首页 > 最新文献

Paleoceanography and Paleoclimatology最新文献

英文 中文
Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilization During the Paleocene‐Eocene Thermal Maximum 古新世-始新世热极盛时期成岩有机碳移动的空间和时间模式
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-31 DOI: 10.1029/2023pa004773
E. Hollingsworth, F. Elling, Marcus Peter, Sebastian Badger, R. Pancost, A. Dickson, R. Rees-Owen, N. Papadomanolaki, Ann Pearson, A. Sluijs, K. Freeman, A. Baczynski, Gavin L. Foster, J. Whiteside, G. Inglis, M. Badger, Paleoceanography Paleoclimatology
The Paleocene‐Eocene Thermal Maximum (PETM) was a transient global warming event and is recognized in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was due to a rapid influx of 13C‐depleted carbon into the ocean‐atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear. Enhanced mobilization and oxidation of petrogenic organic carbon (OCpetro) has been invoked to explain elevated atmospheric carbon dioxide concentrations after the onset of the CIE. However, existing evidence is limited to the mid‐latitudes and subtropics. Here, we determine whether: (a) enhanced mobilization and subsequent burial of OCpetro in marine sediments was a global phenomenon; and (b) whether it occurred throughout the PETM. To achieve this, we utilize a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM‐aged shallow marine sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and mid‐latitudes during the PETM, consistent with evidence of higher physical erosion rates and intense episodic rainfall events. High‐latitude sites do not exhibit drastic changes in the source of organic carbon during the PETM and OCpetro MARs increase slightly or remain stable, perhaps due a more stable hydrological regime. Crucially, we also demonstrate that OCpetro MARs remained elevated during the recovery phase of the PETM. Although OCpetro oxidation was likely an important positive feedback mechanism throughout the PETM, we show that this feedback was both spatially and temporally variable.
古新世-始新世热极盛期(PETM)是一个短暂的全球变暖事件,在地质记录中被长期的负碳同位素偏移(CIE)所确认。负碳同位素偏移的出现是由于 13C 贫化碳迅速涌入海洋-大气系统。然而,维持负碳同位素偏移所需的机制仍不清楚。有人提出,岩石有机碳(OCpetro)的动员和氧化作用增强可以解释 CIE 开始后大气二氧化碳浓度升高的原因。然而,现有证据仅限于中纬度和亚热带地区。在这里,我们要确定:(a) 海洋沉积物中 OCpetro 的移动和随后的埋藏是否是一种全球现象;(b) 它是否发生在整个 PETM 期间。为此,我们利用脂质生物标志物方法追踪和量化了全球 PETM 时代浅海遗址(n = 7,包括 5 个新遗址)中的 OCpetro 埋藏情况。我们的研究结果证实,在 PETM 期间,亚热带和中纬度地区的 OCpetro 大量堆积率 (MARs) 有所上升,这与较高的物理侵蚀率和强烈的偶发性降雨事件的证据相一致。在 PETM 期间,高纬度地区的有机碳来源没有发生剧烈变化,有机碳质量累积率略有增加或保持稳定,这可能是由于水文系统更加稳定。最重要的是,我们还证明,在正火山火的恢复阶段,OCpetro MARs 仍保持升高。虽然 OCpetro 氧化可能是整个 PETM 期间的一个重要正反馈机制,但我们的研究表明,这种反馈在空间和时间上都是可变的。
{"title":"Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilization During the Paleocene‐Eocene Thermal Maximum","authors":"E. Hollingsworth, F. Elling, Marcus Peter, Sebastian Badger, R. Pancost, A. Dickson, R. Rees-Owen, N. Papadomanolaki, Ann Pearson, A. Sluijs, K. Freeman, A. Baczynski, Gavin L. Foster, J. Whiteside, G. Inglis, M. Badger, Paleoceanography Paleoclimatology","doi":"10.1029/2023pa004773","DOIUrl":"https://doi.org/10.1029/2023pa004773","url":null,"abstract":"The Paleocene‐Eocene Thermal Maximum (PETM) was a transient global warming event and is recognized in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was due to a rapid influx of 13C‐depleted carbon into the ocean‐atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear. Enhanced mobilization and oxidation of petrogenic organic carbon (OCpetro) has been invoked to explain elevated atmospheric carbon dioxide concentrations after the onset of the CIE. However, existing evidence is limited to the mid‐latitudes and subtropics. Here, we determine whether: (a) enhanced mobilization and subsequent burial of OCpetro in marine sediments was a global phenomenon; and (b) whether it occurred throughout the PETM. To achieve this, we utilize a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM‐aged shallow marine sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and mid‐latitudes during the PETM, consistent with evidence of higher physical erosion rates and intense episodic rainfall events. High‐latitude sites do not exhibit drastic changes in the source of organic carbon during the PETM and OCpetro MARs increase slightly or remain stable, perhaps due a more stable hydrological regime. Crucially, we also demonstrate that OCpetro MARs remained elevated during the recovery phase of the PETM. Although OCpetro oxidation was likely an important positive feedback mechanism throughout the PETM, we show that this feedback was both spatially and temporally variable.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140471937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarker Reconstruction of a High‐Latitude Late Paleocene to Early Eocene Coal Swamp Environment Across the PETM and ETM‐2 (Ellesmere Island, Arctic Canada) 跨越 PETM 和 ETM-2 的高纬度晚古新世至早始新世煤沼环境的生物标志物重建(加拿大北极地区埃尔斯米尔岛)
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-30 DOI: 10.1029/2023pa004712
M. Blumenberg, B. Naafs, A. Lückge, V. Lauretano, E. Schefuß, J. M. Galloway, G. Scheeder, L. Reinhardt
The Paleocene‐Eocene Thermal Maximum (PETM) and early Eocene hyperthermal events were characterized by a Hothouse climate state. Our understanding of the climatic impact of these hyperthermals is currently biased toward marine settings and the mid‐latitudes. Here we present organic geochemical data from Stenkul Fiord, Ellesmere Island, Arctic Canada. This organic rich formation was deposited in a high northern latitude wetland setting during the late Paleocene to early Eocene, spanning the PETM and subsequent ETM‐2 hyperthermals. Biomarker data (e.g., diterpenoids), combined with published palynological data from the site, indicate Cupressaceae‐dominated vegetation. Biomarkers suggest that land plant composition remained fairly unchanged across the two hyperthermal events. Increases in abundance and 13C‐depletion of hopanoid biomarkers (minima <−50‰ (VPDB)) highlight periods of enhanced bacterial methane consumption, particularly during the PETM. However, periods of low hopanoid δ13C values were also found outside the hyperthermal intervals. Relatively low δ2H values of higher plant n‐alkanes (average δ2H values of n‐C25, n‐C27, n‐C29 ∼ −230 to −270‰ (SMOW)) indicate that deposition formed during times with enhanced precipitation. The wettest intervals, as identified by the lowest δ2H n‐alkane values, contain high abundances of hopenes, indicating enhanced bacterial turnover. At Stenkul Fiord, high temperatures and CO2 concentrations likely fostered the growth of widespread wetland forests that became a CO2 sink and may have played an important role in carbon drawdown during the Early Paleogene.
