Pub Date : 2023-12-05DOI: 10.1186/s40851-023-00222-9
Motoki Tamura, Ryota Ishikawa, Yuki Nakanishi, Juan Pascual-Anaya, Makiko Fukui, Takashi Saitou, Fumiaki Sugahara, Filippo M Rijli, Shigeru Kuratani, Daichi G Suzuki, Yasunori Murakami
The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The trigeminal nerve has three major branches in both the lamprey and jawed vertebrates. Although each of these branches was classically thought to be homologous between these two taxa, this homology is now in doubt. In the present study, we compared expression patterns of Hmx, a candidate genetic marker of the mandibular nerve (rV3, the third branch of the trigeminal nerve in jawed vertebrates), and the distribution of neuronal somata of trigeminal nerve branches in the trigeminal ganglion in lamprey and shark. We first confirmed the conserved expression pattern of Hmx1 in the shark rV3 neuronal somata, which are distributed in the caudal part of the trigeminal ganglion. By contrast, lamprey Hmx genes showed peculiar expression patterns, with expression in the ventrocaudal part of the trigeminal ganglion similar to Hmx1 expression in jawed vertebrates, which labeled the neuronal somata of the second branch. Based on these results, we propose two alternative hypotheses regarding the homology of the trigeminal nerve branches, providing new insights into the evolutionary origin of the vertebrate jaw.
{"title":"Comparative analysis of Hmx expression and the distribution of neuronal somata in the trigeminal ganglion in lamprey and shark: insights into the homology of the trigeminal nerve branches and the evolutionary origin of the vertebrate jaw.","authors":"Motoki Tamura, Ryota Ishikawa, Yuki Nakanishi, Juan Pascual-Anaya, Makiko Fukui, Takashi Saitou, Fumiaki Sugahara, Filippo M Rijli, Shigeru Kuratani, Daichi G Suzuki, Yasunori Murakami","doi":"10.1186/s40851-023-00222-9","DOIUrl":"10.1186/s40851-023-00222-9","url":null,"abstract":"<p><p>The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The trigeminal nerve has three major branches in both the lamprey and jawed vertebrates. Although each of these branches was classically thought to be homologous between these two taxa, this homology is now in doubt. In the present study, we compared expression patterns of Hmx, a candidate genetic marker of the mandibular nerve (rV<sub>3</sub>, the third branch of the trigeminal nerve in jawed vertebrates), and the distribution of neuronal somata of trigeminal nerve branches in the trigeminal ganglion in lamprey and shark. We first confirmed the conserved expression pattern of Hmx1 in the shark rV<sub>3</sub> neuronal somata, which are distributed in the caudal part of the trigeminal ganglion. By contrast, lamprey Hmx genes showed peculiar expression patterns, with expression in the ventrocaudal part of the trigeminal ganglion similar to Hmx1 expression in jawed vertebrates, which labeled the neuronal somata of the second branch. Based on these results, we propose two alternative hypotheses regarding the homology of the trigeminal nerve branches, providing new insights into the evolutionary origin of the vertebrate jaw.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"23"},"PeriodicalIF":2.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1186/s40851-023-00221-w
Ji-Hoon Kihm, Krzysztof Zawierucha, Hyun Soo Rho, Tae-Yoon S Park
Phylum Tardigrada is represented by microscopic eight-legged panarthropods that inhabit terrestrial and marine environments. Although tardigrades are emerging model animals for areas of research including physiology, evolutionary biology, and astrobiology, knowledge of their external morphology remains insufficient. For instance, homologies between marine and terrestrial relatives largely remain unexplored. In the present study we provide detailed pictures of the head sensory organs in a new tardigrade, Ramazzottius groenlandensis sp. nov. Specimens were collected from a mixed moss and lichen sample on Ella Island, East Greenland. The new species differs from congeneric species in the presence of polygonal sculpturing on the dorsal cuticle, which is accentuated in the posterior region of the body, a lateral papilla on leg IV, and distinctive egg morphology. A Bayesian phylogenetic analysis (18S rRNA + 28S rRNA + COI) places the new species within the genus Ramazzottius with high confidence. Interestingly, the new species shows a full set of well-developed cephalic organs, which correspond to all sensory fields found in eutardigrades. Details on the full set of head organs were present only for heterotardigrades. The surface of these organs is covered with small pores, which presumably play a sensory role. This discovery suggests the homology of head sensory structures between heterotardigrades and eutardigrades, implying that the distinctive arrangement and positioning of sensory organs on the head is a plesiomorphic feature of tardigrades. Moreover, we find that the Ramazzottius oberhaeuseri morphotype forms a morphogroup, not a monophyletic species complex.
