Pub Date : 2024-09-19DOI: 10.1016/j.tig.2024.07.008
Michiel Vos, Angus Buckling, Bram Kuijper, Adam Eyre-Walker, Cyril Bontemps, Pierre Leblond, Tatiana Dimitriu
The prokaryote world is replete with mobile genetic elements (MGEs) – self-replicating entities that can move within and between their hosts. Many MGEs not only transfer their own DNA to new hosts but also transfer host DNA located elsewhere on the chromosome in the process. This could potentially lead to indirect benefits to the host when the resulting increase in chromosomal variation results in more efficient natural selection. We review the diverse ways in which MGEs promote the transfer of host DNA and explore the benefits and costs to MGEs and hosts. In many cases, MGE-mediated transfer of host DNA might not be selected for because of a sex function, but evidence of MGE domestication suggests that there may be host benefits of MGE-mediated sex.
原核生物界充满了移动遗传因子(MGEs)--可以在宿主体内和宿主之间移动的自我复制实体。许多移动遗传因子不仅会将自身的 DNA 转移到新的宿主身上,还会在此过程中将宿主染色体上其他位置的 DNA 转移到新的宿主身上。当染色体变异的增加导致更有效的自然选择时,这可能会给宿主带来间接的好处。我们回顾了MGEs促进宿主DNA转移的各种方式,并探讨了MGEs和宿主的收益和成本。在许多情况下,MGE介导的宿主DNA转移可能不会因为性功能而被选择,但MGE驯化的证据表明,MGE介导的性可能会给宿主带来益处。
{"title":"Why do mobile genetic elements transfer DNA of their hosts?","authors":"Michiel Vos, Angus Buckling, Bram Kuijper, Adam Eyre-Walker, Cyril Bontemps, Pierre Leblond, Tatiana Dimitriu","doi":"10.1016/j.tig.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.008","url":null,"abstract":"<p>The prokaryote world is replete with mobile genetic elements (MGEs) – self-replicating entities that can move within and between their hosts. Many MGEs not only transfer their own DNA to new hosts but also transfer host DNA located elsewhere on the chromosome in the process. This could potentially lead to indirect benefits to the host when the resulting increase in chromosomal variation results in more efficient natural selection. We review the diverse ways in which MGEs promote the transfer of host DNA and explore the benefits and costs to MGEs and hosts. In many cases, MGE-mediated transfer of host DNA might not be selected for because of a sex function, but evidence of MGE domestication suggests that there may be host benefits of MGE-mediated sex.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"6 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.tig.2024.08.006
Andrew Urquhart, Aaron A. Vogan, Emile Gluck-Thaler
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
可转座元件(Transposable elements,TEs)是在基因组中增殖的半自主遗传实体。我们最近发现了 "星船"(Starships),这是一个以前隐藏的巨型可转座元件超家族,存在于丝状真菌的一个不同亚门--Pezizomycotina中。Starships与其他真核生物TE不同,因为它们进化出了调动整个基因(包括编码条件性有益表型的基因)和在个体间水平转移的机制。我们认为,星船具有无与伦比的能力,能以基因寄生虫和互惠者的身份与真菌宿主接触,为研究 TE 与真核生物相互作用的生态进化动态揭示了尚未开发的领域。我们在现有真菌基因组进化模型的基础上,将星舰概念化为一个独特的基因组区室,其动态变化深刻地影响着真菌生物学。
{"title":"Starships: a new frontier for fungal biology","authors":"Andrew Urquhart, Aaron A. Vogan, Emile Gluck-Thaler","doi":"10.1016/j.tig.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.006","url":null,"abstract":"<p>Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the <em>Starships</em>, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the <em>Pezizomycotina</em>. <em>Starships</em> are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that <em>Starships</em> have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing <em>Starships</em> as a distinct genomic compartment whose dynamics profoundly shape fungal biology.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"26 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1016/j.tig.2024.08.008
Wanding Zhou, Yitzhak Reizel
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
在高阶真核生物中,DNA甲基化作为一种表观遗传标记的有丝分裂遗传性已经确立了40年。现在,DNA甲基化组与有丝分裂的相互作用被认为是双向的、高度交织的。各种表观遗传撰写器、擦除器和调节器形成了可感知的复制甲基化动态。本综述探讨了DNA甲基化有丝分裂传递的原理和复杂性,强调了在分析发育和疾病中DNA甲基化动态时对有丝分裂老化的认识。我们回顾了 DNA 甲基化变化如何改变有丝分裂增殖能力,并与癌症等与年龄相关的疾病有关。我们将复制表突变与干细胞功能障碍、炎症反应、癌症风险和表观遗传时钟联系起来,讨论了 DNA 甲基化在健康和疾病中的致病作用。
{"title":"On correlative and causal links of replicative epimutations","authors":"Wanding Zhou, Yitzhak Reizel","doi":"10.1016/j.tig.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.008","url":null,"abstract":"<p>The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"4 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.tig.2024.07.009
David G. King
Tandem-repeat DNA sequences appear to be singularly capable of yielding abundant repeat-number mutations with a potentially advantageous distribution of fitness effects. Although knowing the rates and relative proportions of deleterious, neutral and beneficial mutations is fundamental for understanding evolvability, analysis of adaptation routinely overlooks small-effect mutations arising in tandem repeats.