古新世-始新世热极盛期(PETM)和始新世早期高热事件的特点是温室气候状态。目前,我们对这些高热事件对气候影响的认识偏向于海洋环境和中纬度地区。在这里,我们展示了来自加拿大北极地区埃尔斯米尔岛 Stenkul Fiord 的有机地球化学数据。这一富含有机物的地层沉积于古新世晚期至始新世早期的北纬高纬度湿地环境中,跨越了 PETM 和随后的 ETM-2 热成纪。生物标志物数据(如二萜类化合物)与该地点已公布的古生物学数据相结合,表明该地植被以柏科植物为主。生物标志物表明,在两次高热事件中,陆地植物组成基本保持不变。类罂粟生物标志物(最小值<-50‰(VPDB))丰度的增加和 13C 的消耗突出表明了细菌甲烷消耗增强的时期,尤其是在 PETM 期间。然而,在过热时期之外也发现了低γ-13C值的时期。较高植物正构烷烃的δ2H值相对较低(n-C25、n-C27、n-C29的平均δ2H值∼-230至-270‰(SMOW)),表明沉积是在降水增强时期形成的。由最低的 δ2H n-alkane 值确定的最潮湿区间含有大量的烯烃,这表明细菌更替增强。在斯滕库尔峡湾,高温和二氧化碳浓度很可能促进了大面积湿地森林的生长,使其成为二氧化碳汇,并可能在早古近纪碳减排过程中发挥了重要作用。
{"title":"Biomarker Reconstruction of a High‐Latitude Late Paleocene to Early Eocene Coal Swamp Environment Across the PETM and ETM‐2 (Ellesmere Island, Arctic Canada)","authors":"M. Blumenberg, B. Naafs, A. Lückge, V. Lauretano, E. Schefuß, J. M. Galloway, G. Scheeder, L. Reinhardt","doi":"10.1029/2023pa004712","DOIUrl":"https://doi.org/10.1029/2023pa004712","url":null,"abstract":"The Paleocene‐Eocene Thermal Maximum (PETM) and early Eocene hyperthermal events were characterized by a Hothouse climate state. Our understanding of the climatic impact of these hyperthermals is currently biased toward marine settings and the mid‐latitudes. Here we present organic geochemical data from Stenkul Fiord, Ellesmere Island, Arctic Canada. This organic rich formation was deposited in a high northern latitude wetland setting during the late Paleocene to early Eocene, spanning the PETM and subsequent ETM‐2 hyperthermals. Biomarker data (e.g., diterpenoids), combined with published palynological data from the site, indicate Cupressaceae‐dominated vegetation. Biomarkers suggest that land plant composition remained fairly unchanged across the two hyperthermal events. Increases in abundance and 13C‐depletion of hopanoid biomarkers (minima <−50‰ (VPDB)) highlight periods of enhanced bacterial methane consumption, particularly during the PETM. However, periods of low hopanoid δ13C values were also found outside the hyperthermal intervals. Relatively low δ2H values of higher plant n‐alkanes (average δ2H values of n‐C25, n‐C27, n‐C29 ∼ −230 to −270‰ (SMOW)) indicate that deposition formed during times with enhanced precipitation. The wettest intervals, as identified by the lowest δ2H n‐alkane values, contain high abundances of hopenes, indicating enhanced bacterial turnover. At Stenkul Fiord, high temperatures and CO2 concentrations likely fostered the growth of widespread wetland forests that became a CO2 sink and may have played an important role in carbon drawdown during the Early Paleogene.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140482038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brazil Margin Stable Isotope Profiles for the Last Glacial Cycle: Implications for Watermass Geometry and Oceanic Carbon Storage 最后冰川周期的巴西边缘稳定同位素剖面:水团几何学和海洋碳储存的含义
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 DOI: 10.1029/2023pa004635
A. B. Shub, D. Lund, D. Oppo, M. Garity
Vertical profiles of benthic foraminiferal oxygen and carbon isotopes (δ18O and δ13C) imply the volume of southern source water (SSW) in the Atlantic basin expanded during the Last Glacial Maximum. Shoaling of the boundary between SSW and northern source water (NSW) may reduce mixing between the two watermasses, thereby isolating SSW and enhancing its ability to store carbon during glacial intervals. Here we test this hypothesis using profiles of δ18O and δ13C from the Brazil Margin spanning the last glacial cycle (0–150 ka). Shoaling of the SSW‐NSW boundary occurred during Marine Isotope Stage (MIS) 2, 4, and 6, consistent with expansion of SSW and greater carbon sequestration in the abyss. But the watermass boundary also shoaled during MIS 5e, when atmospheric CO2 levels were comparable to MIS 1. Additionally, we find there was little change in watermass structure across the MIS 5e‐d transition, the first major decline in CO2 of the last glacial cycle. Thus, the overall pattern in glacial‐interglacial geometry is inconsistent with watermass mixing acting as a primary control on atmospheric pCO2. We also find that δ13C values for MIS 5e are systematically lower than MIS 1, with the largest difference (∼1‰) occurring in the upper water column. Low δ13C during MIS 5e was most likely due to a long‐term imbalance in weathering and deposition of calcium carbonate or input of 13C‐depleted carbon from a reservoir external to the ocean‐atmosphere system.
