The dispersal of primitive elephantines and monodactyl equids in Eurasia has long been regarded as representative of a substantial turnover in mammal faunas, denoting the spread of open environments linked to the onset of cold and dry conditions in the Northern Hemisphere. During the 1980s, this event was named the “Elephant-Equus event” and it was correlated with the Gauss-Matuyama reversal, today corresponding to the Pliocene-Pleistocene transition and the beginning of the Quaternary, dated at ~2.6 Ma. Therefore, the Elephant-Equus event became a concept of prominent biochronological and paleoecological significance, especially in western Europe. Yet, uncertainties surrounding the taxonomy and chronology of early “elephant” and “Equus”, as well as conceptual differences in adopting (or understanding) the Elephant-Equus event as an intercontinental dispersal event or as a stratigraphic datum, engendered ambiguity and debate. Here, we provide a succinct review of the Elephant-Equus event, considering separately the available evidence on the “elephant” and the “Equus”. Elephantines dispersed out of Africa during the Pliocene (Piacenzian). Their earliest calibrated occurrences from eastern Europe date at ~3.2 Ma and they are usually referred to Mammuthus rumanus, although the allocation of several samples to this species is tentative. Available dating constraints for other localities do not resolve whether the dispersal of Mammuthus was synchronous across Eurasia, but this possibility cannot be ruled out. The spread of Mammuthus was part of an intercontinental faunal exchange between Africa and Eurasia that occurred during the Piacenzian, but in this scenario, Mammuthus is quite unique in being the only genus of African origin dispersing to western Eurasia. The arrival of monodactyl equids from North America coincides with the Pliocene-Pleistocene transition, with several occurrences dated or calibrated at ~2.6 Ma and no compelling evidence prior to this age. In Europe, early monodactyl equids are often aligned to Equus livenzovensis, but the material from the type locality of this species is chronologically time-averaged and taxonomically heterogeneous, and western European samples are seldom abundant or informative. Regardless, this does not diminish the biochronological significance of the “Equus event”. Indeed, while the term “Elephant-Equus event” should no longer be used, as the appearance of elephantines in the European fossil record markedly precedes that of monodactyl equids, we endorse the use of the “Equus event” as a valid alternative to refer to the intercontinental dispersal event that characterizes the middle Villafranchian faunal turnover, epitomized by but not limited to monodactyl equids.
{"title":"What Does the “Elephant-Equus” Event Mean Today? Reflections on Mammal Dispersal Events around the Pliocene-Pleistocene Boundary and the Flexible Ambiguity of Biochronology","authors":"A. Iannucci, R. Sardella","doi":"10.3390/quat6010016","DOIUrl":"https://doi.org/10.3390/quat6010016","url":null,"abstract":"The dispersal of primitive elephantines and monodactyl equids in Eurasia has long been regarded as representative of a substantial turnover in mammal faunas, denoting the spread of open environments linked to the onset of cold and dry conditions in the Northern Hemisphere. During the 1980s, this event was named the “Elephant-Equus event” and it was correlated with the Gauss-Matuyama reversal, today corresponding to the Pliocene-Pleistocene transition and the beginning of the Quaternary, dated at ~2.6 Ma. Therefore, the Elephant-Equus event became a concept of prominent biochronological and paleoecological significance, especially in western Europe. Yet, uncertainties surrounding the taxonomy and chronology of early “elephant” and “Equus”, as well as conceptual differences in adopting (or understanding) the Elephant-Equus event as an intercontinental dispersal event or as a stratigraphic datum, engendered ambiguity and debate. Here, we provide a succinct review of the Elephant-Equus event, considering separately the available evidence on the “elephant” and the “Equus”. Elephantines dispersed out of Africa during the Pliocene (Piacenzian). Their earliest calibrated occurrences from eastern Europe date at ~3.2 Ma and they are usually referred to Mammuthus rumanus, although the allocation of several samples to this species is tentative. Available dating constraints for other localities do not resolve whether the dispersal of Mammuthus was synchronous across Eurasia, but this possibility cannot be ruled out. The spread of Mammuthus was part of an intercontinental faunal exchange between Africa and Eurasia that occurred during the Piacenzian, but in this scenario, Mammuthus is quite unique in being the only genus of African origin dispersing to western Eurasia. The arrival of