首页 > 最新文献

Multivariate Behavioral Research最新文献

英文 中文
A Review of Some of the History of Factorial Invariance and Differential Item Functioning. 因子不变性和差异项目功能的部分历史回顾。
IF 3.8 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-12 DOI: 10.1080/00273171.2024.2396148
David Thissen
The concept of factorial invariance has evolved since it originated in the 1930s as a criterion for the usefulness of the multiple factor model; it has become a form of analysis supporting the validity of inferences about group differences on underlying latent variables. The analysis of differential item functioning (DIF) arose in the literature of item response theory (IRT), where its original purpose was the detection and removal of test items that are differentially difficult for, or biased against, one subpopulation or another. The two traditions merge at the level of the underlying latent variable model, but their separate origins and different purposes have led them to differ in details of terminology and procedure. This review traces some aspects of the histories of the two traditions, ultimately drawing some conclusions about how analysts may draw on elements of both, and how the nature of the research question determines the procedures used. Whether statistical tests are grouped by parameter (as in studies of factorial invariance) or across parameters by variable (as in DIF analysis) depends on the context and is independent of the model, as are subtle aspects of the order of the tests. In any case in which DIF or partial invariance is a possibility, the invariant parameters, or anchor items in DIF analysis, are best selected in an interplay between the statistics and judgment about what is being measured.
因子不变量的概念起源于 20 世纪 30 年代,当时是衡量多因子模型是否有用的一个标准;如今,它已发展成为一种分析形式,支持对潜在变量的群体差异进行有效性推断。差异项目功能(DIF)分析产生于项目反应理论(IRT)的文献中,其最初目的是检测和去除对一个或另一个亚群有不同难度或偏见的测试项目。这两个传统在潜在变量模型的层面上是一致的,但它们各自的起源和不同的目的导致它们在术语和程序的细节上有所不同。本综述将追溯这两种传统的某些历史方面,最终得出一些结论,即分析人员如何借鉴这两种传统的要素,以及研究问题的性质如何决定所使用的程序。统计检验是按参数分组(如因子不变量研究)还是按变量跨参数分组(如 DIF 分析)取决于具体情况,与模型无关,检验顺序的微妙之处也是如此。在任何可能存在 DIF 或部分不变量的情况下,不变量参数或 DIF 分析中的锚项最好是在统计数据和对测量内容的判断之间进行选择。
{"title":"A Review of Some of the History of Factorial Invariance and Differential Item Functioning.","authors":"David Thissen","doi":"10.1080/00273171.2024.2396148","DOIUrl":"https://doi.org/10.1080/00273171.2024.2396148","url":null,"abstract":"The concept of factorial invariance has evolved since it originated in the 1930s as a criterion for the usefulness of the multiple factor model; it has become a form of analysis supporting the validity of inferences about group differences on underlying latent variables. The analysis of differential item functioning (DIF) arose in the literature of item response theory (IRT), where its original purpose was the detection and removal of test items that are differentially difficult for, or biased against, one subpopulation or another. The two traditions merge at the level of the underlying latent variable model, but their separate origins and different purposes have led them to differ in details of terminology and procedure. This review traces some aspects of the histories of the two traditions, ultimately drawing some conclusions about how analysts may draw on elements of both, and how the nature of the research question determines the procedures used. Whether statistical tests are grouped by parameter (as in studies of factorial invariance) or across parameters by variable (as in DIF analysis) depends on the context and is independent of the model, as are subtle aspects of the order of the tests. In any case in which DIF or partial invariance is a possibility, the invariant parameters, or anchor items in DIF analysis, are best selected in an interplay between the statistics and judgment about what is being measured.","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"4 1","pages":"1-25"},"PeriodicalIF":3.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining Sample Size Requirements in EFA Solutions: A Simple Empirical Proposal. 确定 EFA 解决方案中的样本量要求:一个简单的经验建议
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-05-08 DOI: 10.1080/00273171.2024.2342324
Urbano Lorenzo-Seva, Pere J Ferrando

In unrestricted or exploratory factor analysis (EFA), there is a wide range of recommendations about the size samples should be to attain correct and stable solutions. In general, however, these recommendations are either rules of thumb or based on simulation results. As it is hard to establish the extent to which a particular data set suits the conditions used in a simulation study, the advice produced by simulation studies is not direct enough to be of practical use. Instead of trying to provide general and complex recommendations, in this article, we propose to estimate the sample size that is needed to analyze a data set at hand. The estimation takes into account the specified EFA model. The proposal is based on an intensive simulation process in which the sample correlation matrix is used as a basis for generating data sets from a pseudo-population in which the parent correlation holds exactly, and the criterion for determining the size required is a threshold that quantifies the closeness between the pseudo-population and the sample reproduced correlation matrices. The simulation results suggest that the proposal works well and that the determinants identified agree with those in the literature.