底栖有孔虫氧和碳同位素(δ18O 和 δ13C)的垂直剖面显示,大西洋海盆中的南源水(SSW)的体积在末次冰川极盛时期有所扩大。南源水与北源水(NSW)之间边界的淤积可能会减少这两种水体之间的混合,从而隔离南源水并增强其在冰川期储存碳的能力。在此,我们利用巴西边缘地区上一个冰川周期(0-150 ka)的δ18O 和 δ13C剖面图来验证这一假设。在海洋同位素阶段(MIS)2、4 和 6 期间,SSW-NSW 边界发生了倾斜,这与 SSW 的扩展和深海碳固存的增加是一致的。此外,我们还发现,在上一个冰川周期二氧化碳水平首次大幅下降的 MIS 5e-d 过渡期,水体结构几乎没有变化。因此,冰川-间冰期几何学的总体模式与水量混合作为大气 pCO2 的主要控制因素不一致。我们还发现,MIS 5e 的 δ13C 值系统地低于 MIS 1,最大的差异(1∼1‰)出现在上层水体。MIS 5e期间的低δ13C很可能是由于碳酸钙风化和沉积的长期不平衡或来自海洋-大气系统外部的13C贫碳库的输入。
{"title":"Brazil Margin Stable Isotope Profiles for the Last Glacial Cycle: Implications for Watermass Geometry and Oceanic Carbon Storage","authors":"A. B. Shub, D. Lund, D. Oppo, M. Garity","doi":"10.1029/2023pa004635","DOIUrl":"https://doi.org/10.1029/2023pa004635","url":null,"abstract":"Vertical profiles of benthic foraminiferal oxygen and carbon isotopes (δ18O and δ13C) imply the volume of southern source water (SSW) in the Atlantic basin expanded during the Last Glacial Maximum. Shoaling of the boundary between SSW and northern source water (NSW) may reduce mixing between the two watermasses, thereby isolating SSW and enhancing its ability to store carbon during glacial intervals. Here we test this hypothesis using profiles of δ18O and δ13C from the Brazil Margin spanning the last glacial cycle (0–150 ka). Shoaling of the SSW‐NSW boundary occurred during Marine Isotope Stage (MIS) 2, 4, and 6, consistent with expansion of SSW and greater carbon sequestration in the abyss. But the watermass boundary also shoaled during MIS 5e, when atmospheric CO2 levels were comparable to MIS 1. Additionally, we find there was little change in watermass structure across the MIS 5e‐d transition, the first major decline in CO2 of the last glacial cycle. Thus, the overall pattern in glacial‐interglacial geometry is inconsistent with watermass mixing acting as a primary control on atmospheric pCO2. We also find that δ13C values for MIS 5e are systematically lower than MIS 1, with the largest difference (∼1‰) occurring in the upper water column. Low δ13C during MIS 5e was most likely due to a long‐term imbalance in weathering and deposition of calcium carbonate or input of 13C‐depleted carbon from a reservoir external to the ocean‐atmosphere system.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM) 利用复现矩阵的拉普拉斯特征图(LERM)检测古气候转变
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 DOI: 10.1029/2023pa004700
Alexander James, J. Emile‐Geay, Nishant Malik, D. Khider
Paleoclimate records can be considered low‐dimensional projections of the climate system that generated them. Understanding what these projections tell us about past climates, and changes in their dynamics, is a main goal of time series analysis on such records. Laplacian eigenmaps of recurrence matrices (LERM) is a novel technique using univariate paleoclimate time series data to indicate when notable shifts in dynamics have occurred. LERM leverages time delay embedding to construct a manifold that is mappable to the attractor of the climate system; this manifold can then be analyzed for significant dynamical transitions. Through numerical experiments with observed and synthetic data, LERM is applied to detect both gradual and abrupt regime transitions. Our paragon for gradual transitions is the Mid‐Pleistocene Transition (MPT). We show that LERM can robustly detect gradual MPT‐like transitions for sufficiently high signal‐to‐noise (S/N) ratios, though with a time lag related to the embedding process. Our paragon of abrupt transitions is the “8.2 ka” event; we find that LERM is generally robust at detecting 8.2 ka‐like transitions for sufficiently high S/N ratios, though edge effects become more influential. We conclude that LERM can usefully detect dynamical transitions in paleogeoscientific time series, with the caveat that false positive rates are high when dynamical transitions are not present, suggesting the importance of using multiple records to confirm the robustness of transitions. We share an open‐source Python package to facilitate the use of LERM in paleoclimatology and paleoceanography.