{"title":"Homology of the head sensory structures between Heterotardigrada and Eutardigrada supported in a new species of water bear (Ramazzottiidae: Ramazzottius).","authors":"Ji-Hoon Kihm, Krzysztof Zawierucha, Hyun Soo Rho, Tae-Yoon S Park","doi":"10.1186/s40851-023-00221-w","DOIUrl":"10.1186/s40851-023-00221-w","url":null,"abstract":"<p><p>Phylum Tardigrada is represented by microscopic eight-legged panarthropods that inhabit terrestrial and marine environments. Although tardigrades are emerging model animals for areas of research including physiology, evolutionary biology, and astrobiology, knowledge of their external morphology remains insufficient. For instance, homologies between marine and terrestrial relatives largely remain unexplored. In the present study we provide detailed pictures of the head sensory organs in a new tardigrade, Ramazzottius groenlandensis sp. nov. Specimens were collected from a mixed moss and lichen sample on Ella Island, East Greenland. The new species differs from congeneric species in the presence of polygonal sculpturing on the dorsal cuticle, which is accentuated in the posterior region of the body, a lateral papilla on leg IV, and distinctive egg morphology. A Bayesian phylogenetic analysis (18S rRNA + 28S rRNA + COI) places the new species within the genus Ramazzottius with high confidence. Interestingly, the new species shows a full set of well-developed cephalic organs, which correspond to all sensory fields found in eutardigrades. Details on the full set of head organs were present only for heterotardigrades. The surface of these organs is covered with small pores, which presumably play a sensory role. This discovery suggests the homology of head sensory structures between heterotardigrades and eutardigrades, implying that the distinctive arrangement and positioning of sensory organs on the head is a plesiomorphic feature of tardigrades. Moreover, we find that the Ramazzottius oberhaeuseri morphotype forms a morphogroup, not a monophyletic species complex.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"22"},"PeriodicalIF":2.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.1186/s40851-023-00220-x
Alexey V Golikov, Gudmundur Gudmundsson, Martin E Blicher, Lis L Jørgensen, Ekaterina I Korneeva, Steinunn H Olafsdottir, Elena I Shagimardanova, Leyla H Shigapova, Denis V Zakharov, Olga L Zimina, Rushan M Sabirov
We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.
