how our approach strengthens the robustness of inferences regarding the summary effect.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1058-1076"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-26DOI: 10.1080/00273171.2024.2354232
Ai Ye, Kenneth A Bollen
There has been an increasing call to model multivariate time series data with measurement error. The combination of latent factors with a vector autoregressive (VAR) model leads to the dynamic factor model (DFM), in which dynamic relations are derived within factor series, among factors and observed time series, or both. However, a few limitations exist in the current DFM representatives and estimation: (1) the dynamic component contains either directed or undirected contemporaneous relations, but not both, (2) selecting the optimal model in exploratory DFM is a challenge, (3) the consequences of structural misspecifications from model selection is barely studied. Our paper serves to advance DFM with a hybrid VAR representations and the utilization of LASSO regularization to select dynamic implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed method highlights the flexibility in modeling the directions of dynamic relations with a robust estimation. We aim to offer researchers guidance on model selection and estimation in person-centered dynamic assessments.
{"title":"Path and Direction Discovery in Individual Dynamic Factor Models: A Regularized Hybrid Unified Structural Equation Modeling with Latent Variable.","authors":"Ai Ye, Kenneth A Bollen","doi":"10.1080/00273171.2024.2354232","DOIUrl":"10.1080/00273171.2024.2354232","url":null,"abstract":"<p><p>There has been an increasing call to model multivariate time series data with measurement error. The combination of latent factors with a vector autoregressive (VAR) model leads to the dynamic factor model (DFM), in which dynamic relations are derived within factor series, among factors and observed time series, or both. However, a few limitations exist in the current DFM representatives and estimation: (1) the dynamic component contains either directed or undirected contemporaneous relations, but not both, (2) selecting the optimal model in exploratory DFM is a challenge, (3) the consequences of structural misspecifications from model selection is barely studied. Our paper serves to advance DFM with a hybrid VAR representations and the utilization of LASSO regularization to select dynamic implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed method highlights the flexibility in modeling the directions of dynamic relations with a robust estimation. We aim to offer researchers guidance on model selection and estimation in person-centered dynamic assessments.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1019-1042"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1080/00273171.2024.2354228
Wen Wei Loh, Dongning Ren, Stephen G West
Psychologists leverage longitudinal designs to examine the causal effects of a focal predictor (i.e., treatment or exposure) over time. But causal inference of naturally observed time-varying treatments is complicated by treatment-dependent confounding in which earlier treatments affect confounders of later treatments. In this tutorial article, we introduce psychologists to an established solution to this problem from the causal inference literature: the parametric g-computation formula. We explain why the g-formula is effective at handling treatment-dependent confounding. We demonstrate that the parametric g-formula is conceptually intuitive, easy to implement, and well-suited for psychological research. We first clarify that the parametric g-formula essentially utilizes a series of statistical models to estimate the joint distribution of all post-treatment variables. These statistical models can be readily specified as standard multiple linear regression functions. We leverage this insight to implement the parametric g-formula using lavaan, a widely adopted R package for structural equation modeling. Moreover, we describe how the parametric g-formula may be used to estimate a marginal structural model whose causal parameters parsimoniously encode time-varying treatment effects. We hope this accessible introduction to the parametric g-formula will equip psychologists with an analytic tool to address their causal inquiries using longitudinal data.