古气候记录可被视为产生这些记录的气候系统的低维预测。了解这些预测对过去气候及其动态变化的启示,是对此类记录进行时间序列分析的主要目标。重现矩阵的拉普拉奇特征图(LERM)是一种利用单变量古气候时间序列数据的新技术,可以指出何时发生了显著的动态变化。LERM 利用时间延迟嵌入来构建一个可映射到气候系统吸引子的流形;然后可以分析这个流形以发现重要的动态转变。通过对观测数据和合成数据进行数值实验,LERM 被应用于检测渐变和突变机制转换。我们的渐变过渡典范是中更新世过渡(MPT)。我们的研究表明,在信噪比(S/N)足够高的情况下,LERM 可以稳健地检测到类似于 MPT 的渐变过渡,不过会有一个与嵌入过程相关的时滞。我们的突变典范是 "8.2 ka "事件;我们发现,在信噪比足够高的情况下,LERM 在检测类似于 8.2 ka 的突变方面总体上是稳健的,不过边缘效应的影响变得更大。我们的结论是,LERM 可以有效地检测古地理科学时间序列中的动态转变,但需要注意的是,当动态转变不存在时,假阳性率会很高,这表明使用多条记录来确认转变的稳健性非常重要。我们分享了一个开源 Python 软件包,以方便在古气候学和古海洋学中使用 LERM。
{"title":"Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM)","authors":"Alexander James, J. Emile‐Geay, Nishant Malik, D. Khider","doi":"10.1029/2023pa004700","DOIUrl":"https://doi.org/10.1029/2023pa004700","url":null,"abstract":"Paleoclimate records can be considered low‐dimensional projections of the climate system that generated them. Understanding what these projections tell us about past climates, and changes in their dynamics, is a main goal of time series analysis on such records. Laplacian eigenmaps of recurrence matrices (LERM) is a novel technique using univariate paleoclimate time series data to indicate when notable shifts in dynamics have occurred. LERM leverages time delay embedding to construct a manifold that is mappable to the attractor of the climate system; this manifold can then be analyzed for significant dynamical transitions. Through numerical experiments with observed and synthetic data, LERM is applied to detect both gradual and abrupt regime transitions. Our paragon for gradual transitions is the Mid‐Pleistocene Transition (MPT). We show that LERM can robustly detect gradual MPT‐like transitions for sufficiently high signal‐to‐noise (S/N) ratios, though with a time lag related to the embedding process. Our paragon of abrupt transitions is the “8.2 ka” event; we find that LERM is generally robust at detecting 8.2 ka‐like transitions for sufficiently high S/N ratios, though edge effects become more influential. We conclude that LERM can usefully detect dynamical transitions in paleogeoscientific time series, with the caveat that false positive rates are high when dynamical transitions are not present, suggesting the importance of using multiple records to confirm the robustness of transitions. We share an open‐source Python package to facilitate the use of LERM in paleoclimatology and paleoceanography.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations 夏秋日照是全新世热带印度洋海面风和降水动力学的起搏器:古生产率记录和古气候模拟的启示
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 DOI: 10.1029/2023pa004786
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Franck Bassinot, Chuanlian Liu
Insolation is the engine of monsoon and Walker circulations over the tropical Indian Ocean. Here, we present Holocene coccolith‐related net primary productivity (NPP) signals from two sediment cores retrieved in the wind‐driven coastal upwelling systems off southern India and southern Sumatra. Upwelling‐induced NPP is enhanced during summer and autumn and is a powerful tool to reconstruct atmospheric features at a seasonal scale. Our records indicate that during summer and autumn, westerly winds off southern India strengthened from the early‐Holocene (EH) to late‐Holocene (LH), while southeasterly winds off southern Sumatra strengthened from the EH to mid‐Holocene (MH) and weakened from the MH to LH. Comparisons with previous paleoclimate records and simulations, allow us to confirm such wind patterns at a regional scale and identify distinct atmospheric features associated to insolation before and after the MH. From the EH to MH, as the insolation in the Northern Hemisphere weakens during summer and strengthens during autumn, the equatorial Indian Ocean is characterized by more vigorous Walker and monsoon circulations in summer and autumn, respectively. From the MH to LH, as the insolation weakens in the Northern Hemisphere during summer and over the equator during autumn, the equatorial Indian Ocean is influenced by a general reinforcement of the Walker circulation during both seasons, a feature that we relate to a modern negative IOD‐like mode. The changes in wind result in increasing precipitation over Indonesia and India from EH to MH and over Indonesia from MH to LH as India is getting dryer.