在非限制性或探索性因子分析(EFA)中,有很多关于样本大小的建议,以获得正确稳定的解。但一般来说,这些建议要么是经验法则,要么是基于模拟结果。由于很难确定特定数据集在多大程度上符合模拟研究中使用的条件,因此模拟研究提出的建议不够直接,没有实际用途。本文建议估算分析手头数据集所需的样本量,而不是试图提供笼统而复杂的建议。估算时要考虑到指定的 EFA 模型。该建议基于一个密集的模拟过程,在此过程中,样本相关矩阵被用作从父相关性完全成立的伪群体中生成数据集的基础,而确定所需规模的标准是一个阈值,该阈值量化了伪群体与样本再现相关矩阵之间的接近程度。模拟结果表明,该建议运行良好,所确定的决定因素与文献中的决定因素一致。
{"title":"Determining Sample Size Requirements in EFA Solutions: A Simple Empirical Proposal.","authors":"Urbano Lorenzo-Seva, Pere J Ferrando","doi":"10.1080/00273171.2024.2342324","DOIUrl":"10.1080/00273171.2024.2342324","url":null,"abstract":"<p><p>In unrestricted or exploratory factor analysis (EFA), there is a wide range of recommendations about the size samples should be to attain correct and stable solutions. In general, however, these recommendations are either rules of thumb or based on simulation results. As it is hard to establish the extent to which a particular data set suits the conditions used in a simulation study, the advice produced by simulation studies is not direct enough to be of practical use. Instead of trying to provide general and complex recommendations, in this article, we propose to estimate the sample size that is needed to analyze a data set at hand. The estimation takes into account the specified EFA model. The proposal is based on an intensive simulation process in which the sample correlation matrix is used as a basis for generating data sets from a pseudo-population in which the parent correlation holds exactly, and the criterion for determining the size required is a threshold that quantifies the closeness between the pseudo-population and the sample reproduced correlation matrices. The simulation results suggest that the proposal works well and that the determinants identified agree with those in the literature.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"899-912"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Questionnaire Length on the Relative Impact of Response Styles in Ambulatory Assessment. 在非卧床评估中,问卷长度对回答方式相对影响的影响。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-05-23 DOI: 10.1080/00273171.2024.2354233
Kilian Hasselhorn, Charlotte Ottenstein, Thorsten Meiser, Tanja Lischetzke

Ambulatory assessment (AA) is becoming an increasingly popular research method in the fields of psychology and life science. Nevertheless, knowledge about the effects that design choices, such as questionnaire length (i.e., number of items per questionnaire), have on AA data quality is still surprisingly restricted. Additionally, response styles (RS), which threaten data quality, have hardly been analyzed in the context of AA. The aim of the current research was to experimentally manipulate questionnaire length and investigate the association between questionnaire length and RS in an AA study. We expected that the group with the longer (82-item) questionnaire would show greater reliance on RS relative to the substantive traits than the group with the shorter (33-item) questionnaire. Students (n = 284) received questionnaires three times a day for 14 days. We used a multigroup two-dimensional item response tree model in a multilevel structural equation modeling framework to estimate midpoint and extreme RS in our AA study. We found that the long questionnaire group showed a greater reliance on RS relative to trait-based processes than the short questionnaire group. Although further validation of our findings is necessary, we hope that researchers consider our findings when planning an AA study in the future.