{"title":"A review of the genus Muusoctopus (Cephalopoda: Octopoda) from Arctic waters.","authors":"Alexey V Golikov, Gudmundur Gudmundsson, Martin E Blicher, Lis L Jørgensen, Ekaterina I Korneeva, Steinunn H Olafsdottir, Elena I Shagimardanova, Leyla H Shigapova, Denis V Zakharov, Olga L Zimina, Rushan M Sabirov","doi":"10.1186/s40851-023-00220-x","DOIUrl":"10.1186/s40851-023-00220-x","url":null,"abstract":"<p><p>We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"21"},"PeriodicalIF":2.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1186/s40851-023-00217-6
Tomonari Nozaki, Eisuke Tasaki, Kenji Matsuura
Tissue-specific endopolyploidy is widespread among plants and animals and its role in organ development and function has long been investigated. In insects, the fat body cells of sexually mature females produce substantial amounts of egg yolk precursor proteins (vitellogenins) and exhibit high polyploid levels, which is considered crucial for boosting egg production. Termites are social insects with a reproductive division of labor, and the fat bodies of mature termite queens exhibit higher ploidy levels than those of other females. The fat bodies of mature termite queens are known to be histologically and cytologically specialized in protein synthesis. However, the relationship between such modifications and polyploidization remains unknown. In this study, we investigated the relationship among cell type, queen maturation, and ploidy levels in the fat body of the termite Reticulitermes speratus. We first confirmed that the termite fat body consists of two types of cells, that is, adipocytes, metabolically active cells, and urocytes, urate-storing cells. Our ploidy analysis using flow cytometry has shown that the fat bodies of actively reproducing queens had more polyploid cells than those of newly emerged and pre-reproductive queens, regardless of the queen phenotype (adult or neotenic type). Using image-based analysis, we found that not urocytes, but adipocytes became polyploid during queen differentiation and subsequent sexual maturation. These results suggest that polyploidization in the termite queen fat body is associated with sexual maturation and is regulated in a cell type-specific manner. Our study findings have provided novel insights into the development of insect fat bodies and provide a basis for future studies to understand the functional importance of polyploidy in the fat bodies of termite queens.
{"title":"Cell type specific polyploidization in the royal fat body of termite queens.","authors":"Tomonari Nozaki, Eisuke Tasaki, Kenji Matsuura","doi":"10.1186/s40851-023-00217-6","DOIUrl":"10.1186/s40851-023-00217-6","url":null,"abstract":"<p><p>Tissue-specific endopolyploidy is widespread among plants and animals and its role in organ development and function has long been investigated. In insects, the fat body cells of sexually mature females produce substantial amounts of egg yolk precursor proteins (vitellogenins) and exhibit high polyploid levels, which is considered crucial for boosting egg production. Termites are social insects with a reproductive division of labor, and the fat bodies of mature termite queens exhibit higher ploidy levels than those of other females. The fat bodies of mature termite queens are known to be histologically and cytologically specialized in protein synthesis. However, the relationship between such modifications and polyploidization remains unknown. In this study, we investigated the relationship among cell type, queen maturation, and ploidy levels in the fat body of the termite Reticulitermes speratus. We first confirmed that the termite fat body consists of two types of cells, that is, adipocytes, metabolically active cells, and urocytes, urate-storing cells. Our ploidy analysis using flow cytometry has shown that the fat bodies of actively reproducing queens had more polyploid cells than those of newly emerged and pre-reproductive queens, regardless of the queen phenotype (adult or neotenic type). Using image-based analysis, we found that not urocytes, but adipocytes became polyploid during queen differentiation and subsequent sexual maturation. These results suggest that polyploidization in the termite queen fat body is associated with sexual maturation and is regulated in a cell type-specific manner. Our study findings have provided novel insights into the development of insect fat bodies and provide a basis for future studies to understand the functional importance of polyploidy in the fat bodies of termite queens.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"20"},"PeriodicalIF":2.7,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.1186/s40851-023-00219-4
Shuang Xu, Qiang Dai, Yuchi Zheng
The skin has multiple functions, and capillaries can penetrate the epidermis to shorten the diffusion path while allowing maintenance of overall epidermal thickness for nonrespiratory roles. However, a method for quantifying the capillary penetration extent is lacking. Such a method may facilitate making comparisons and detecting associations, potentially making the extent a useful variable in biological studies. We quantified the extent as the ratio of the average minimum thickness of epidermis overlying each capillary to the average epidermal thickness along a skin section and then explored its performance in the Emei mustache toad, Leptobrachium boringii, a species in which breeding males with loose skin call and fight each other with maxillary spines underwater. The ratio showed informative associations with other variables, such as perfused capillary density. It displayed small intragroup variation and could be more sensitive than other variables in revealing structural differences in the skin. The ratio estimates were lowest and were correlated with epidermal and stratum compactum thicknesses in breeding males, i.e., a covariation but not reinforcement against stabbing, constituting early evidence consistent with the increased extensibility of loose skin conferring a defensive advantage during combat in amphibians. In addition, our results lead to the hypothesis that high hemoglobin density along subepidermal capillaries favors the maintenance of low blood partial oxygen pressure and hence increases cutaneous oxygen uptake. We also provide evidence supporting the new idea that the cooccurrence of loose skin and underwater calling found in some frogs can be explained by the latter benefiting from a large functional respiratory surface area. Awareness of the usefulness of the ratio may promote its application and the quantification of the penetration. Regarding exchange surface design, these findings for L. boringii imply a case in which looseness increases surface area as well as prevents damage.