日照是热带印度洋季风和沃克环流的动力。在这里,我们展示了在印度南部和苏门答腊南部沿海风驱动的上升流系统中取回的两个沉积岩芯中与全新世茧丝相关的净初级生产力(NPP)信号。上升流引起的净初级生产力在夏季和秋季增强,是重建季节尺度大气特征的有力工具。我们的记录表明,在夏季和秋季,印度南部沿海的西风从全新世早期(EH)到全新世晚期(LH)增强,而苏门答腊南部沿海的东南风从全新世早期到全新世中期(MH)增强,从MH到LH减弱。通过与以前的古气候记录和模拟进行比较,我们可以在区域范围内确认这种风向模式,并识别出 MH 前后与日照相关的明显大气特征。从 EH 到 MH,随着北半球夏季日照减弱和秋季日照增强,赤道印度洋在夏季和秋季分别出现了更为活跃的沃克环流和季风环流。从 MH 到 LH,随着夏季北半球日照减弱和秋季赤道上空日照减弱,赤道印度洋在这两个季节受到沃克环流普遍加强的影响,我们将这一特征与现代负 IOD 相似模式联系起来。风向的变化导致印度尼西亚和印度上空的降水量从 EH 上升到 MH,以及印度尼西亚上空的降水量从 MH 上升到 LH,因为印度越来越干燥。
{"title":"Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations","authors":"Xinquan Zhou, Stéphanie Duchamp-Alphonse, Franck Bassinot, Chuanlian Liu","doi":"10.1029/2023pa004786","DOIUrl":"https://doi.org/10.1029/2023pa004786","url":null,"abstract":"Insolation is the engine of monsoon and Walker circulations over the tropical Indian Ocean. Here, we present Holocene coccolith‐related net primary productivity (NPP) signals from two sediment cores retrieved in the wind‐driven coastal upwelling systems off southern India and southern Sumatra. Upwelling‐induced NPP is enhanced during summer and autumn and is a powerful tool to reconstruct atmospheric features at a seasonal scale. Our records indicate that during summer and autumn, westerly winds off southern India strengthened from the early‐Holocene (EH) to late‐Holocene (LH), while southeasterly winds off southern Sumatra strengthened from the EH to mid‐Holocene (MH) and weakened from the MH to LH. Comparisons with previous paleoclimate records and simulations, allow us to confirm such wind patterns at a regional scale and identify distinct atmospheric features associated to insolation before and after the MH. From the EH to MH, as the insolation in the Northern Hemisphere weakens during summer and strengthens during autumn, the equatorial Indian Ocean is characterized by more vigorous Walker and monsoon circulations in summer and autumn, respectively. From the MH to LH, as the insolation weakens in the Northern Hemisphere during summer and over the equator during autumn, the equatorial Indian Ocean is influenced by a general reinforcement of the Walker circulation during both seasons, a feature that we relate to a modern negative IOD‐like mode. The changes in wind result in increasing precipitation over Indonesia and India from EH to MH and over Indonesia from MH to LH as India is getting dryer.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocean Oxygen, Preformed Nutrients, and the Cause of the Lower Carbon Dioxide Concentration in the Atmosphere of the Last Glacial Maximum 海洋氧气、预形成营养物质以及最后冰川极盛时期大气中二氧化碳浓度降低的原因
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 DOI: 10.1029/2023pa004775
D. Sigman, M. Hain
All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022, https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed 13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2 storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.
在其他条件相同的情况下,如果海洋的 "生物(碳)泵 "增强,海洋内部的溶解氧(O2)含量就会下降。现在,人们非常确信,在冰河时期,整个海洋内部的氧气含量减少了。这有力地证明,在冰河时期,海洋的生物泵在海洋内部储存了更多的碳,为冰河时期大气中二氧化碳(CO2)浓度较低提供了核心解释。Vollmer 等人(2022 年,https://doi.org/10.1029/2021PA004339)结合底层水氧气和营养物质含量的代用指标表明,在末次冰川极盛时期,海洋营养物质库被生物泵更完全地利用,海洋内部溶解营养物质的比例增加,这些营养物质是 "再生 "的(作为下沉的有机物从海洋表面运输到内部),而不是 "预形成 "的(作为溶解营养物质通过海洋环流运输到内部)。这表明南大洋发生了变化,而南大洋是现代海洋中预成营养物质的主要来源,北大西洋形成的内层水的预成营养物质含量下降显然对南大洋也有影响。Vollmer 等人还发现,在溶解无机碳的预形成 13C/12C 比值方面,远古至全新世之间没有差异。这一发现可能使未来的研究能够解决所提出的南大洋机制中哪种机制对冰期海洋二氧化碳储存的增加负有最大责任:(a)海洋环流和生物生产力的耦合变化,或(b)海气交换的物理限制。
{"title":"Ocean Oxygen, Preformed Nutrients, and the Cause of the Lower Carbon Dioxide Concentration in the Atmosphere of the Last Glacial Maximum","authors":"D. Sigman, M. Hain","doi":"10.1029/2023pa004775","DOIUrl":"https://doi.org/10.1029/2023pa004775","url":null,"abstract":"All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022, https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed 13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2 storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139639010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene 莫哈韦沙漠在上新世晚期变暖和干燥之前的 MIS M2 冰川-河流生物标志证据
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 DOI: 10.1029/2023pa004687
M. Peaple, Tripti Bhattacharya, J. Tierney, Jeffrey R. Knott, T. Lowenstein, S. Feakins
Ancient lake deposits in the Mojave Desert indicate that the water cycle in this currently dry place was radically different under past climates. Here we revisit a 700 m core drilled 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine phase during the late Pliocene. We update the paleomagnetic age model and extract new biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma). The MBT′5Me temperature proxy detects present‐day conditions (21 ± 3°C, n = 2) initially, followed by warmer‐than‐present conditions (25 ± 3°C, n = 17) starting at 3.268 and ending at 2.734 Ma. Bacterial and archeal biomarkers reveal lake salinity increased after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures. The δ13C values of plant waxes (−30.7 ± 1.4‰, n = 28) are consistent with local C3 taxa, likely expanded conifer woodlands during the pluvial with less C4 than the Pleistocene. δD values (−174 ± 5‰, n = 25) of plant waxes indicate precipitation δD values (−89 ± 5‰, n = 25) in the late Pliocene are within the same range as the late Pleistocene precipitation δD. Microbial biomarkers identify a deep, freshwater lake and a cooling that corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage marine isotope stages M2 (3.3 Ma). A more saline lake persisted for ∼0.6 Ma across the subsequent warmth of the late Pliocene (3.268–2.734 Ma) before the lake desiccated at the Pleistocene intensification of Northern Hemisphere Glaciation.