心理学家利用纵向设计来研究焦点预测因子(即治疗或暴露)随时间变化的因果效应。但是,对自然观察到的随时间变化的治疗进行因果推断时,会因治疗依赖性混杂而变得复杂,因为早期治疗会影响后期治疗的混杂因素。在这篇教程文章中,我们将向心理学家介绍因果推断文献中解决这一问题的成熟方案:参数 g 计算公式。我们将解释为什么 g 计算公式能有效处理与治疗相关的混杂因素。我们证明了参数 g 公式概念直观、易于实现,而且非常适合心理学研究。我们首先澄清,参数 g 公式本质上是利用一系列统计模型来估计所有治疗后变量的联合分布。这些统计模型可以很容易地指定为标准的多元线性回归函数。我们利用这一观点,使用被广泛采用的结构方程建模 R 软件包 lavaan 来实现参数 g 公式。此外,我们还介绍了如何使用参数 g 公式来估计一个边际结构模型,该模型的因果参数简洁地编码了时变处理效应。我们希望这篇关于参数 g 公式的浅显易懂的介绍能为心理学家提供一个分析工具,帮助他们利用纵向数据进行因果关系研究。
{"title":"Parametric g-formula for Testing Time-Varying Causal Effects: What It Is, Why It Matters, and How to Implement It in Lavaan.","authors":"Wen Wei Loh, Dongning Ren, Stephen G West","doi":"10.1080/00273171.2024.2354228","DOIUrl":"10.1080/00273171.2024.2354228","url":null,"abstract":"<p><p>Psychologists leverage longitudinal designs to examine the causal effects of a focal predictor (i.e., treatment or exposure) over time. But causal inference of naturally observed time-varying treatments is complicated by treatment-dependent confounding in which earlier treatments affect confounders of later treatments. In this tutorial article, we introduce psychologists to an established solution to this problem from the causal inference literature: the parametric g-computation formula. We explain why the g-formula is effective at handling treatment-dependent confounding. We demonstrate that the parametric g-formula is conceptually intuitive, easy to implement, and well-suited for psychological research. We first clarify that the parametric g-formula essentially utilizes a series of statistical models to estimate the joint distribution of all post-treatment variables. These statistical models can be readily specified as standard multiple linear regression functions. We leverage this insight to implement the parametric g-formula using lavaan, a widely adopted R package for structural equation modeling. Moreover, we describe how the parametric g-formula may be used to estimate a marginal structural model whose causal parameters parsimoniously encode time-varying treatment effects. We hope this accessible introduction to the parametric g-formula will equip psychologists with an analytic tool to address their causal inquiries using longitudinal data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"995-1018"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-04DOI: 10.1080/00273171.2024.2347960
Julian D Karch, Andres F Perez-Alonso, Wicher P Bergsma
When examining whether two continuous variables are associated, tests based on Pearson's, Kendall's, and Spearman's correlation coefficients are typically used. This paper explores modern nonparametric independence tests as an alternative, which, unlike traditional tests, have the ability to potentially detect any type of relationship. In addition to existing modern nonparametric independence tests, we developed and considered two novel variants of existing tests, most notably the Heller-Heller-Gorfine-Pearson (HHG-Pearson) test. We conducted a simulation study to compare traditional independence tests, such as Pearson's correlation, and the modern nonparametric independence tests in situations commonly encountered in psychological research. As expected, no test had the highest power across all relationships. However, the distance correlation and the HHG-Pearson tests were found to have substantially greater power than all traditional tests for many relationships and only slightly less power in the worst case. A similar pattern was found in favor of the HHG-Pearson test compared to the distance correlation test. However, given that distance correlation performed better for linear relationships and is more widely accepted, we suggest considering its use in place or additional to traditional methods when there is no prior knowledge of the relationship type, as is often the case in psychological research.
{"title":"Beyond Pearson's Correlation: Modern Nonparametric Independence Tests for Psychological Research.","authors":"Julian D Karch, Andres F Perez-Alonso, Wicher P Bergsma","doi":"10.1080/00273171.2024.2347960","DOIUrl":"10.1080/00273171.2024.2347960","url":null,"abstract":"<p><p>When examining whether two continuous variables are associated, tests based on Pearson's, Kendall's, and Spearman's correlation coefficients are typically used. This paper explores modern nonparametric independence tests as an alternative, which, unlike traditional tests, have the ability to potentially detect any type of relationship. In addition to existing modern nonparametric independence tests, we developed and considered two novel variants of existing tests, most notably the Heller-Heller-Gorfine-Pearson (HHG-Pearson) test. We conducted a simulation study to compare traditional independence tests, such as Pearson's correlation, and the modern nonparametric independence