{"title":"Male spiny frogs enter the underwater battlefield with loose skin exhibiting enhanced penetration of capillaries into the epidermis.","authors":"Shuang Xu, Qiang Dai, Yuchi Zheng","doi":"10.1186/s40851-023-00219-4","DOIUrl":"10.1186/s40851-023-00219-4","url":null,"abstract":"<p><p>The skin has multiple functions, and capillaries can penetrate the epidermis to shorten the diffusion path while allowing maintenance of overall epidermal thickness for nonrespiratory roles. However, a method for quantifying the capillary penetration extent is lacking. Such a method may facilitate making comparisons and detecting associations, potentially making the extent a useful variable in biological studies. We quantified the extent as the ratio of the average minimum thickness of epidermis overlying each capillary to the average epidermal thickness along a skin section and then explored its performance in the Emei mustache toad, Leptobrachium boringii, a species in which breeding males with loose skin call and fight each other with maxillary spines underwater. The ratio showed informative associations with other variables, such as perfused capillary density. It displayed small intragroup variation and could be more sensitive than other variables in revealing structural differences in the skin. The ratio estimates were lowest and were correlated with epidermal and stratum compactum thicknesses in breeding males, i.e., a covariation but not reinforcement against stabbing, constituting early evidence consistent with the increased extensibility of loose skin conferring a defensive advantage during combat in amphibians. In addition, our results lead to the hypothesis that high hemoglobin density along subepidermal capillaries favors the maintenance of low blood partial oxygen pressure and hence increases cutaneous oxygen uptake. We also provide evidence supporting the new idea that the cooccurrence of loose skin and underwater calling found in some frogs can be explained by the latter benefiting from a large functional respiratory surface area. Awareness of the usefulness of the ratio may promote its application and the quantification of the penetration. Regarding exchange surface design, these findings for L. boringii imply a case in which looseness increases surface area as well as prevents damage.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"19"},"PeriodicalIF":2.7,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41179335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The environment around deep sea hydrothermal vents is characterized by an abundance of sulfur compounds, including toxic hydrogen sulfide. However, numerous communities of various invertebrates are found in it. It is suggested that invertebrates in the vicinity of hydrothermal vents detoxify sulfur compounds by biosynthesis of taurine-related compounds in the body. On the other hand, the vent endemic polychaete Alvinella pompejana has spherocrystals composed of sulfur and other metals in its digestive tract. It was considered that the spherocrystals contribute to the regulation of sulfur in body fluids. Paralvinella spp. and Polynoidae. gen. sp. live sympatrically and in areas most affected by vent fluid. In this study, we focused on the digestive tract of Paralvinella spp. and Polynoidae. gen. sp. to examine whether they have spherocrystals. We also investigated the possible involvement of bacteria in the digestive tract in spherulization. Examination with a scanning electron microscope (SEM) equipped with Energy Disperse X-ray Spectroscopy (EDS) detected spherocrystals containing sulfur and iron in the digestive tract of Paralvinella spp. In contrast, such spherocrystals were not observed in that of Polynoidae. gen. sp. although sulfur is detected there by inductively coupled plasma-optical emission spectrometry (ICP-OES). Meta-16S rRNA analysis indicated that the floras of the digestive tracts of the two species were very similar, suggesting that enteric bacteria are not responsible for spherocrystal formation. Analysis of taurine-related compounds indicated that the digestive tissues of Polynoidae. gen. sp. contain a higher amount of hypotaurine and thiotaurine than those of Paralvinella spp. Therefore, the two sympatric polychaetes use different strategies for controlling sulfur, i.e., Paralvinella spp. forms spherocrystals containing elemental sulfur and iron in the digestive tract, but Polynoidae. gen. sp. accumulates taurine-related compounds instead of spherocrystals. Such differences may be related to differences in their lifestyles, i.e., burrow-dweller or free-moving, or may have been acquired phylogenetically in the evolutionary process.