monodactyl equids from North America coincides with the Pliocene-Pleistocene transition, with several occurrences dated or calibrated at ~2.6 Ma and no compelling evidence prior to this age. In Europe, early monodactyl equids are often aligned to Equus livenzovensis, but the material from the type locality of this species is chronologically time-averaged and taxonomically heterogeneous, and western European samples are seldom abundant or informative. Regardless, this does not diminish the biochronological significance of the “Equus event”. Indeed, while the term “Elephant-Equus event” should no longer be used, as the appearance of elephantines in the European fossil record markedly precedes that of monodactyl equids, we endorse the use of the “Equus event” as a valid alternative to refer to the intercontinental dispersal event that characterizes the middle Villafranchian faunal turnover, epitomized by but not limited to monodactyl equids.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46697769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pollen and sediment data from a 10.5 m-deep alluvial exposure and a secondary tributary exposure at Upper Arroyo, a seasonal river, in Saltillo, Mexico, were examined with the aim of reconstructing the vegetation and environmental history during the Holocene as a whole. The role of climate change in Chihuahuan Desert flora development after 8800 BP was assessed, in addition to more local physiographic factors, such as erosion and accumulation, soil development and denudation, and hydrological entrenchment. Climate change appeared to have been a principal agent of vegetation change in the Early and Middle Holocene, with a periodic expansion of desert vegetation. A reduction in the environmental carrying capacities for mesophytic flora according to physiographic factors, such as soil erosion and channel entrenchment, was then identified after 2300 BP, also promoting azonal ecological niches for xerophytic vegetation in southern Coahuila, Mexico, that persist despite modern variations in precipitation.
{"title":"Chihuahuan Desert Vegetation Development during the Past 10,000 Years According to Pollen and Sediment Data at Upper Arroyo, Saltillo, Mexico","authors":"B. Albert","doi":"10.3390/quat6010015","DOIUrl":"https://doi.org/10.3390/quat6010015","url":null,"abstract":"Pollen and sediment data from a 10.5 m-deep alluvial exposure and a secondary tributary exposure at Upper Arroyo, a seasonal river, in Saltillo, Mexico, were examined with the aim of reconstructing the vegetation and environmental history during the Holocene as a whole. The role of climate change in Chihuahuan Desert flora development after 8800 BP was assessed, in addition to more local physiographic factors, such as erosion and accumulation, soil development and denudation, and hydrological entrenchment. Climate change appeared to have been a principal agent of vegetation change in the Early and Middle Holocene, with a periodic expansion of desert vegetation. A reduction in the environmental carrying capacities for mesophytic flora according to physiographic factors, such as soil erosion and channel entrenchment, was then identified after 2300 BP, also promoting azonal ecological niches for xerophytic vegetation in southern Coahuila, Mexico, that persist despite modern variations in precipitation.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42743318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a timeseries of flood and slumping phases in central Europe for the past 65,000 years from event layers in sediment cores from infilled Eifel maar basins (Germany). Palynological, petrographic and organic carbon (chlorins) records are used to understand the precise timing of these events. Periods of increased flood activity seem to coincide with Heinrich stadials in marine sediment records, which are associated with cold and more arid climate conditions, indicating a vegetation response within the maars’ catchment areas. This multi-proxy correlation reveals prominent slumps at different maar sites during Greenland Stadial (GS) 12. The stratigraphy is based on sediment records from the Auel infilled maar and we thus call this event Auel Cold Event (ACE). Frozen and fractured sediment packages within the slump suggest deep frost or permafrost conditions for the region during the stadial. The results agree well with sediment archives and archeological sites across Europe that report severely cold and arid conditions for the stadial. This supports the assumption that GS12 was indeed one of the coldest periods of the last glacial cycle rather than the Heinrich stadials. Based on our age model, the ACE occurred at 43,500 yr b2k (years before the year 2000), which coincides with the initial weakening of Earth’s magnetic field strength prior to the Laschamp geomagnetic excursion.