串联重复 DNA 序列似乎是唯一能够产生大量重复数突变的序列,这些突变具有潜在的有利适应效应分布。虽然了解有害突变、中性突变和有益突变的发生率和相对比例是了解进化性的基础,但对适应性的分析通常会忽略串联重复序列中产生的小效应突变。
{"title":"Evolving a favorable distribution for mutation effects","authors":"David G. King","doi":"10.1016/j.tig.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.009","url":null,"abstract":"<p>Tandem-repeat DNA sequences appear to be singularly capable of yielding abundant repeat-number mutations with a potentially advantageous distribution of fitness effects. Although knowing the rates and relative proportions of deleterious, neutral and beneficial mutations is fundamental for understanding evolvability, analysis of adaptation routinely overlooks small-effect mutations arising in tandem repeats.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"22 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.tig.2024.08.004
Haibin Zhang, Yang Zhou, Zhuo Yang
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
{"title":"Genetic adaptations of marine invertebrates to hydrothermal vent habitats","authors":"Haibin Zhang, Yang Zhou, Zhuo Yang","doi":"10.1016/j.tig.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.004","url":null,"abstract":"<p>Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"27 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.tig.2024.08.005
Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos
Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells – self-renewal and differentiation – are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.
{"title":"Hypertranscription: the invisible hand in stem cell biology","authors":"Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos","doi":"10.1016/j.tig.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.005","url":null,"abstract":"<p>Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells – self-renewal and differentiation – are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"219 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.tig.2024.08.011
Hugo Darras, Qiaowei Pan
Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by Lacy et al. identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.
{"title":"Clonal ants reveal a potentially hidden meiotic feature","authors":"Hugo Darras, Qiaowei Pan","doi":"10.1016/j.tig.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.011","url":null,"abstract":"<p>Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by <span><span>Lacy <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"14 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.tig.2024.08.003
Sheetal Modi
How we work affects what we achieve. In this piece, we provide a project management toolkit for students to apply to their research, offering a structure to set goals, manage risks, prioritize work, and make effective decisions. With good planning, students can improve outcomes and make their journey more rewarding.
{"title":"Achieve your research goals: a project management toolkit for graduate studies","authors":"Sheetal Modi","doi":"10.1016/j.tig.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.003","url":null,"abstract":"<p>How we work affects what we achieve. In this piece, we provide a project management toolkit for students to apply to their research, offering a structure to set goals, manage risks, prioritize work, and make effective decisions. With good planning, students can improve outcomes and make their journey more rewarding.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"1 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1016/s0168-9525(24)00191-4
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0168-9525(24)00191-4","DOIUrl":"https://doi.org/10.1016/s0168-9525(24)00191-4","url":null,"abstract":"No Abstract","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"8 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1016/s0168-9525(24)00188-4
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0168-9525(24)00188-4","DOIUrl":"https://doi.org/10.1016/s0168-9525(24)00188-4","url":null,"abstract":"No Abstract","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"98 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}