在心理学和生命科学领域,非卧床评估(AA)正日益成为一种流行的研究方法。然而,有关问卷长度(即每份问卷的项目数)等设计选择对非卧床评估数据质量的影响的知识仍然非常有限。此外,威胁数据质量的应答方式(RS)也几乎没有在 AA 的背景下进行过分析。当前研究的目的是在一项 AA 研究中,通过实验操纵问卷长度,并调查问卷长度与 RS 之间的关联。我们预计,与问卷较短(33 个条目)的小组相比,问卷较长(82 个条目)的小组将表现出更多的对 RS 的依赖。学生(n = 284)在 14 天内每天接受三次问卷调查。在 AA 研究中,我们在多层次结构方程建模框架下使用了多组二维项目反应树模型来估计中点和极端 RS。我们发现,相对于基于特质的过程,长问卷组比短问卷组更依赖于 RS。尽管我们的研究结果还需要进一步验证,但我们希望研究人员今后在计划 AA 研究时能考虑到我们的研究结果。
{"title":"The Effects of Questionnaire Length on the Relative Impact of Response Styles in Ambulatory Assessment.","authors":"Kilian Hasselhorn, Charlotte Ottenstein, Thorsten Meiser, Tanja Lischetzke","doi":"10.1080/00273171.2024.2354233","DOIUrl":"10.1080/00273171.2024.2354233","url":null,"abstract":"<p><p>Ambulatory assessment (AA) is becoming an increasingly popular research method in the fields of psychology and life science. Nevertheless, knowledge about the effects that design choices, such as questionnaire length (i.e., number of items per questionnaire), have on AA data quality is still surprisingly restricted. Additionally, response styles (RS), which threaten data quality, have hardly been analyzed in the context of AA. The aim of the current research was to experimentally manipulate questionnaire length and investigate the association between questionnaire length and RS in an AA study. We expected that the group with the longer (82-item) questionnaire would show greater reliance on RS relative to the substantive traits than the group with the shorter (33-item) questionnaire. Students (<i>n</i> = 284) received questionnaires three times a day for 14 days. We used a multigroup two-dimensional item response tree model in a multilevel structural equation modeling framework to estimate midpoint and extreme RS in our AA study. We found that the long questionnaire group showed a greater reliance on RS relative to trait-based processes than the short questionnaire group. Although further validation of our findings is necessary, we hope that researchers consider our findings when planning an AA study in the future.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1043-1057"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Conditional Entropy Networks of Ordinal Measures to Examine Changes in Self-Worth Among Adolescent Students in High School. 使用条件熵网络正序计量法研究高中青少年学生自我价值的变化。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1080/00273171.2024.2372635
Emanuela Furfaro, Fushing Hsieh, Maureen R Weiss, Emilio Ferrer

We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.

我们采用了一种分析方法来进行序数测量,并用它来研究高中青少年学生样本中自我价值的结构及其随时间的变化。我们使用基于熵的测量方法来表示自我价值及其各个子域的变化,从而捕捉观察到的不确定性。然后,我们研究了高中一学期中四个时间点的熵的演变情况。我们的分析方法提供了关于自我各个维度的配置信息,以及这些维度之间与时间相关的变化和关联。我们用一个网络来描述自我价值随时间的变化。这种方法还能识别出表现出不同关联模式的青少年学生群体,从而强调了考虑数据异质性的必要性。
{"title":"Using Conditional Entropy Networks of Ordinal Measures to Examine Changes in Self-Worth Among Adolescent Students in High School.","authors":"Emanuela Furfaro, Fushing Hsieh, Maureen R Weiss, Emilio Ferrer","doi":"10.1080/00273171.2024.2372635","DOIUrl":"10.1080/00273171.2024.2372635","url":null,"abstract":"<p><p>We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1077-1097"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel Latent Differential Structural Equation Model with Short Time Series and Time-Varying Covariates: A Comparison of Frequentist and Bayesian Estimators. 具有短时间序列和时变变量的多层次潜差结构方程模型:Frequentist and Bayesian Estimators: A Comparison of Frequentist and Bayesian Estimators.
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-05-31 DOI: 10.1080/00273171.2024.2347959
Young Won Cho, Sy-Miin Chow, Christina M Marini, Lynn M Martire

Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.