{"title":"Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments","authors":"Johannes Albert, F. Sirocko","doi":"10.3390/quat6010014","DOIUrl":"https://doi.org/10.3390/quat6010014","url":null,"abstract":"We present a timeseries of flood and slumping phases in central Europe for the past 65,000 years from event layers in sediment cores from infilled Eifel maar basins (Germany). Palynological, petrographic and organic carbon (chlorins) records are used to understand the precise timing of these events. Periods of increased flood activity seem to coincide with Heinrich stadials in marine sediment records, which are associated with cold and more arid climate conditions, indicating a vegetation response within the maars’ catchment areas. This multi-proxy correlation reveals prominent slumps at different maar sites during Greenland Stadial (GS) 12. The stratigraphy is based on sediment records from the Auel infilled maar and we thus call this event Auel Cold Event (ACE). Frozen and fractured sediment packages within the slump suggest deep frost or permafrost conditions for the region during the stadial. The results agree well with sediment archives and archeological sites across Europe that report severely cold and arid conditions for the stadial. This supports the assumption that GS12 was indeed one of the coldest periods of the last glacial cycle rather than the Heinrich stadials. Based on our age model, the ACE occurred at 43,500 yr b2k (years before the year 2000), which coincides with the initial weakening of Earth’s magnetic field strength prior to the Laschamp geomagnetic excursion.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48575662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global ecosystem services that are essential to sustaining life on the planet have been disrupted by different anthropogenic activities. This study’s objective is to examine how ecosystem services vary with changes in land use and land cover (LULC) across 29 years at the Matenchose watershed. Landsat images for 1991 (TM), 2003 (ETM+), and 2020 (OLI-8) were used for the categorization of LULC. To evaluate the changes in ecosystems service valuations (ESVs) as a result of LULC changes in combination with ArcGIS, the value transfer valuation approach was utilized. Farmlands, towns, and bare land exhibited growing trends among the five major LULC classes, but forest and grassland showed declining trends. From 1991 to 2020, ESVs decreased by a total of US $157.24 million due to the LULC modifications. In terms of ESV functions, provisional services (US $89.23 million) and cultural services (US $69.36 million) made up the majority of the loss of ESV. Overall, the reduction of ESV showed the environment is degrading because of existing LULC changes, this calls for immediate sustainable land management intervention by responsible actors. To attain sustainable development goals regarding food and life on the land, it is imperative to reverse the loss of ecosystem services.
