Pub Date : 2023-05-29DOI: 10.1186/s40851-023-00210-z
Kai R Caspar, Lisa Hüttner, Sabine Begall
Numerous hypotheses try to explain the unusual appearance of the human eye with its bright sclera and transparent conjunctiva and how it could have evolved from a dark-eyed phenotype, as is present in many non-human primates. Recently, it has been argued that pigmentation defects induced by self-domestication may have led to bright-eyed ocular phenotypes in humans and some other primate lineages, such as marmosets. However, it has never been systematically studied whether actual domesticated mammals consistently deviate from wild mammals in regard to their conjunctival pigmentation and if this trait might therefore be part of a domestication syndrome. Here, we test this idea by drawing phylogenetically informed comparisons from a photographic dataset spanning 13 domesticated mammal species and their closest living wild relatives (n ≥ 15 photos per taxon). We did not recover significant differences in scleral appearance or irido-scleral contrast between domesticated and wild forms, suggesting that conjunctival depigmentation, unlike cutaneous pigmentation disorders, is not a general correlate of domestication. Regardless of their domestication status, macroscopically depigmented conjunctivae were observed in carnivorans and lagomorphs, whereas ungulates generally displayed darker eyes. For some taxa, we observed pronounced intraspecific variation, which should be addressed in more exhaustive future studies. Based on our dataset, we also present preliminary evidence for a general increase of conjunctival pigmentation with eye size in mammals. Our findings suggest that conjunctival depigmentation in humans is not a byproduct of self-domestication, even if we assume that our species has undergone such a process in its recent evolutionary history.
许多假说试图解释人类眼睛明亮的巩膜和透明的结膜这种不寻常的外观,以及它是如何从许多非人灵长类动物的黑眼表型进化而来的。最近有观点认为,自我驯化引起的色素沉着缺陷可能导致了人类和其他一些灵长类动物(如狨猴)的明眸表型。然而,人们从未系统地研究过实际驯化的哺乳动物是否在结膜色素沉着方面一直与野生哺乳动物存在差异,以及这一特征是否可能因此成为驯化综合征的一部分。在这里,我们通过对 13 种驯化哺乳动物及其最接近的野生近亲(每个类群 n ≥ 15 张照片)的照片数据集进行系统发育比较,来验证这一观点。我们没有发现巩膜外观或虹膜-巩膜对比度在驯化和野生形式之间存在明显差异,这表明结膜色素沉着与皮肤色素沉着疾病不同,并不是驯化的普遍相关因素。无论其驯化状态如何,肉食动物和袋鼬的结膜都会出现宏观色素沉着,而有蹄类动物的眼睛通常颜色较深。在某些类群中,我们观察到了明显的种内差异,这应该在今后更详尽的研究中加以解决。根据我们的数据集,我们还提出了哺乳动物结膜色素随眼睛大小而普遍增加的初步证据。我们的研究结果表明,人类的结膜色素沉着并不是自我驯化的副产品,即使我们假设我们的物种在最近的进化史中经历了这样一个过程。
{"title":"Scleral appearance is not a correlate of domestication in mammals.","authors":"Kai R Caspar, Lisa Hüttner, Sabine Begall","doi":"10.1186/s40851-023-00210-z","DOIUrl":"10.1186/s40851-023-00210-z","url":null,"abstract":"<p><p>Numerous hypotheses try to explain the unusual appearance of the human eye with its bright sclera and transparent conjunctiva and how it could have evolved from a dark-eyed phenotype, as is present in many non-human primates. Recently, it has been argued that pigmentation defects induced by self-domestication may have led to bright-eyed ocular phenotypes in humans and some other primate lineages, such as marmosets. However, it has never been systematically studied whether actual domesticated mammals consistently deviate from wild mammals in regard to their conjunctival pigmentation and if this trait might therefore be part of a domestication syndrome. Here, we test this idea by drawing phylogenetically informed comparisons from a photographic dataset spanning 13 domesticated mammal species and their closest living wild relatives (n ≥ 15 photos per taxon). We did not recover significant differences in scleral appearance or irido-scleral contrast between domesticated and wild forms, suggesting that conjunctival depigmentation, unlike cutaneous pigmentation disorders, is not a general correlate of domestication. Regardless of their domestication status, macroscopically depigmented conjunctivae were observed in carnivorans and lagomorphs, whereas ungulates generally displayed darker eyes. For some taxa, we observed pronounced intraspecific variation, which should be addressed in more exhaustive future studies. Based on our dataset, we also present preliminary evidence for a general increase of conjunctival pigmentation with eye size in mammals. Our findings suggest that conjunctival depigmentation in humans is not a byproduct of self-domestication, even if we assume that our species has undergone such a process in its recent evolutionary history.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"12"},"PeriodicalIF":1.7,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9923743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1186/s40851-023-00209-6