使用微分方程进行连续时间建模是一种很有前途的技术,可用于对纵向数据的变化过程进行建模。在拟合这种模型的方法中,潜在微分结构方程建模(LDSEM)方法在结构方程建模(SEM)框架内定义了潜在的衍生变量,从而使研究人员能够利用 SEM 框架的优势来建立模型、进行估计、推理和比较。但仍有一些问题尚未解决,包括 LDSEM 的多层次变化在较短时间长度(如 14 个时间点)下的表现,尤其是在涉及耦合多变量过程和时变协变量时。此外,使用贝叶斯估计法来促进具有复杂和高维随机效应结构的多层次 LDSEM(M-LDSEM)模型估计的可能性尚未得到研究。我们进行了一系列蒙特卡罗模拟,评估了拟合 M-LDSEM 的三种可能方法,包括:频数主义单水平和双水平稳健估计法以及贝叶斯双水平估计法。我们的研究结果表明,贝叶斯方法优于其他频数法。时变协变量的影响得到了很好的恢复,耦合参数的偏差最小,特别是使用贝叶斯估计器的高阶导数信息。最后,我们提供了一个实证例子来说明该方法的适用性。
{"title":"Multilevel Latent Differential Structural Equation Model with Short Time Series and Time-Varying Covariates: A Comparison of Frequentist and Bayesian Estimators.","authors":"Young Won Cho, Sy-Miin Chow, Christina M Marini, Lynn M Martire","doi":"10.1080/00273171.2024.2347959","DOIUrl":"10.1080/00273171.2024.2347959","url":null,"abstract":"<p><p>Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"934-956"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel Semiparametric Latent Variable Modeling in R with "galamm". 利用 "galamm "在 R 中进行多层次半参数潜在变量建模。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-08-14 DOI: 10.1080/00273171.2024.2385336
Øystein Sørensen

We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.

我们介绍 R 软件包 galamm,它的目标是为结构方程建模和混合效应模型提供共同基础。它支持使用任意数量的交叉或嵌套随机效应、平滑样条、混合响应类型、因子结构、异方差残差和随机缺失数据对模型进行估计。使用稀疏矩阵方法和自动微分实现,确保了计算效率。在此,我们将简要介绍实现方法,概述软件包并举例说明其使用方法。
{"title":"Multilevel Semiparametric Latent Variable Modeling in R with \"galamm\".","authors":"Øystein Sørensen","doi":"10.1080/00273171.2024.2385336","DOIUrl":"10.1080/00273171.2024.2385336","url":null,"abstract":"<p><p>We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1098-1105"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing Conditional Independence in Psychometric Networks: An Analysis of Three Bayesian Methods. 测试心理测量网络中的条件独立性:对三种贝叶斯方法的分析。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-05-11 DOI: 10.1080/00273171.2024.2345915
Nikola Sekulovski, Sara Keetelaar, Karoline Huth, Eric-Jan Wagenmakers, Riet van Bork, Don van den Bergh, Maarten Marsman

Network psychometrics uses graphical models to assess the network structure of psychological variables. An important task in their analysis is determining which variables are unrelated in the network, i.e., are independent given the rest of the network variables. This conditional independence structure is a gateway to understanding the causal structure underlying psychological processes. Thus, it is crucial to have an appropriate method for evaluating conditional independence and dependence hypotheses. Bayesian approaches to testing such hypotheses allow researchers to differentiate between absence of evidence and evidence of absence of connections (edges) between pairs of variables in a network. Three Bayesian approaches to assessing conditional independence have been proposed in the network psychometrics literature. We believe that their theoretical foundations are not widely known, and therefore we provide a conceptual review of the proposed methods and highlight their strengths and limitations through a simulation study. We also illustrate the methods using an empirical example with data on Dark Triad Personality. Finally, we provide recommendations on how to choose the optimal method and discuss the current gaps in the literature on this important topic.