{"title":"Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia","authors":"M. Mathewos, Alemu O. Aga","doi":"10.3390/quat6010013","DOIUrl":"https://doi.org/10.3390/quat6010013","url":null,"abstract":"The global ecosystem services that are essential to sustaining life on the planet have been disrupted by different anthropogenic activities. This study’s objective is to examine how ecosystem services vary with changes in land use and land cover (LULC) across 29 years at the Matenchose watershed. Landsat images for 1991 (TM), 2003 (ETM+), and 2020 (OLI-8) were used for the categorization of LULC. To evaluate the changes in ecosystems service valuations (ESVs) as a result of LULC changes in combination with ArcGIS, the value transfer valuation approach was utilized. Farmlands, towns, and bare land exhibited growing trends among the five major LULC classes, but forest and grassland showed declining trends. From 1991 to 2020, ESVs decreased by a total of US $157.24 million due to the LULC modifications. In terms of ESV functions, provisional services (US $89.23 million) and cultural services (US $69.36 million) made up the majority of the loss of ESV. Overall, the reduction of ESV showed the environment is degrading because of existing LULC changes, this calls for immediate sustainable land management intervention by responsible actors. To attain sustainable development goals regarding food and life on the land, it is imperative to reverse the loss of ecosystem services.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44837260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A dendrochronological investigation was undertaken on subfossil Scots pine (Pinus sylvestris L.) stumps following their discovery during conservation management at Wem Moss, a small (28 ha) former raised mire in Shropshire, UK. Two ring-width chronologies were constructed from 14 of the 17 trees sampled spanning 198 and 208 years, respectively. Whilst dendrochronological dating was not possible, radiocarbon assays provided an estimated age for this mire-rooting woodland of between 3015 and 2505 years cal. BCE, coinciding with the age traditionally associated with the widespread mortality of pine trees throughout much of the UK and Ireland, often referred to as the Pine Decline (ca. 4000 radiocarbon years BP). Placed in a wider geographical context, the Wem Moss pines are located within the lowland Meres and Mosses region, where previous studies on subfossil pine have demonstrated protracted declines in mire-rooting trees. These have included tree mortality significantly post-dating the Pine Decline, especially at larger peatland sites that exceed 5 km2. Such macrofossil evidence for the presence of Scots pine into the late Holocene is supported by continuous Pinus pollen representation at peatland sites in the Welsh Marches (English–Welsh border), suggesting the possible survival of native Scots pine trees in this area up to the present day. The investigation of Wem Moss bog pines and their wider geographical context highlights the incomplete and patchy nature of palaeo-vegetational records and also the need for future genetic research on living Scots pine in possible refugial areas in Britain and Ireland.
{"title":"‘Pine Decline or pine declines?’ Analysis and Interpretation of Bog-Pines from Wem Moss, Shropshire, UK","authors":"J. Lageard","doi":"10.3390/quat6010012","DOIUrl":"https://doi.org/10.3390/quat6010012","url":null,"abstract":"A dendrochronological investigation was undertaken on subfossil Scots pine (Pinus sylvestris L.) stumps following their discovery during conservation management at Wem Moss, a small (28 ha) former raised mire in Shropshire, UK. Two ring-width chronologies were constructed from 14 of the 17 trees sampled spanning 198 and 208 years, respectively. Whilst dendrochronological dating was not possible, radiocarbon assays provided an estimated age for this mire-rooting woodland of between 3015 and 2505 years cal. BCE, coinciding with the age traditionally associated with the widespread mortality of pine trees throughout much of the UK and Ireland, often referred to as the Pine Decline (ca. 4000 radiocarbon years BP). Placed in a wider geographical context, the Wem Moss pines are located within the lowland Meres and Mosses region, where previous studies on subfossil pine have demonstrated protracted declines in mire-rooting trees. These have included tree mortality significantly post-dating the Pine Decline, especially at larger peatland sites that exceed 5 km2. Such macrofossil evidence for the presence of Scots pine into the late Holocene is supported by continuous Pinus pollen representation at peatland sites in the Welsh Marches (English–Welsh border), suggesting the possible survival of native Scots pine trees in this area up to the present day. The investigation of Wem Moss bog pines and their wider geographical context highlights the incomplete and patchy nature of palaeo-vegetational records and also the need for future genetic research on living Scots pine in possible refugial areas in Britain and Ireland.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44871144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Searching for unknown earthquakes in Slovenia in the first millennium, we performed archaeoseismological analysis of Roman settlements. The Mesto pod mestom museum in Celje exhibits a paved Roman road, which suffered severe deformation. Built on fine gravel and sand from the Savinja River, the road displays a bulge and trench, pop-up structures, and pavement slabs tilted up to 40°. The city wall was built over the deformed road in Late Roman times, supported by a foundation containing recycled material (spolia) from public buildings, including an emperor’s statue. We hypothesize that a severe earthquake hit the town before 350 AD, causing widespread destruction. Seismic-induced liquefaction caused differential subsidence, deforming the road. One of the nearby faults from the strike-slip Periadriatic fault system was the seismic source of this event.