Philippe J R Kok
The hemiphractid frog genus Stefania is one of the many ancient (near-) endemic lineages of vertebrates inhabiting the biodiverse Pantepui biogeographical region in the Guiana Shield Highlands of northern South America-the famous "Lost World" of Arthur Conan Doyle. Previous molecular analyses of the genus Stefania have indicated that species boundaries and phylogenetic relationships are often incongruent with morphological traits in that clade. A substantial number of "taxonomically cryptic" species, often microendemic, remain to be described. This is notably the case for an isolated population from the summit of Wei-Assipu-tepui, a small table-top mountain at the border between Guyana and Brazil. That population was previously known as Stefania sp. 6 and belongs to the S. riveroi clade. The new species is phylogenetically distinct, but phenotypically extremely similar to S. riveroi, a taxon found only on the summit of Yuruaní-tepui in Venezuela and recovered as sister to all the other known species in the S. riveroi clade. The new taxon is described based on morphology and osteology. Data about genetic divergences within the S. riveroi clade are provided. A new synapomorphy for the genus Stefania is proposed: the presence of a distal process on the third metacarpal. Amended definitions are offered for the three other species in the S. riveroi clade (S. ayangannae, S. coxi, S. riveroi). The new species should be listed as Critically Endangered according to IUCN criteria.
半肢蛙属Stefania是居住在南美洲北部圭亚那盾状高地生物多样性的Pantepui生物地理区域的许多古老(近)特有的脊椎动物谱系之一,这是亚瑟·柯南·道尔著名的“失落的世界”。以前的分子分析表明,种边界和系统发育关系往往与该分支的形态特征不一致。相当数量的“分类上的隐种”,通常是微地方性的,仍然有待描述。在圭亚那和巴西边境的一座小平顶山Wei-Assipu-tepui山顶上,一个与世隔绝的种群尤其如此。这个种群以前被称为Stefania sp. 6,属于S. riveroi分支。这个新物种在系统发育上是不同的,但在表型上与S. riveroi非常相似,S. riveroi是一个只在委内瑞拉Yuruaní-tepui山顶发现的分类群,是S. riveroi分支中所有其他已知物种的姐妹。根据形态学和骨学对新分类群进行了描述。提供了S. riveroi分支内遗传分化的数据。提出了一种新的剑麻属的突触形态:在第三掌骨上有一个远端突。对S. ayangannae, S. coxi, S. riveroi分支中另外三个种的定义进行了修正。根据世界自然保护联盟的标准,这些新物种应该被列为极度濒危物种。
{"title":"Bones and all: a new critically endangered Pantepui species of Stefania (Anura: Hemiphractidae) and a new osteological synapomorphy for the genus.","authors":"Philippe J R Kok","doi":"10.1186/s40851-023-00209-6","DOIUrl":"https://doi.org/10.1186/s40851-023-00209-6","url":null,"abstract":"<p><p>The hemiphractid frog genus Stefania is one of the many ancient (near-) endemic lineages of vertebrates inhabiting the biodiverse Pantepui biogeographical region in the Guiana Shield Highlands of northern South America-the famous \"Lost World\" of Arthur Conan Doyle. Previous molecular analyses of the genus Stefania have indicated that species boundaries and phylogenetic relationships are often incongruent with morphological traits in that clade. A substantial number of \"taxonomically cryptic\" species, often microendemic, remain to be described. This is notably the case for an isolated population from the summit of Wei-Assipu-tepui, a small table-top mountain at the border between Guyana and Brazil. That population was previously known as Stefania sp. 6 and belongs to the S. riveroi clade. The new species is phylogenetically distinct, but phenotypically extremely similar to S. riveroi, a taxon found only on the summit of Yuruaní-tepui in Venezuela and recovered as sister to all the other known species in the S. riveroi clade. The new taxon is described based on morphology and osteology. Data about genetic divergences within the S. riveroi clade are provided. A new synapomorphy for the genus Stefania is proposed: the presence of a distal process on the third metacarpal. Amended definitions are offered for the three other species in the S. riveroi clade (S. ayangannae, S. coxi, S. riveroi). The new species should be listed as Critically Endangered according to IUCN criteria.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"11"},"PeriodicalIF":2.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9526067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-18DOI: 10.1186/s40851-023-00207-8
Alberto Ugolini, Takahiko Hariyama, David C Wilcockson, Luca Mercatelli
It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea-land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.