tests in situations commonly encountered in psychological research. As expected, no test had the highest power across all relationships. However, the distance correlation and the HHG-Pearson tests were found to have substantially greater power than all traditional tests for many relationships and only slightly less power in the worst case. A similar pattern was found in favor of the HHG-Pearson test compared to the distance correlation test. However, given that distance correlation performed better for linear relationships and is more widely accepted, we suggest considering its use in place or additional to traditional methods when there is no prior knowledge of the relationship type, as is often the case in psychological research.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"957-977"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-23DOI: 10.1080/00273171.2024.2350236
Yue Liu, Kit-Tai Hau, Hongyun Liu
Linear mixed-effects models have been increasingly used to analyze dependent data in psychological research. Despite their many advantages over ANOVA, critical issues in their analyses remain. Due to increasing random effects and model complexity, estimation computation is demanding, and convergence becomes challenging. Applied users need help choosing appropriate methods to estimate random effects. The present Monte Carlo simulation study investigated the impacts when the restricted maximum likelihood (REML) and Bayesian estimation models were misspecified in the estimation. We also compared the performance of Akaike information criterion (AIC) and deviance information criterion (DIC) in model selection. Results showed that models neglecting the existing random effects had inflated Type I errors, unacceptable coverage, and inaccurate R-squared measures of fixed and random effects variation. Furthermore, models with redundant random effects had convergence problems, lower statistical power, and inaccurate R-squared measures for Bayesian estimation. The convergence problem is more severe for REML, while reduced power and inaccurate R-squared measures were more severe for Bayesian estimation. Notably, DIC was better than AIC in identifying the true models (especially for models including person random intercept only), improving convergence rates, and providing more accurate effect size estimates, despite AIC having higher power than DIC with 10 items and the most complicated true model.
线性混合效应模型越来越多地被用于分析心理学研究中的因果数据。尽管与方差分析相比,线性混合效应模型有很多优点,但其分析中的关键问题依然存在。由于随机效应和模型复杂性的增加,估计计算的要求很高,收敛性也变得具有挑战性。应用者需要帮助选择适当的方法来估计随机效应。本蒙特卡罗模拟研究调查了估计过程中限制性最大似然法(REML)和贝叶斯估计模型被错误指定时的影响。我们还比较了 Akaike 信息准则(AIC)和偏差信息准则(DIC)在模型选择中的表现。结果表明,忽略现有随机效应的模型会导致 I 类误差增大、覆盖率不可接受、固定效应和随机效应变异的 R 平方测量不准确。此外,具有冗余随机效应的模型存在收敛问题,统计能力较低,贝叶斯估计的 R 平方测量不准确。REML 的收敛问题更为严重,而贝叶斯估计的统计量降低和 R 平方不准确的情况更为严重。值得注意的是,尽管在 10 个项目和最复杂的真实模型中,AIC 比 DIC 具有更高的功率,但 DIC 在识别真实模型(尤其是仅包括人的随机截距的模型)、提高收敛率和提供更准确的效应大小估计方面优于 AIC。
{"title":"Linear Mixed-Effects Models for Dependent Data: Power and Accuracy in Parameter Estimation.","authors":"Yue Liu, Kit-Tai Hau, Hongyun Liu","doi":"10.1080/00273171.2024.2350236","DOIUrl":"10.1080/00273171.2024.2350236","url":null,"abstract":"<p><p>Linear mixed-effects models have been increasingly used to analyze dependent data in psychological research. Despite their many advantages over ANOVA, critical issues in their analyses remain. Due to increasing random effects and model complexity, estimation computation is demanding, and convergence becomes challenging. Applied users need help choosing appropriate methods to estimate random effects. The present Monte Carlo simulation study investigated the impacts when the restricted maximum likelihood (REML) and Bayesian estimation models were misspecified in the estimation. We also compared the performance of Akaike information criterion (AIC) and deviance information criterion (DIC) in model selection. Results showed that models neglecting the existing random effects had inflated Type I errors, unacceptable coverage, and inaccurate <i>R</i>-squared measures of fixed and random effects variation. Furthermore, models with redundant random effects had convergence problems, lower statistical power, and inaccurate <i>R</i>-squared measures for Bayesian estimation. The convergence problem is more severe for REML, while reduced power and inaccurate <i>R</i>-squared measures were more severe for Bayesian estimation. Notably, DIC was better than AIC in identifying the true models (especially for models including person random intercept only), improving convergence rates, and providing more accurate effect size estimates, despite AIC having higher power than DIC with 10 items and the most complicated true model.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"978-994"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}