为了寻找斯洛文尼亚在第一个千年中发生的未知地震,我们对罗马定居点进行了考古地震分析。位于Celje的Mesto pod mestom博物馆展示了一条被铺设的罗马道路,这条道路遭受了严重的变形。这条路建在萨维加河的细砾石和沙子上,道路上有凸起和沟渠,弹出式结构,路面倾斜达40°。在罗马时代晚期,城墙建在变形的道路上,由来自公共建筑的回收材料(spolia)支撑,包括皇帝的雕像。我们假设在公元350年前,一场强烈的地震袭击了这个城镇,造成了广泛的破坏。地震引起的液化引起了不同程度的下沉,使道路变形。此次地震的震源是邻近的沿亚得里亚海走滑断裂系统中的一条断层。
{"title":"Seismic Activity in the Celje Basin (Slovenia) in Roman Times—Archaeoseismological Evidence from Celeia","authors":"M. Kázmér, Petra Jamšek Rupnik, K. Gaidzik","doi":"10.3390/quat6010010","DOIUrl":"https://doi.org/10.3390/quat6010010","url":null,"abstract":"Searching for unknown earthquakes in Slovenia in the first millennium, we performed archaeoseismological analysis of Roman settlements. The Mesto pod mestom museum in Celje exhibits a paved Roman road, which suffered severe deformation. Built on fine gravel and sand from the Savinja River, the road displays a bulge and trench, pop-up structures, and pavement slabs tilted up to 40°. The city wall was built over the deformed road in Late Roman times, supported by a foundation containing recycled material (spolia) from public buildings, including an emperor’s statue. We hypothesize that a severe earthquake hit the town before 350 AD, causing widespread destruction. Seismic-induced liquefaction caused differential subsidence, deforming the road. One of the nearby faults from the strike-slip Periadriatic fault system was the seismic source of this event.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48702192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. F. Quamar, Ashutosh Kumar Singh, L. Joshi, B. Kotlia, D. Singh, C. Simion, Tiberiu Sava, Nagendra Prasad
Understanding the spatiotemporal monsoonal variability during the Holocene helps in understanding the rise and fall of many civilizations. In this study, a 2.65 m high palaeo lake sedimentary profile from the Kumaun Lesser Himalaya, Uttarakhand State, India was pollen analysed to reconstruct the variability in the monsoonal precipitation during the Middle Holocene. The study revealed that between ~7522 and 7216 cal yr BP, conifers dominated mixed broad-leaved forests occurred around the landscape of the study area, indicating a less cold and dry climate with decreased monsoon precipitation. Broad-leaved taxa during this phase show increased values considerably, indicating amelioration in climatic condition, which could be, in global perspective, broadly falling within the time-interval of the Holocene Climate Optimum (HCO; 7000–4000 BP). Between ~7216 and 6526 cal yr BP, dense conifers-dominated mixed broad-leaved forests transformed the conifers-dominated broad-leaved forests around the study area under a cold and drier climate with further reduction in monsoon precipitation. Subsequently, between ~6526 and 5987 cal yr BP, conifers-dominated broad-leaved forests continued to grow, but with lesser frequencies, around the study area under a comparatively less cold and dry climate with reduced monsoon precipitation. Finally, between ~5987 and 5817 cal yr BP, the frequencies of conifers-dominated broad-leaved forests further decreased around the landscape of the study area under a comparatively lesser cold and dry climate, probably indicating decreased monsoonal precipitation. Hence, the present study mainly showed the dominance of conifers forests around the study area between ~7522 and 7216 cal yr BP, ~7216 and 6526 cal yr BP, ~6526 and 5987 cal yr BP and between ~5987 and 5817 cal yr BP; however, broad-leaved forests also demonstrated increasing tendency between ~7522 and 7216 cal yr BP in the milieu of cold and dry climates. Moreover, the study also revealed that a lake was formed around 7522 cal yr BP along the Kulur River, a tributary of Saryu River around the study area and existed until 5817 cal yr BP.