{"title":"The use of polarized light in the zonal orientation of the sandhopper Talitrus saltator (Montagu).","authors":"Alberto Ugolini, Takahiko Hariyama, David C Wilcockson, Luca Mercatelli","doi":"10.1186/s40851-023-00207-8","DOIUrl":"https://doi.org/10.1186/s40851-023-00207-8","url":null,"abstract":"<p><p>It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea-land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"10"},"PeriodicalIF":2.7,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To address how organisms adapt to a new environment, subterranean organisms whose ancestors colonized subterranean habitats from surface habitats have been studied. Photoreception abilities have been shown to have degenerated in organisms living in caves and calcrete aquifers. Meanwhile, the organisms living in a shallow subterranean environment, which are inferred to reflect an intermediate stage in an evolutionary pathway to colonization of a deeper subterranean environment, have not been studied well. In the present study, we examined the photoreception ability in a trechine beetle, Trechiama kuznetsovi, which inhabits the upper hypogean zone and has a vestigial compound eye. By de novo assembly of genome and transcript sequences, we were able to identify photoreceptor genes and phototransduction genes. Specifically, we focused on opsin genes, where one long wavelength opsin gene and one ultraviolet opsin gene were identified. The encoded amino acid sequences had neither a premature stop codon nor a frameshift mutation, and appeared to be subject to purifying selection. Subsequently, we examined the internal structure of the compound eye and nerve tissue in the adult head, and found potential photoreceptor cells in the compound eye and nerve bundle connected to the brain. The present findings suggest that T. kuznetsovi has retained the ability of photoreception. This species represents a transitional stage of vision, in which the compound eye regresses, but it may retain the ability of photoreception using the vestigial eye.
{"title":"Photoreceptor genes in a trechine beetle, Trechiama kuznetsovi, living in the upper hypogean zone.","authors":"Takuma Niida, Yuto Terashima, Hitoshi Aonuma, Shigeyuki Koshikawa","doi":"10.1186/s40851-023-00208-7","DOIUrl":"10.1186/s40851-023-00208-7","url":null,"abstract":"<p><p>To address how organisms adapt to a new environment, subterranean organisms whose ancestors colonized subterranean habitats from surface habitats have been studied. Photoreception abilities have been shown to have degenerated in organisms living in caves and calcrete aquifers. Meanwhile, the organisms living in a shallow subterranean environment, which are inferred to reflect an intermediate stage in an evolutionary pathway to colonization of a deeper subterranean environment, have not been studied well. In the present study, we examined the photoreception ability in a trechine beetle, Trechiama kuznetsovi, which inhabits the upper hypogean zone and has a vestigial compound eye. By de novo assembly of genome and transcript sequences, we were able to identify photoreceptor genes and phototransduction genes. Specifically, we focused on opsin genes, where one long wavelength opsin gene and one ultraviolet opsin gene were identified. The encoded amino acid sequences had neither a premature stop codon nor a frameshift mutation, and appeared to be subject to purifying selection. Subsequently, we examined the internal structure of the compound eye and nerve tissue in the adult head, and found potential photoreceptor cells in the compound eye and nerve bundle connected to the brain. The present findings suggest that T. kuznetsovi has retained the ability of photoreception. This species represents a transitional stage of vision, in which the compound eye regresses, but it may retain the ability of photoreception using the vestigial eye.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"9"},"PeriodicalIF":1.7,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9460253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-07DOI: 10.1186/s40851-023-00206-9
Yu-Jen Kuo, Ya-Fu Lee, Yen-Min Kuo, Yik Ling Tai
Animals may show consistent among-individual behavioral differences over time and in different contexts, and these tendencies may be correlated to one another and emerge as behavioral syndromes. The cross-context variation in these behavioral tendencies, however, is rarely explored with animals in contexts associated with different locomotion modes. This study assessed the variation and repeatability in behavioral traits of bent-wing bats Miniopterus fuliginosus in southern Taiwan, and the effects of contextual settings associated with locomotion mode. The bats were sampled in the dry winter season, and their behaviors were measured in hole-board box (HB) and tunnel box (TB) tests, both suited for quadrupedal movements of the bats, and flight-tent (FT) tests that allowed for flying behaviors. The bats in the FT tests showed more interindividual and between-trial behavioral variation than those in the HB and TB tests. Nearly all of the behaviors in the TB and FT tests, but only half of those in the HB tests, showed medium to high repeatability. These repeatable behaviors were grouped into distinct behavioral traits of boldness, activity, and exploration, which were correlated to one another across contexts. In addition, we observed a consistently higher correlation between behavioral categories across the HB and TB contexts than between either of these contexts and the FT context. The results indicate consistent among-individual behavioral differences across time and contexts in wildly caught bent-wing bats. The findings of behavioral repeatability and cross-context correlations also indicate context-dependent variation and suggest that test devices which allow for flight behaviors, such as flight tents or cages, may provide a more suitable setting for measuring the behaviors and animal personalities of bats, particularly for those species that display less or little quadrupedal movements.