网络心理测量学使用图形模型来评估心理变量的网络结构。其分析的一项重要任务是确定哪些变量在网络中是不相关的,即与其他网络变量无关。这种有条件的独立结构是了解心理过程因果结构的入口。因此,采用适当的方法评估条件独立性和依赖性假设至关重要。检验此类假设的贝叶斯方法可以让研究人员区分网络中变量对之间缺乏联系(边)的证据和缺乏联系(边)的证据。网络心理计量学文献中提出了三种贝叶斯方法来评估条件独立性。我们认为这些方法的理论基础并不广为人知,因此我们对所提出的方法进行了概念性回顾,并通过模拟研究强调了这些方法的优势和局限性。我们还通过一个有关黑暗三合会人格数据的实证例子来说明这些方法。最后,我们就如何选择最佳方法提出了建议,并讨论了目前在这一重要课题上的文献空白。
{"title":"Testing Conditional Independence in Psychometric Networks: An Analysis of Three Bayesian Methods.","authors":"Nikola Sekulovski, Sara Keetelaar, Karoline Huth, Eric-Jan Wagenmakers, Riet van Bork, Don van den Bergh, Maarten Marsman","doi":"10.1080/00273171.2024.2345915","DOIUrl":"10.1080/00273171.2024.2345915","url":null,"abstract":"<p><p>Network psychometrics uses graphical models to assess the network structure of psychological variables. An important task in their analysis is determining which variables are unrelated in the network, i.e., are independent given the rest of the network variables. This conditional independence structure is a gateway to understanding the causal structure underlying psychological processes. Thus, it is crucial to have an appropriate method for evaluating conditional independence and dependence hypotheses. Bayesian approaches to testing such hypotheses allow researchers to differentiate between absence of evidence and evidence of absence of connections (edges) between pairs of variables in a network. Three Bayesian approaches to assessing conditional independence have been proposed in the network psychometrics literature. We believe that their theoretical foundations are not widely known, and therefore we provide a conceptual review of the proposed methods and highlight their strengths and limitations through a simulation study. We also illustrate the methods using an empirical example with data on Dark Triad Personality. Finally, we provide recommendations on how to choose the optimal method and discuss the current gaps in the literature on this important topic.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"913-933"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals. 用于标准化均值差及其同时可信区间元分析的精确贝叶斯模型。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-07-23 DOI: 10.1080/00273171.2024.2358233
Yonggang Lu, Qiujie Zheng, Kevin Henning

While Bayesian methodology is increasingly favored in behavioral research for its clear probabilistic inference and model structure, its widespread acceptance as a standard meta-analysis approach remains limited. Although some conventional Bayesian hierarchical models are frequently used for analysis, their performance has not been thoroughly examined. This study evaluates two commonly used Bayesian models for meta-analysis of standardized mean difference and identifies significant issues with these models. In response, we introduce a new Bayesian model equipped with novel features that address existing model concerns and a broader limitation of the current Bayesian meta-analysis. Furthermore, we introduce a simple computational approach to construct simultaneous credible intervals for the summary effect and between-study heterogeneity, based on their joint posterior samples. This fully captures the joint uncertainty in these parameters, a task that is challenging or impractical with frequentist models. Through simulation studies rooted in a joint Bayesian/frequentist paradigm, we compare our model's performance against existing ones under conditions that mirror realistic research scenarios. The results reveal that our new model outperforms others and shows enhanced statistical properties. We also demonstrate the practicality of our models using real-world examples, highlighting how our approach strengthens the robustness of inferences regarding the summary effect.