{"title":"Difference in sulfur regulation mechanism between tube-dwelling and free-moving polychaetes sympatrically inhabiting deep-sea hydrothermal chimneys.","authors":"Tomoko Koito, Yusuke Ito, Akihiko Suzuki, Akihiro Tame, Tetsuro Ikuta, Miwa Suzuki, Satoshi Mitsunobu, Makoto Sugimura, Koji Inoue","doi":"10.1186/s40851-023-00218-5","DOIUrl":"10.1186/s40851-023-00218-5","url":null,"abstract":"<p><p>The environment around deep sea hydrothermal vents is characterized by an abundance of sulfur compounds, including toxic hydrogen sulfide. However, numerous communities of various invertebrates are found in it. It is suggested that invertebrates in the vicinity of hydrothermal vents detoxify sulfur compounds by biosynthesis of taurine-related compounds in the body. On the other hand, the vent endemic polychaete Alvinella pompejana has spherocrystals composed of sulfur and other metals in its digestive tract. It was considered that the spherocrystals contribute to the regulation of sulfur in body fluids. Paralvinella spp. and Polynoidae. gen. sp. live sympatrically and in areas most affected by vent fluid. In this study, we focused on the digestive tract of Paralvinella spp. and Polynoidae. gen. sp. to examine whether they have spherocrystals. We also investigated the possible involvement of bacteria in the digestive tract in spherulization. Examination with a scanning electron microscope (SEM) equipped with Energy Disperse X-ray Spectroscopy (EDS) detected spherocrystals containing sulfur and iron in the digestive tract of Paralvinella spp. In contrast, such spherocrystals were not observed in that of Polynoidae. gen. sp. although sulfur is detected there by inductively coupled plasma-optical emission spectrometry (ICP-OES). Meta-16S rRNA analysis indicated that the floras of the digestive tracts of the two species were very similar, suggesting that enteric bacteria are not responsible for spherocrystal formation. Analysis of taurine-related compounds indicated that the digestive tissues of Polynoidae. gen. sp. contain a higher amount of hypotaurine and thiotaurine than those of Paralvinella spp. Therefore, the two sympatric polychaetes use different strategies for controlling sulfur, i.e., Paralvinella spp. forms spherocrystals containing elemental sulfur and iron in the digestive tract, but Polynoidae. gen. sp. accumulates taurine-related compounds instead of spherocrystals. Such differences may be related to differences in their lifestyles, i.e., burrow-dweller or free-moving, or may have been acquired phylogenetically in the evolutionary process.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"18"},"PeriodicalIF":2.7,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1186/s40851-023-00216-7
Atef M Erasha, Mohammed Nazih, Safwat Ali, Mohamed Alsafy, Samir El-Gendy, Ramy K A Sayed
{"title":"Correction: Morphological and radiological mapping of dental cusps in relation to spatial constraints on tooth shape of one humped camel (Camelus dromedarius).","authors":"Atef M Erasha, Mohammed Nazih, Safwat Ali, Mohamed Alsafy, Samir El-Gendy, Ramy K A Sayed","doi":"10.1186/s40851-023-00216-7","DOIUrl":"10.1186/s40851-023-00216-7","url":null,"abstract":"","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"17"},"PeriodicalIF":2.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10160138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.