{"title":"Context-specific variation and repeatability in behavioral traits of bent-wing bats.","authors":"Yu-Jen Kuo, Ya-Fu Lee, Yen-Min Kuo, Yik Ling Tai","doi":"10.1186/s40851-023-00206-9","DOIUrl":"https://doi.org/10.1186/s40851-023-00206-9","url":null,"abstract":"<p><p>Animals may show consistent among-individual behavioral differences over time and in different contexts, and these tendencies may be correlated to one another and emerge as behavioral syndromes. The cross-context variation in these behavioral tendencies, however, is rarely explored with animals in contexts associated with different locomotion modes. This study assessed the variation and repeatability in behavioral traits of bent-wing bats Miniopterus fuliginosus in southern Taiwan, and the effects of contextual settings associated with locomotion mode. The bats were sampled in the dry winter season, and their behaviors were measured in hole-board box (HB) and tunnel box (TB) tests, both suited for quadrupedal movements of the bats, and flight-tent (FT) tests that allowed for flying behaviors. The bats in the FT tests showed more interindividual and between-trial behavioral variation than those in the HB and TB tests. Nearly all of the behaviors in the TB and FT tests, but only half of those in the HB tests, showed medium to high repeatability. These repeatable behaviors were grouped into distinct behavioral traits of boldness, activity, and exploration, which were correlated to one another across contexts. In addition, we observed a consistently higher correlation between behavioral categories across the HB and TB contexts than between either of these contexts and the FT context. The results indicate consistent among-individual behavioral differences across time and contexts in wildly caught bent-wing bats. The findings of behavioral repeatability and cross-context correlations also indicate context-dependent variation and suggest that test devices which allow for flight behaviors, such as flight tents or cages, may provide a more suitable setting for measuring the behaviors and animal personalities of bats, particularly for those species that display less or little quadrupedal movements.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"8"},"PeriodicalIF":2.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-18DOI: 10.1186/s40851-023-00205-w
Neveen E R El-Bakary, Mohamed A M Alsafy, Samir A A El-Gendy, Samar M Ez Elarab
Background: The retinae of diurnal vertebrates have characteristics. Most lizards are strictly diurnal, and their retinal morphology is still unknown.
Materials and methods: The retina of the African five-lined skink (Trachylepis quinquetaeniata) was studied using light and transmission electron microscopy.
Results: The retina's ten layers were all detected. The inner nuclear layer was the thickest by an average of 67.66 μm, and the inner plexiform layer was 57.564 μm. There were elliptical, long cylindrical, and spherical melanosomes (small and large) in the pigment epithelial layer of the retina. The cylindrical melanosomes had a large area on the lateral surfaces of cones to increase light scatter absorption. The photoreceptor layer of the retina had cones only. There were single and double cones, with the double cones consisting of principal and accessory cones. The cones had inner and outer segments separated by oil droplets. A spherical paraboloid body existed between the limiting membrane and the ellipsoid. All single cones had a paraboloid, and double cones had a large paraboloid in the accessory cone. The presence of paraboloids and large ellipsoids with mitochondria of varying sizes may have helped focus the light on cone segments.
Conclusion: The African five-lined skink's eye was light-adapted due to a variety of retinal specializations related to the demands of its diurnal lifestyle in its environment.