莫哈韦沙漠的古代湖泊沉积物表明,在过去的气候条件下,这个目前干燥的地方的水循环完全不同。在这里,我们重新审视了 55 年前从加利福尼亚州塞尔尔斯谷钻取的 700 米岩心,该岩心发现了上新世晚期湖泊阶段的证据。我们更新了古地磁年龄模型,并从湖沼沉积物(3.373-2.706 Ma)中提取了气候条件的新生物标志物证据。MBT′5Me温度代用指标最初检测到的是现今的条件(21 ± 3°C,n = 2),随后是比现今更温暖的条件(25 ± 3°C,n = 17),开始于3.268 Ma,结束于2.734 Ma。细菌和古生物标志物显示,湖水盐度在 3.268 Ma 之后有所上升,这可能反映了温度升高导致的蒸发量增加。植物蜡质的δ13C值(-30.7 ± 1.4‰,n = 28)与当地的C3类群一致,很可能是在更新世时期针叶林地扩大,C4类群减少。植物蜡的δD值(-174 ± 5‰,n = 25)表明晚更新世的降水δD值(-89 ± 5‰,n = 25)与晚更新世的降水δD值在同一范围内。微生物生物标志物表明,在海洋同位素阶段海洋同位素阶段 M2(3.3 Ma),有一个深层淡水湖,其降温与北半球冰川作用的开始相吻合。在上新世晚期(3.268-2.734Ma)的温暖时期,一个盐度更高的湖泊持续了0.6Ma,之后在更新世北半球冰川作用加剧时湖泊干涸。
{"title":"Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene","authors":"M. Peaple, Tripti Bhattacharya, J. Tierney, Jeffrey R. Knott, T. Lowenstein, S. Feakins","doi":"10.1029/2023pa004687","DOIUrl":"https://doi.org/10.1029/2023pa004687","url":null,"abstract":"Ancient lake deposits in the Mojave Desert indicate that the water cycle in this currently dry place was radically different under past climates. Here we revisit a 700 m core drilled 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine phase during the late Pliocene. We update the paleomagnetic age model and extract new biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma). The MBT′5Me temperature proxy detects present‐day conditions (21 ± 3°C, n = 2) initially, followed by warmer‐than‐present conditions (25 ± 3°C, n = 17) starting at 3.268 and ending at 2.734 Ma. Bacterial and archeal biomarkers reveal lake salinity increased after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures. The δ13C values of plant waxes (−30.7 ± 1.4‰, n = 28) are consistent with local C3 taxa, likely expanded conifer woodlands during the pluvial with less C4 than the Pleistocene. δD values (−174 ± 5‰, n = 25) of plant waxes indicate precipitation δD values (−89 ± 5‰, n = 25) in the late Pliocene are within the same range as the late Pleistocene precipitation δD. Microbial biomarkers identify a deep, freshwater lake and a cooling that corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage marine isotope stages M2 (3.3 Ma). A more saline lake persisted for ∼0.6 Ma across the subsequent warmth of the late Pliocene (3.268–2.734 Ma) before the lake desiccated at the Pleistocene intensification of Northern Hemisphere Glaciation.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pacific‐Driven Salinity Variability in the Timor Passage Since 1777 1777 年以来太平洋驱动的帝汶海峡盐度变化
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-12-01 DOI: 10.1029/2023pa004702
Elizabeth W. Patterson, Julia E. Cole, K. Dyez, L. Vetter, Janice M. Lough
Salinity in the Indonesian seas integrates regional oceanographic and atmospheric processes, such as Indonesian Throughflow (ITF) and monsoon rainfall. Here we present a multicentury (1777–1983) δ18O coral record from Nightcliff Reef, located in the Timor Passage off the coast of northern Australia, which we use to infer local salinity change. We show that Australian monsoon rainfall and ITF influence salinity at the study site. These reconstructed salinity changes in the Timor Passage correlate with changes in Pacific sea surface temperature (SST) modes, including the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). While environmental stress creates challenging conditions for coral growth, this record particularly tracks the central Pacific signature of ENSO‐driven interannual variability, in agreement with reconstructions of rainfall across northern Australia. The strength of interannual variance in the record follows fluctuations in other local ENSO‐sensitive rainfall reconstructions, demonstrating a strong regional ENSO signature. However, this regional pattern differs from variance in composite ENSO reconstructions, suggesting that the multi‐site nature of these reconstructions may create biases. Salinity variability on decadal and longer time scales occurs throughout the record. Some of these oscillations are consistent with other ITF‐sensitive coral records. Our new salinity record adds a strongly Pacific‐sensitive record to the existing suite of regional paleoclimate reconstructions. Relationships among these records highlight the complexity of salinity in the Indonesian seas and the controls on its variability.