了解全新世的时空季风变化有助于理解许多文明的兴衰。本文对印度北阿坎德邦Kumaun小喜马拉雅地区2.65 m高的古湖泊沉积剖面进行了花粉分析,重建了中全新世季风降水的变化。研究表明,在~7522 ~ 7216 cal yr BP期间,研究区景观周围以针叶林为主的混交林,气候偏冷干燥,季风降水减少。在这一阶段,阔叶分类群的数值显著增加,表明气候条件有所改善,在全球范围内,这可能大致落在全新世气候最适期(HCO)的时间区间内;7000 - 4000个基点)。在~7216 ~ 6526 cal yr BP之间,随着季风降水的进一步减少,研究区以针叶林为主的阔叶林向针叶林为主的阔叶林转变。随后,在~6526 ~ 5987 cal yr BP期间,研究区周围寒干气候相对较少,季风降水减少,针叶林为主的阔叶林继续生长,但频率较低。最后,在~5987 ~ 5817 cal yr BP期间,在相对较少的寒冷和干燥气候下,研究区景观周围针叶林为主的阔叶林频率进一步减少,可能表明季风降水减少。因此,在~7522 ~7216 cal yr BP、~7216 ~6526 cal yr BP、~6526 ~5987 cal yr BP、~5987 ~ 5817 cal yr BP之间,研究区主要以针叶林为主;在~7522 ~ 7216 cal yr BP之间,阔叶林在干冷气候环境中也表现出增加的趋势。此外,研究还发现,沿沙留河的支流库鲁尔河在7522 calyr BP左右形成了一个湖泊,并一直存在到5817 calyr BP。
{"title":"Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India","authors":"M. F. Quamar, Ashutosh Kumar Singh, L. Joshi, B. Kotlia, D. Singh, C. Simion, Tiberiu Sava, Nagendra Prasad","doi":"10.3390/quat6010011","DOIUrl":"https://doi.org/10.3390/quat6010011","url":null,"abstract":"Understanding the spatiotemporal monsoonal variability during the Holocene helps in understanding the rise and fall of many civilizations. In this study, a 2.65 m high palaeo lake sedimentary profile from the Kumaun Lesser Himalaya, Uttarakhand State, India was pollen analysed to reconstruct the variability in the monsoonal precipitation during the Middle Holocene. The study revealed that between ~7522 and 7216 cal yr BP, conifers dominated mixed broad-leaved forests occurred around the landscape of the study area, indicating a less cold and dry climate with decreased monsoon precipitation. Broad-leaved taxa during this phase show increased values considerably, indicating amelioration in climatic condition, which could be, in global perspective, broadly falling within the time-interval of the Holocene Climate Optimum (HCO; 7000–4000 BP). Between ~7216 and 6526 cal yr BP, dense conifers-dominated mixed broad-leaved forests transformed the conifers-dominated broad-leaved forests around the study area under a cold and drier climate with further reduction in monsoon precipitation. Subsequently, between ~6526 and 5987 cal yr BP, conifers-dominated broad-leaved forests continued to grow, but with lesser frequencies, around the study area under a comparatively less cold and dry climate with reduced monsoon precipitation. Finally, between ~5987 and 5817 cal yr BP, the frequencies of conifers-dominated broad-leaved forests further decreased around the landscape of the study area under a comparatively lesser cold and dry climate, probably indicating decreased monsoonal precipitation. Hence, the present study mainly showed the dominance of conifers forests around the study area between ~7522 and 7216 cal yr BP, ~7216 and 6526 cal yr BP, ~6526 and 5987 cal yr BP and between ~5987 and 5817 cal yr BP; however, broad-leaved forests also demonstrated increasing tendency between ~7522 and 7216 cal yr BP in the milieu of cold and dry climates. Moreover, the study also revealed that a lake was formed around 7522 cal yr BP along the Kulur River, a tributary of Saryu River around the study area and existed until 5817 cal yr BP.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44904301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Quaternary in 2022","authors":"","doi":"10.3390/quat6010009","DOIUrl":"https://doi.org/10.3390/quat6010009","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44701832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Taphonomy and Palaeoecology of Quaternary Vertebrates: Advances in Fossil and Experimental Studies","authors":"E. Stoetzel, J. Ochoa, J. Rofes","doi":"10.3390/quat6010008","DOIUrl":"https://doi.org/10.3390/quat6010008","url":null,"abstract":"Since the founding work of Efremov in 1940 [...]","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43401740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas D. Elliott, D. P. Rijal, A. Brown, J. Bakke, Lasse Topstad, P. Heintzman, I. Alsos
Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern Norway. We used a sedimentary ancient DNA (sedaDNA) metabarcoding dataset of 38 samples from a lake sediment core spanning 10,400 years using primers targeting the P6 loop of the trnL (UAA) intron. A total of 193 plant taxa were identified revealing a pattern of continually increasing richness over the time period. Vegetation surveys conducted around Jøkelvatnet show a high concordance with the taxa identified through sedaDNA metabarcoding. We identified four distinct vegetation assemblage zones with transitions at ca. 9.7, 8.4 and 4.3 ka with the first and last mirroring climatic shifts recorded by the Langfjordjøkel glacier. Soil disturbance trait values of the vegetation increased with glacial activity, suggesting that the glacier had a direct impact on plants growing in the catchment. Temperature optimum and moisture trait values correlated with both glacial activity and reconstructed climatic variables showing direct and indirect effects of climate change on the vegetation. In contrast to other catchments without an active glacier, the vegetation at Jøkelvatnet has displayed an increased sensitivity to climate change throughout the Middle and Late Holocene. Beyond the direct impact of climate change on arctic and alpine vegetation, our results suggest the ongoing disappearance of glaciers will have an additional effect on plant communities.
{"title":"Sedimentary Ancient DNA Reveals Local Vegetation Changes Driven by Glacial Activity and Climate","authors":"Lucas D. Elliott, D. P. Rijal, A. Brown, J. Bakke, Lasse Topstad, P. Heintzman, I. Alsos","doi":"10.3390/quat6010007","DOIUrl":"https://doi.org/10.3390/quat6010007","url":null,"abstract":"Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern Norway. We used a sedimentary ancient DNA (sedaDNA) metabarcoding dataset of 38 samples from a lake sediment core spanning 10,400 years using primers targeting the P6 loop of the trnL (UAA) intron. A total of 193 plant taxa were identified revealing a pattern of continually increasing richness over the time period. Vegetation surveys conducted around Jøkelvatnet show a high concordance with the taxa identified through sedaDNA metabarcoding. We identified four distinct vegetation assemblage zones with transitions at ca. 9.7, 8.4 and 4.3 ka with the first and last mirroring climatic shifts recorded by the Langfjordjøkel glacier. Soil disturbance trait values of the vegetation increased with glacial activity, suggesting that the glacier had a direct impact on plants growing in the catchment. Temperature optimum and moisture trait values correlated with both glacial activity and reconstructed climatic variables showing direct and indirect effects of climate change on the vegetation. In contrast to other catchments without an active glacier, the vegetation at Jøkelvatnet has displayed an increased sensitivity to climate change throughout the Middle and Late Holocene. Beyond the direct impact of climate change on arctic and alpine vegetation, our results suggest the ongoing disappearance of glaciers will have an additional effect on plant communities.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41493426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}