{"title":"Variation in responses to photoperiods and temperatures in Japanese medaka from different latitudes.","authors":"Ai Shinomiya, Daisuke Adachi, Tsuyoshi Shimmura, Miki Tanikawa, Naoshi Hiramatsu, Shigeho Ijiri, Kiyoshi Naruse, Mitsuru Sakaizumi, Takashi Yoshimura","doi":"10.1186/s40851-023-00215-8","DOIUrl":"https://doi.org/10.1186/s40851-023-00215-8","url":null,"abstract":"<p><p>Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"16"},"PeriodicalIF":2.7,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9912145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.1186/s40851-023-00214-9
Shangjing Tang, Tao Sun, Shuo Liu, Sangdi Luo, Guohua Yu, Lina Du
A new species of the genus Amolops, Amolops ailao sp. nov., is described from central Yunnan, China. The new species belongs to the A. mantzorum species group. Phylogenetic analyses based on the combination of mitochondrial 16S rRNA, COI, and cytb genes revealed that the new species is the sister taxon to Amolops ottorum with strong support. Genetically, the new species differs from A. ottorum by 5.0% in cytb sequences. Morphologically, the new species can be distinguished from known congeners by the combination of the following characters: true dorsolateral folds absent, but dorsolateral folds formed by series of glands present; circummarginal groove on tip of first finger absent; body size small (males SVL 33.0-35.1 mm and female SVL 41.3 mm); HW/SVL 0.32‒0.35; UEW/SVL 0.08‒0.10; THL/SVL 0.52‒0.56; vomerine teeth absent; interorbital distance narrower than internarial distance; tympanum distinct, less than half eye diameter; supratympanic fold present, indistinct; a pair of large tubercles on sides of cloaca; tibiotarsal articulation reaching beyond anterior corner of eye; and vocal sac absent. The cladogenesis events within the A. mantzorum group rapidly occurred from Pliocene 4.23 Mya to Pleistocene 1.2 Mya, coinciding with the recent intensive uplift of the Qinghai-Tibetan Plateau since the Pliocene. Combining findings in this study with the most recent taxonomic progress, we consider that there are 20 known Amolops species in Yunnan, China, accounting for the highest proportion of amphibian diversity of Yunnan, and five of them belong to the A. mantzorum group. Among different subfauna and water systems in Yunnan, the species diversity of Amolops in northwestern Yunnan and Nu River Basin is highest.
{"title":"A new species of cascade frog (Anura: Ranidae: Amolops) from central Yunnan, China.","authors":"Shangjing Tang, Tao Sun, Shuo Liu, Sangdi Luo, Guohua Yu, Lina Du","doi":"10.1186/s40851-023-00214-9","DOIUrl":"https://doi.org/10.1186/s40851-023-00214-9","url":null,"abstract":"<p><p>A new species of the genus Amolops, Amolops ailao sp. nov., is described from central Yunnan, China. The new species belongs to the A. mantzorum species group. Phylogenetic analyses based on the combination of mitochondrial 16S rRNA, COI, and cytb genes revealed that the new species is the sister taxon to Amolops ottorum with strong support. Genetically, the new species differs from A. ottorum by 5.0% in cytb sequences. Morphologically, the new species can be distinguished from known congeners by the combination of the following characters: true dorsolateral folds absent, but dorsolateral folds formed by series of glands present; circummarginal groove on tip of first finger absent; body size small (males SVL 33.0-35.1 mm and female SVL 41.3 mm); HW/SVL 0.32‒0.35; UEW/SVL 0.08‒0.10; THL/SVL 0.52‒0.56; vomerine teeth absent; interorbital distance narrower than internarial distance; tympanum distinct, less than half eye diameter; supratympanic fold present, indistinct; a pair of large tubercles on sides of cloaca; tibiotarsal articulation reaching beyond anterior corner of eye; and vocal sac absent. The cladogenesis events within the A. mantzorum group rapidly occurred from Pliocene 4.23 Mya to Pleistocene 1.2 Mya, coinciding with the recent intensive uplift of the Qinghai-Tibetan Plateau since the Pliocene. Combining findings in this study with the most recent taxonomic progress, we consider that there are 20 known Amolops species in Yunnan, China, accounting for the highest proportion of amphibian diversity of Yunnan, and five of them belong to the A. mantzorum group. Among different subfauna and water systems in Yunnan, the species diversity of Amolops in northwestern Yunnan and Nu River Basin is highest.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"15"},"PeriodicalIF":2.7,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9821972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-19DOI: 10.1186/s40851-023-00213-w