印度尼西亚海域的盐度综合了区域海洋学和大气过程,如印度尼西亚通流(ITF)和季风降雨。在这里,我们提出了一个多世纪(1777-1983)的δ18O珊瑚记录,位于澳大利亚北部海岸的帝汶通道,我们用它来推断当地的盐度变化。研究表明,澳大利亚季风降雨和ITF对研究地点的盐度有影响。这些重建的帝汶通道盐度变化与太平洋海表温度(SST)模式的变化相关,包括El Niño南方涛动(ENSO)和太平洋年代际涛动(IPO)。虽然环境压力为珊瑚生长创造了具有挑战性的条件,但该记录特别追踪了ENSO驱动的太平洋中部年际变化的特征,与澳大利亚北部降雨的重建一致。记录的年际变化强度跟随其他局部ENSO敏感降雨重建的波动,显示出强烈的区域ENSO特征。然而,这种区域模式不同于复合ENSO重建的差异,这表明这些重建的多站点性质可能会产生偏差。年代际和更长时间尺度上的盐度变化贯穿整个记录。其中一些振荡与其他对ITF敏感的珊瑚记录一致。我们的新盐度记录为现有的区域古气候重建套件增加了一个强烈的太平洋敏感记录。这些记录之间的关系突出了印度尼西亚海域盐度的复杂性以及对其变化的控制。
{"title":"Pacific‐Driven Salinity Variability in the Timor Passage Since 1777","authors":"Elizabeth W. Patterson, Julia E. Cole, K. Dyez, L. Vetter, Janice M. Lough","doi":"10.1029/2023pa004702","DOIUrl":"https://doi.org/10.1029/2023pa004702","url":null,"abstract":"Salinity in the Indonesian seas integrates regional oceanographic and atmospheric processes, such as Indonesian Throughflow (ITF) and monsoon rainfall. Here we present a multicentury (1777–1983) δ18O coral record from Nightcliff Reef, located in the Timor Passage off the coast of northern Australia, which we use to infer local salinity change. We show that Australian monsoon rainfall and ITF influence salinity at the study site. These reconstructed salinity changes in the Timor Passage correlate with changes in Pacific sea surface temperature (SST) modes, including the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). While environmental stress creates challenging conditions for coral growth, this record particularly tracks the central Pacific signature of ENSO‐driven interannual variability, in agreement with reconstructions of rainfall across northern Australia. The strength of interannual variance in the record follows fluctuations in other local ENSO‐sensitive rainfall reconstructions, demonstrating a strong regional ENSO signature. However, this regional pattern differs from variance in composite ENSO reconstructions, suggesting that the multi‐site nature of these reconstructions may create biases. Salinity variability on decadal and longer time scales occurs throughout the record. Some of these oscillations are consistent with other ITF‐sensitive coral records. Our new salinity record adds a strongly Pacific‐sensitive record to the existing suite of regional paleoclimate reconstructions. Relationships among these records highlight the complexity of salinity in the Indonesian seas and the controls on its variability.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138623932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Oceanography of the Central Northwest Pacific Over the Past 10 Million Years With Focus on Late Miocene Global Cooling 过去 1000 万年西北太平洋中部海洋学的演变,聚焦中新世晚期全球变冷
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-12-01 DOI: 10.1029/2023pa004789
Kenji M. Matsuzaki
Since the middle Miocene climatic transition, the Earth's climate has steadily cooled. The late Miocene global cooling (LMGC) and the Northern Hemisphere Glaciation (NHG) were two key cooling events occurring during this time. To better understand the mechanisms underlying these cooling events, changes in radiolarian microfossil assemblages were examined in this study, aiming at the reconstructing of oceanographic changes that have occurred at Ocean Drilling Program site 1208 during the last 10 million years. Sea surface temperatures (SSTs) were reconstructed based on radiolarian species that were extant 0–10 million years ago. Reconstructed SSTs were then compared with previously published alkenone‐based SSTs at site 1208, and it was found that overall, using SSTs based only on extant radiolarian species yielded a correct record for the last 10 million years. However, large discrepancies were observed between radiolarian‐ and alkenone‐based SSTs during LMGC and the NHG. These discrepancies were attributed to the sustained influence of subsurface water (at depths from ∼50 to 100 m) on assemblages of radiolarians during extreme cooling events. Relative abundances of other radiolarian groups indicated that during LMGC, there was a reorganization of the regional oceanography that probably weakened the Pacific meridional overturning circulation, increased the meridional temperature gradient, and caused a southward migration of the subtropical front. Probably, the North Pacific intermediate water expanded southeastward during NHG.
自中新世中期气候转变以来,地球气候持续变冷。中新世晚期的全球变冷(LMGC)和北半球冰川(NHG)是这一时期发生的两个关键变冷事件。为了更好地了解这些降温事件的发生机制,本研究考察了放射虫微化石组合的变化,旨在重建大洋钻探计划1208站点在过去1000万年间发生的海洋变化。根据 0-10 万年前现存的放射虫物种重建了海面温度(SST)。然后将重建的海表温度与之前公布的基于烯酮的 1208 号站点的海表温度进行比较,结果发现,总体而言,仅根据现存的放射虫物种重建的海表温度能够正确记录过去 1000 万年的海表温度。然而,在 LMGC 和 NHG 期间,观察到基于放射虫的海温与基于烯酮的海温之间存在巨大差异。这些差异是由于在极端降温事件期间,地下水(深度为 50 至 100 米)对放射虫群的持续影响造成的。其他放射虫类群的相对丰度表明,在 LMGC 期间,区域海洋学发生了重组,可能削弱了太平洋经向翻转环流,增加了经向温度梯度,并导致副热带锋面南移。在 NHG 期间,北太平洋中间水可能向东南方向扩展。