{"title":"New insights into the retinal microstructure-diurnal activity relationship in the African five-lined skink (Trachylepis quinquetaeniata) (Lichtenstein, 1823).","authors":"Neveen E R El-Bakary, Mohamed A M Alsafy, Samir A A El-Gendy, Samar M Ez Elarab","doi":"10.1186/s40851-023-00205-w","DOIUrl":"https://doi.org/10.1186/s40851-023-00205-w","url":null,"abstract":"<p><strong>Background: </strong>The retinae of diurnal vertebrates have characteristics. Most lizards are strictly diurnal, and their retinal morphology is still unknown.</p><p><strong>Materials and methods: </strong>The retina of the African five-lined skink (Trachylepis quinquetaeniata) was studied using light and transmission electron microscopy.</p><p><strong>Results: </strong>The retina's ten layers were all detected. The inner nuclear layer was the thickest by an average of 67.66 μm, and the inner plexiform layer was 57.564 μm. There were elliptical, long cylindrical, and spherical melanosomes (small and large) in the pigment epithelial layer of the retina. The cylindrical melanosomes had a large area on the lateral surfaces of cones to increase light scatter absorption. The photoreceptor layer of the retina had cones only. There were single and double cones, with the double cones consisting of principal and accessory cones. The cones had inner and outer segments separated by oil droplets. A spherical paraboloid body existed between the limiting membrane and the ellipsoid. All single cones had a paraboloid, and double cones had a large paraboloid in the accessory cone. The presence of paraboloids and large ellipsoids with mitochondria of varying sizes may have helped focus the light on cone segments.</p><p><strong>Conclusion: </strong>The African five-lined skink's eye was light-adapted due to a variety of retinal specializations related to the demands of its diurnal lifestyle in its environment.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"7"},"PeriodicalIF":2.7,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9199032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lungfish are the most closely related fish to tetrapods. The olfactory organ of lungfish contains lamellae and abundant recesses at the base of lamellae. Based on the ultrastructural and histochemical characteristics, the lamellar olfactory epithelium (OE), covering the surface of lamellae, and the recess epithelium, contained in the recesses, are thought to correspond to the OE of teleosts and the vomeronasal organ (VNO) of tetrapods. With increasing body size, the recesses increase in number and distribution range in the olfactory organ. In tetrapods, the expression of olfactory receptors is different between the OE and VNO; for instance, the type 1 vomeronasal receptor (V1R) is expressed only in the OE in amphibians and mainly in the VNO in mammals. We recently reported that V1R-expressing cells are contained mainly in the lamellar OE but also rarely in the recess epithelium in the olfactory organ of lungfish of approximately 30 cm body length. However, it is unclear whether the distribution of V1R-expressing cells in the olfactory organ varies during development. In this study, we compared the expression of V1Rs in the olfactory organs between juveniles and adults of the African lungfish Protopterus aethiopicus and South American lungfish, Lepidosiren paradoxa. The density of V1R-expressing cells was higher in the lamellae than in the recesses in all specimens evaluated, and this pattern was more pronounced in juveniles than adults. In addition, the juveniles showed a higher density of V1R-expressing cells in the lamellae compared with the adults. Our results imply that differences in lifestyle between juveniles and adults are related to differences in the density of V1R-expressing cells in the lamellae of lungfish.