尽管贝叶斯方法因其明确的概率推断和模型结构而在行为学研究中日益受到青睐,但作为一种标准的荟萃分析方法,其被广泛接受的程度仍然有限。虽然一些传统的贝叶斯分层模型经常被用于分析,但它们的性能尚未得到深入研究。本研究评估了两种常用的用于标准化均值差异元分析的贝叶斯模型,发现了这些模型存在的重大问题。为此,我们引入了一种新的贝叶斯模型,该模型具有新颖的特点,可解决现有模型存在的问题以及当前贝叶斯荟萃分析存在的更广泛的局限性。此外,我们还引入了一种简单的计算方法,根据汇总效应和研究间异质性的联合后验样本,同时构建它们的可信区间。这充分体现了这些参数的共同不确定性,而频繁主义模型的这一任务具有挑战性或不切实际。通过基于贝叶斯/频数模型联合范式的模拟研究,我们比较了我们的模型与现有模型在反映现实研究场景条件下的性能。结果表明,我们的新模型优于其他模型,并显示出更强的统计特性。我们还利用现实世界的例子证明了我们的模型的实用性,强调了我们的方法如何加强了有关总结效应推断的稳健性。
{"title":"An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals.","authors":"Yonggang Lu, Qiujie Zheng, Kevin Henning","doi":"10.1080/00273171.2024.2358233","DOIUrl":"10.1080/00273171.2024.2358233","url":null,"abstract":"<p><p>While Bayesian methodology is increasingly favored in behavioral research for its clear probabilistic inference and model structure, its widespread acceptance as a standard meta-analysis approach remains limited. Although some conventional Bayesian hierarchical models are frequently used for analysis, their performance has not been thoroughly examined. This study evaluates two commonly used Bayesian models for meta-analysis of standardized mean difference and identifies significant issues with these models. In response, we introduce a new Bayesian model equipped with novel features that address existing model concerns and a broader limitation of the current Bayesian meta-analysis. Furthermore, we introduce a simple computational approach to construct simultaneous credible intervals for the summary effect and between-study heterogeneity, based on their joint posterior samples. This fully captures the joint uncertainty in these parameters, a task that is challenging or impractical with frequentist models. Through simulation studies rooted in a joint Bayesian/frequentist paradigm, we compare our model's performance against existing ones under conditions that mirror realistic research scenarios. The results reveal that our new model outperforms others and shows enhanced statistical properties. We also demonstrate the practicality of our models using real-world examples, highlighting how our approach strengthens the robustness of inferences regarding the summary effect.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1058-1076"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path and Direction Discovery in Individual Dynamic Factor Models: A Regularized Hybrid Unified Structural Equation Modeling with Latent Variable. 个体动态因素模型中的路径和方向发现:具有潜在变量的正则化混合统一结构方程模型》(A Regularized Hybrid Unified Structural Equation Modeling with Latent Variable.
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-07-26 DOI: 10.1080/00273171.2024.2354232
Ai Ye, Kenneth A Bollen

There has been an increasing call to model multivariate time series data with measurement error. The combination of latent factors with a vector autoregressive (VAR) model leads to the dynamic factor model (DFM), in which dynamic relations are derived within factor series, among factors and observed time series, or both. However, a few limitations exist in the current DFM representatives and estimation: (1) the dynamic component contains either directed or undirected contemporaneous relations, but not both, (2) selecting the optimal model in exploratory DFM is a challenge, (3) the consequences of structural misspecifications from model selection is barely studied. Our paper serves to advance DFM with a hybrid VAR representations and the utilization of LASSO regularization to select dynamic implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed method highlights the flexibility in modeling the directions of dynamic relations with a robust estimation. We aim to offer researchers guidance on model selection and estimation in person-centered dynamic assessments.

对具有测量误差的多变量时间序列数据建模的呼声越来越高。将潜在因子与向量自回归(VAR)模型相结合,就产生了动态因子模型(DFM),在该模型中,因子序列内部、因子与观测时间序列之间或两者之间都存在动态关系。然而,目前的 DFM 代表和估计存在一些局限性:(1) 动态部分包含有向或无向的同期关系,但不能同时包含这两种关系;(2) 在探索性 DFM 中选择最优模型是一个挑战;(3) 几乎没有研究过模型选择中的结构性错误规范的后果。本文通过混合 VAR 表示法和利用 LASSO 正则化选择动态隐含工具变量、两阶段最小二乘法(MIIV-2SLS)估计来推进 DFM。我们提出的方法通过稳健的估算突出了动态关系建模方向的灵活性。我们旨在为研究人员在以人为中心的动态评估中的模型选择和估计提供指导。
{"title":"Path and Direction Discovery in Individual Dynamic Factor Models: A Regularized Hybrid Unified Structural Equation Modeling with Latent Variable.","authors":"Ai Ye, Kenneth A Bollen","doi":"10.1080/00273171.2024.2354232","DOIUrl":"10.1080/00273171.2024.2354232","url":null,"abstract":"<p><p>There has been an increasing call to model multivariate time series data with measurement error. The combination of latent factors with a vector autoregressive (VAR) model leads to the dynamic factor model (DFM), in which dynamic relations are derived within factor series, among factors and observed time series, or both. However, a few limitations exist in the current DFM representatives and estimation: (1) the dynamic component contains either directed or undirected contemporaneous relations, but not both, (2) selecting the optimal model in exploratory DFM is a challenge, (3) the consequences of structural misspecifications from model selection is barely studied. Our paper serves to advance DFM with a hybrid VAR representations and the utilization of LASSO regularization to select dynamic implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed method highlights the flexibility in modeling the directions of dynamic relations with a robust estimation. We aim to offer researchers guidance on model selection and estimation in person-centered dynamic assessments.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1019-1042"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric g-formula for Testing Time-Varying Causal Effects: What It Is, Why It Matters, and How to Implement It in Lavaan. 用于测试时变因果效应的参数 g 公式:它是什么,为什么重要,以及如何在 Lavaan 中实施。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.1080/00273171.2024.2354228
Wen Wei Loh, Dongning Ren, Stephen G West