{"title":"Evolution of Oceanography of the Central Northwest Pacific Over the Past 10 Million Years With Focus on Late Miocene Global Cooling","authors":"Kenji M. Matsuzaki","doi":"10.1029/2023pa004789","DOIUrl":"https://doi.org/10.1029/2023pa004789","url":null,"abstract":"Since the middle Miocene climatic transition, the Earth's climate has steadily cooled. The late Miocene global cooling (LMGC) and the Northern Hemisphere Glaciation (NHG) were two key cooling events occurring during this time. To better understand the mechanisms underlying these cooling events, changes in radiolarian microfossil assemblages were examined in this study, aiming at the reconstructing of oceanographic changes that have occurred at Ocean Drilling Program site 1208 during the last 10 million years. Sea surface temperatures (SSTs) were reconstructed based on radiolarian species that were extant 0–10 million years ago. Reconstructed SSTs were then compared with previously published alkenone‐based SSTs at site 1208, and it was found that overall, using SSTs based only on extant radiolarian species yielded a correct record for the last 10 million years. However, large discrepancies were observed between radiolarian‐ and alkenone‐based SSTs during LMGC and the NHG. These discrepancies were attributed to the sustained influence of subsurface water (at depths from ∼50 to 100 m) on assemblages of radiolarians during extreme cooling events. Relative abundances of other radiolarian groups indicated that during LMGC, there was a reorganization of the regional oceanography that probably weakened the Pacific meridional overturning circulation, increased the meridional temperature gradient, and caused a southward migration of the subtropical front. Probably, the North Pacific intermediate water expanded southeastward during NHG.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Warming Southern Gulf of Mexico: Reconstruction of Anthropogenic Environmental Changes From a Siderastrea siderea Coral on the Northern Coast of Cuba 墨西哥湾南部变暖:从古巴北部海岸的 Siderastrea siderea 珊瑚重建人为环境变化
IF 3.5 2区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-12-01 DOI: 10.1029/2023pa004717
M. Harbott, H. C. Wu, H. Kuhnert, C. Jimenez, P. González‐Díaz, T. Rixen
The Gulf of Mexico is a vital region for the Atlantic Meridional Overturning Circulation (AMOC), that fuels the exchange of heat between the tropics and the polar regions. A weakening of the AMOC would have dire consequences for the planet. First observations and ocean models show that this process has already started. Very limited knowledge of the components that are part of the AMOC such as the Loop Current (LC) make it difficult to understand its dynamics as well as changes in strength or temperature since the onset of the Industrial Revolution. Currently, there are no continuous in situ sea surface temperature or salinity measurements for the southeastern Gulf of Mexico or reconstruction attempts for this region, showing the necessity for high‐resolution climate archives. A Siderastrea siderea coral core was retrieved from the northwestern Cuban coast and used as a sub‐seasonally resolved sea surface temperature and hydroclimate archive. The approach is based on skeletal δ18O, and trace and minor element contents show an increase in temperature over 160 years since 1845 of 2.6–3.3°C. A possible stagnation of the warming trend set in after the 1980s, indicating a potential weakening of the Loop Current. Impacts in sea surface salinity such as El Niño events in the Pacific region can still be detected in the Gulf of Mexico as decreases in salinity in 1998 from the reconstructed δ18OSW coral record. In situ measurements remain crucial to understand the dynamics in the LC and its influence on the AMOC.
墨西哥湾是大西洋经向翻转环流(AMOC)的重要区域,该环流促进了热带地区和极地地区之间的热量交换。AMOC的减弱将给地球带来可怕的后果。首次观测和海洋模型显示,这一过程已经开始。由于对环流(LC)等 AMOC 组成部分的了解非常有限,因此很难了解其动态以及自工业革命开始以来其强度或温度的变化。目前,墨西哥湾东南部没有连续的原地海面温度或盐度测量数据,也没有对这一地区进行重建的尝试,这表明有必要建立高分辨率的气候档案。从古巴西北部海岸提取的 Siderastrea siderea 珊瑚核被用作分季节解析的海面温度和水文气候档案。该方法基于骨骼δ18O、痕量元素和次要元素含量,显示自 1845 年以来的 160 年中温度上升了 2.6-3.3°C 。20 世纪 80 年代后,变暖趋势可能出现停滞,表明环流可能减弱。从重建的 δ18OSW 珊瑚记录中仍然可以检测到 1998 年墨西哥湾盐度的下降,表明太平洋地区的厄尔尼诺事件等对海面盐度的影响。实地测量对于了解 LC 的动态及其对 AMOC 的影响仍然至关重要。
{"title":"A Warming Southern Gulf of Mexico: Reconstruction of Anthropogenic Environmental Changes From a Siderastrea siderea Coral on the Northern Coast of Cuba","authors":"M. Harbott, H. C. Wu, H. Kuhnert, C. Jimenez, P. González‐Díaz, T. Rixen","doi":"10.1029/2023pa004717","DOIUrl":"https://doi.org/10.1029/2023pa004717","url":null,"abstract":"The Gulf of Mexico is a vital region for the Atlantic Meridional Overturning Circulation (AMOC), that fuels the exchange of heat between the tropics and the polar regions. A weakening of the AMOC would have dire consequences for the planet. First observations and ocean models show that this process has already started. Very limited knowledge of the components that are part of the AMOC such as the Loop Current (LC) make it difficult to understand its dynamics as well as changes in strength or temperature since the onset of the Industrial Revolution. Currently, there are no continuous in situ sea surface temperature or salinity measurements for the southeastern Gulf of Mexico or reconstruction attempts for this region, showing the necessity for high‐resolution climate archives. A Siderastrea siderea coral core was retrieved from the northwestern Cuban coast and used as a sub‐seasonally resolved sea surface temperature and hydroclimate archive. The approach is based on skeletal δ18O, and trace and minor element contents show an increase in temperature over 160 years since 1845 of 2.6–3.3°C. A possible stagnation of the warming trend set in after the 1980s, indicating a potential weakening of the Loop Current. Impacts in sea surface salinity such as El Niño events in the Pacific region can still be detected in the Gulf of Mexico as decreases in salinity in 1998 from the reconstructed δ18OSW coral record. In situ measurements remain crucial to understand the dynamics in the LC and its influence on the AMOC.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138989007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Paleoceanography and Paleoclimatology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1