{"title":"Type 1 vomeronasal receptor expression in juvenile and adult lungfish olfactory organ.","authors":"Shoko Nakamuta, Yoshio Yamamoto, Masao Miyazaki, Atsuhiro Sakuma, Masato Nikaido, Nobuaki Nakamuta","doi":"10.1186/s40851-023-00202-z","DOIUrl":"https://doi.org/10.1186/s40851-023-00202-z","url":null,"abstract":"<p><p>Lungfish are the most closely related fish to tetrapods. The olfactory organ of lungfish contains lamellae and abundant recesses at the base of lamellae. Based on the ultrastructural and histochemical characteristics, the lamellar olfactory epithelium (OE), covering the surface of lamellae, and the recess epithelium, contained in the recesses, are thought to correspond to the OE of teleosts and the vomeronasal organ (VNO) of tetrapods. With increasing body size, the recesses increase in number and distribution range in the olfactory organ. In tetrapods, the expression of olfactory receptors is different between the OE and VNO; for instance, the type 1 vomeronasal receptor (V1R) is expressed only in the OE in amphibians and mainly in the VNO in mammals. We recently reported that V1R-expressing cells are contained mainly in the lamellar OE but also rarely in the recess epithelium in the olfactory organ of lungfish of approximately 30 cm body length. However, it is unclear whether the distribution of V1R-expressing cells in the olfactory organ varies during development. In this study, we compared the expression of V1Rs in the olfactory organs between juveniles and adults of the African lungfish Protopterus aethiopicus and South American lungfish, Lepidosiren paradoxa. The density of V1R-expressing cells was higher in the lamellae than in the recesses in all specimens evaluated, and this pattern was more pronounced in juveniles than adults. In addition, the juveniles showed a higher density of V1R-expressing cells in the lamellae compared with the adults. Our results imply that differences in lifestyle between juveniles and adults are related to differences in the density of V1R-expressing cells in the lamellae of lungfish.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"6"},"PeriodicalIF":2.7,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9092112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metazoans have several mechanisms of internal defense for their survival. The internal defense system evolved alongside the organisms. Annelidae have circulating coelomocytes that perform functions comparable to the phagocytic immune cells of vertebrates. Several studies have shown that these cells are involved in phagocytosis, opsonization, and pathogen recognition processes. Like vertebrate macrophages, these circulating cells that permeate organs from the coelomic cavity capture or encapsulate pathogens, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, they produce a range of bioactive proteins involved in immune response and perform detoxification functions through their lysosomal system. Coelomocytes can also participate in lithic reactions against target cells and the release of antimicrobial peptides. Our study immunohistochemically identify coelomocytes of Lumbricus terrestris scattered in the epidermal and the connective layer below, both in the longitudinal and in the smooth muscle layer, immunoreactive for TLR2, CD14 and α-Tubulin for the first time. TLR2 and CD14 are not fully colocalized with each other, suggesting that these coelomocytes may belong to two distinct families. The expression of these immune molecules on Annelidae coelomocytes confirms their crucial role in the internal defense system of these Oligochaeta protostomes, suggesting a phylogenetic conservation of these receptors. These data could provide further insights into the understanding of the internal defense system of the Annelida and of the complex mechanisms of the immune system in vertebrates.
{"title":"Coelomocytes of the Oligochaeta earthworm Lumbricus terrestris (Linnaeus, 1758) as evolutionary key of defense: a morphological study.","authors":"Alessio Alesci, Gioele Capillo, Angelo Fumia, Marco Albano, Emmanuele Messina, Nunziacarla Spanò, Simona Pergolizzi, Eugenia Rita Lauriano","doi":"10.1186/s40851-023-00203-y","DOIUrl":"https://doi.org/10.1186/s40851-023-00203-y","url":null,"abstract":"<p><p>Metazoans have several mechanisms of internal defense for their survival. The internal defense system evolved alongside the organisms. Annelidae have circulating coelomocytes that perform functions comparable to the phagocytic immune cells of vertebrates. Several studies have shown that these cells are involved in phagocytosis, opsonization, and pathogen recognition processes. Like vertebrate macrophages, these circulating cells that permeate organs from the coelomic cavity capture or encapsulate pathogens, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, they produce a range of bioactive proteins involved in immune response and perform detoxification functions through their lysosomal system. Coelomocytes can also participate in lithic reactions against target cells and the release of antimicrobial peptides. Our study immunohistochemically identify coelomocytes of Lumbricus terrestris scattered in the epidermal and the connective layer below, both in the longitudinal and in the smooth muscle layer, immunoreactive for TLR2, CD14 and α-Tubulin for the first time. TLR2 and CD14 are not fully colocalized with each other, suggesting that these coelomocytes may belong to two distinct families. The expression of these immune molecules on Annelidae coelomocytes confirms their crucial role in the internal defense system of these Oligochaeta protostomes, suggesting a phylogenetic conservation of these receptors. These data could provide further insights into the understanding of the internal defense system of the Annelida and of the complex mechanisms of the immune system in vertebrates.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"5"},"PeriodicalIF":2.7,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9083143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-23DOI: 10.1186/s40851-023-00204-x
Yurika Uno, Tatsuya Hirasawa
Avian wings as organs for aerial locomotion are furnished with a highly specialized musculoskeletal system compared with the forelimbs of other tetrapod vertebrates. Among the specializations, the propatagium, which accompanies a skeletal muscle spanning between the shoulder and wrist on the leading edge of the wing, represents an evolutionary novelty established at a certain point in the lineage toward crown birds. However, because of the rarity of soft-tissue preservation in the fossil record, the evolutionary origin of the avian propatagium has remained elusive. Here we focus on articulated skeletons in the fossil record to show that angles of elbow joints in fossils are indicators of the propatagium in extant lineages of diapsids (crown birds and non-dinosaurian diapsids), and then use this relationship to narrow down the phylogenetic position acquiring the propatagium to the common ancestor of maniraptorans. Our analyses support the hypothesis that the preserved propatagium-like soft tissues in non-avian theropod dinosaurs (oviraptorosaurian Caudipteryx and dromaeosaurian Microraptor) are homologous with the avian propatagium, and indicate that all maniraptoran dinosaurs likely possessed the propatagium even before the origin of flight. On the other hand, the preserved angles of wrist joints in non-avian theropods are significantly greater than those in birds, suggesting that the avian interlocking wing-folding mechanism involving the ulna and radius had not fully evolved in non-avian theropods. Our study underscores that the avian wing was acquired through modifications of preexisting structures including the feather and propatagium.