Psychologists leverage longitudinal designs to examine the causal effects of a focal predictor (i.e., treatment or exposure) over time. But causal inference of naturally observed time-varying treatments is complicated by treatment-dependent confounding in which earlier treatments affect confounders of later treatments. In this tutorial article, we introduce psychologists to an established solution to this problem from the causal inference literature: the parametric g-computation formula. We explain why the g-formula is effective at handling treatment-dependent confounding. We demonstrate that the parametric g-formula is conceptually intuitive, easy to implement, and well-suited for psychological research. We first clarify that the parametric g-formula essentially utilizes a series of statistical models to estimate the joint distribution of all post-treatment variables. These statistical models can be readily specified as standard multiple linear regression functions. We leverage this insight to implement the parametric g-formula using lavaan, a widely adopted R package for structural equation modeling. Moreover, we describe how the parametric g-formula may be used to estimate a marginal structural model whose causal parameters parsimoniously encode time-varying treatment effects. We hope this accessible introduction to the parametric g-formula will equip psychologists with an analytic tool to address their causal inquiries using longitudinal data.

心理学家利用纵向设计来研究焦点预测因子(即治疗或暴露)随时间变化的因果效应。但是,对自然观察到的随时间变化的治疗进行因果推断时,会因治疗依赖性混杂而变得复杂,因为早期治疗会影响后期治疗的混杂因素。在这篇教程文章中,我们将向心理学家介绍因果推断文献中解决这一问题的成熟方案:参数 g 计算公式。我们将解释为什么 g 计算公式能有效处理与治疗相关的混杂因素。我们证明了参数 g 公式概念直观、易于实现,而且非常适合心理学研究。我们首先澄清,参数 g 公式本质上是利用一系列统计模型来估计所有治疗后变量的联合分布。这些统计模型可以很容易地指定为标准的多元线性回归函数。我们利用这一观点,使用被广泛采用的结构方程建模 R 软件包 lavaan 来实现参数 g 公式。此外,我们还介绍了如何使用参数 g 公式来估计一个边际结构模型,该模型的因果参数简洁地编码了时变处理效应。我们希望这篇关于参数 g 公式的浅显易懂的介绍能为心理学家提供一个分析工具,帮助他们利用纵向数据进行因果关系研究。
{"title":"Parametric g-formula for Testing Time-Varying Causal Effects: What It Is, Why It Matters, and How to Implement It in Lavaan.","authors":"Wen Wei Loh, Dongning Ren, Stephen G West","doi":"10.1080/00273171.2024.2354228","DOIUrl":"10.1080/00273171.2024.2354228","url":null,"abstract":"<p><p>Psychologists leverage longitudinal designs to examine the causal effects of a focal predictor (i.e., treatment or exposure) over time. But causal inference of naturally observed time-varying treatments is complicated by treatment-dependent confounding in which earlier treatments affect confounders of later treatments. In this tutorial article, we introduce psychologists to an established solution to this problem from the causal inference literature: the parametric g-computation formula. We explain why the g-formula is effective at handling treatment-dependent confounding. We demonstrate that the parametric g-formula is conceptually intuitive, easy to implement, and well-suited for psychological research. We first clarify that the parametric g-formula essentially utilizes a series of statistical models to estimate the joint distribution of all post-treatment variables. These statistical models can be readily specified as standard multiple linear regression functions. We leverage this insight to implement the parametric g-formula using lavaan, a widely adopted R package for structural equation modeling. Moreover, we describe how the parametric g-formula may be used to estimate a marginal structural model whose causal parameters parsimoniously encode time-varying treatment effects. We hope this accessible introduction to the parametric g-formula will equip psychologists with an analytic tool to address their causal inquiries using longitudinal data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"995-1018"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Multivariate Behavioral Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1