Atef M Erasha, Mohammed Nazih, Safwat Ali, Mohamed Alsafy, Samir El-Gendy, Ramy K A Sayed
A significant extent of researches in veterinary study have been focused on dental structure; however, there are scanty ones on the orientation and identification of their cusps. Therefore, the present article aimed to spot a light on arrangement pattern of dental cusps in the camel as a folivorous and graminivorous animal. This study was conducted on eight heads of adult, healthy camel of both sexes, collected from slaughter houses. To perform exact orientation of cusps of molar teeth, additional radiological and CT scans were performed on the mandible as a landmark that should facilitate the reading of cusps map. It was evident that, the cusps are arranged in crescentic appearance, seledontal form, with two cusps on each side, paracone and hypocone on the lingual surface and protocone and metacone on the vestibular aspect. Thus, camels cannot wear bite like equines, which would interfere with their constant chewing method. The camels' dental cusps provide some of the finest examples of convergent evolution, which offer insights both into correlates between form and function, and into how the ability of euthomorphic cusps in intrapability and stabilization of food items and its comminution between formidable cusps and occlusal spillway in between. Further studies should be done on the brachydontteeth and tropospheric cusps to fill the functional anatomy gap of teeth, in addition to diversity of cusps form. This study is considered a basic comparative anatomical study for normal healthy dentition and forensic practice, in addition to its importance in detection of local aspects of dental problems in camels.
{"title":"Morphological and radiological mapping of dental cusps in relation to spatial constraints on tooth shape of one humped camel (Camelus dromedarius).","authors":"Atef M Erasha, Mohammed Nazih, Safwat Ali, Mohamed Alsafy, Samir El-Gendy, Ramy K A Sayed","doi":"10.1186/s40851-023-00213-w","DOIUrl":"10.1186/s40851-023-00213-w","url":null,"abstract":"<p><p>A significant extent of researches in veterinary study have been focused on dental structure; however, there are scanty ones on the orientation and identification of their cusps. Therefore, the present article aimed to spot a light on arrangement pattern of dental cusps in the camel as a folivorous and graminivorous animal. This study was conducted on eight heads of adult, healthy camel of both sexes, collected from slaughter houses. To perform exact orientation of cusps of molar teeth, additional radiological and CT scans were performed on the mandible as a landmark that should facilitate the reading of cusps map. It was evident that, the cusps are arranged in crescentic appearance, seledontal form, with two cusps on each side, paracone and hypocone on the lingual surface and protocone and metacone on the vestibular aspect. Thus, camels cannot wear bite like equines, which would interfere with their constant chewing method. The camels' dental cusps provide some of the finest examples of convergent evolution, which offer insights both into correlates between form and function, and into how the ability of euthomorphic cusps in intrapability and stabilization of food items and its comminution between formidable cusps and occlusal spillway in between. Further studies should be done on the brachydontteeth and tropospheric cusps to fill the functional anatomy gap of teeth, in addition to diversity of cusps form. This study is considered a basic comparative anatomical study for normal healthy dentition and forensic practice, in addition to its importance in detection of local aspects of dental problems in camels.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"14"},"PeriodicalIF":2.7,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10142245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}