{"title":"Origin of the propatagium in non-avian dinosaurs.","authors":"Yurika Uno, Tatsuya Hirasawa","doi":"10.1186/s40851-023-00204-x","DOIUrl":"https://doi.org/10.1186/s40851-023-00204-x","url":null,"abstract":"<p><p>Avian wings as organs for aerial locomotion are furnished with a highly specialized musculoskeletal system compared with the forelimbs of other tetrapod vertebrates. Among the specializations, the propatagium, which accompanies a skeletal muscle spanning between the shoulder and wrist on the leading edge of the wing, represents an evolutionary novelty established at a certain point in the lineage toward crown birds. However, because of the rarity of soft-tissue preservation in the fossil record, the evolutionary origin of the avian propatagium has remained elusive. Here we focus on articulated skeletons in the fossil record to show that angles of elbow joints in fossils are indicators of the propatagium in extant lineages of diapsids (crown birds and non-dinosaurian diapsids), and then use this relationship to narrow down the phylogenetic position acquiring the propatagium to the common ancestor of maniraptorans. Our analyses support the hypothesis that the preserved propatagium-like soft tissues in non-avian theropod dinosaurs (oviraptorosaurian Caudipteryx and dromaeosaurian Microraptor) are homologous with the avian propatagium, and indicate that all maniraptoran dinosaurs likely possessed the propatagium even before the origin of flight. On the other hand, the preserved angles of wrist joints in non-avian theropods are significantly greater than those in birds, suggesting that the avian interlocking wing-folding mechanism involving the ulna and radius had not fully evolved in non-avian theropods. Our study underscores that the avian wing was acquired through modifications of preexisting structures including the feather and propatagium.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"4"},"PeriodicalIF":2.7,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9334112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reproductive biology is an important topic that is well explored in many vertebrates, but information about frogs' reproductive mechanisms could be improved. Therefore, this review aims to provide organized and specific information on frog reproduction. First, we developed schemes that illustrate the general information regarding reproductive biological mechanisms in frogs in a specific way. Then, we described the physiological, histological, and morphological mechanisms of each organ of the reproductive system of male and female frogs. Finally, this manuscript may contribute to a broader understanding of anuran reproductive biology. Since, understanding frogs' reproductive system permits one to make a comparison with reproduction with other anurans.
{"title":"A review of the reproductive system in anuran amphibians.","authors":"Maribel Méndez-Tepepa, Cuauhtémoc Morales-Cruz, Edelmira García-Nieto, Arely Anaya-Hernández","doi":"10.1186/s40851-023-00201-0","DOIUrl":"10.1186/s40851-023-00201-0","url":null,"abstract":"<p><p>Reproductive biology is an important topic that is well explored in many vertebrates, but information about frogs' reproductive mechanisms could be improved. Therefore, this review aims to provide organized and specific information on frog reproduction. First, we developed schemes that illustrate the general information regarding reproductive biological mechanisms in frogs in a specific way. Then, we described the physiological, histological, and morphological mechanisms of each organ of the reproductive system of male and female frogs. Finally, this manuscript may contribute to a broader understanding of anuran reproductive biology. Since, understanding frogs' reproductive system permits one to make a comparison with reproduction with other anurans.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"9 1","pages":"3"},"PeriodicalIF":1.7,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}