Pub Date : 2025-01-01Epub Date: 2024-10-22DOI: 10.1016/j.tig.2024.09.008
Haoran Cai, Diogo Melo, David L Des Marais
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
{"title":"Disentangling variational bias: the roles of development, mutation, and selection.","authors":"Haoran Cai, Diogo Melo, David L Des Marais","doi":"10.1016/j.tig.2024.09.008","DOIUrl":"10.1016/j.tig.2024.09.008","url":null,"abstract":"<p><p>The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"23-32"},"PeriodicalIF":13.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
{"title":"Dosage compensation in non-model insects - progress and perspectives.","authors":"Agata Izabela Kalita, Claudia Isabelle Keller Valsecchi","doi":"10.1016/j.tig.2024.08.010","DOIUrl":"10.1016/j.tig.2024.08.010","url":null,"abstract":"<p><p>In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"76-98"},"PeriodicalIF":13.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-25DOI: 10.1016/j.tig.2024.09.009
Lisette Payero, Eric Alani
Crossing over between homologous chromosomes in meiosis is essential in most eukaryotes to produce gametes with the correct ploidy. Meiotic crossovers are typically evenly spaced, with each homolog pair receiving at least one crossover. The association of crossovers with distal sister chromatid cohesion is critical for the proper segregation of homologs in the first meiotic division. Studies in baker's yeast (Saccharomyces cerevisiae) have shown that meiotic crossovers result primarily from the biased resolution of double Holliday junction (dHJ) recombination intermediates through the actions of factors that belong to the DNA mismatch repair family. These findings and studies involving fine-scale mapping of meiotic crossover events have led to a new generation of mechanistic models for crossing over that are currently being tested.
在大多数真核生物中,减数分裂中同源染色体之间的交叉对于产生具有正确倍性的配子至关重要。减数分裂中的交叉通常是均匀分布的,每对同源染色体至少有一次交叉。交叉点与远端姐妹染色单体的结合对于同源物在减数第一次分裂中的正确分离至关重要。对面包酵母(Saccharomyces cerevisiae)的研究表明,减数分裂交叉主要是通过 DNA 错配修复家族因子的作用,有偏差地解决双霍利迪连接(dHJ)重组中间产物而产生的。这些发现以及对减数分裂交叉事件进行精细绘图的研究,产生了新一代的交叉机理模型,目前正在对这些模型进行测试。
{"title":"Crossover recombination between homologous chromosomes in meiosis: recent progress and remaining mysteries.","authors":"Lisette Payero, Eric Alani","doi":"10.1016/j.tig.2024.09.009","DOIUrl":"10.1016/j.tig.2024.09.009","url":null,"abstract":"<p><p>Crossing over between homologous chromosomes in meiosis is essential in most eukaryotes to produce gametes with the correct ploidy. Meiotic crossovers are typically evenly spaced, with each homolog pair receiving at least one crossover. The association of crossovers with distal sister chromatid cohesion is critical for the proper segregation of homologs in the first meiotic division. Studies in baker's yeast (Saccharomyces cerevisiae) have shown that meiotic crossovers result primarily from the biased resolution of double Holliday junction (dHJ) recombination intermediates through the actions of factors that belong to the DNA mismatch repair family. These findings and studies involving fine-scale mapping of meiotic crossover events have led to a new generation of mechanistic models for crossing over that are currently being tested.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"47-59"},"PeriodicalIF":13.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.tig.2024.11.005
Nicolas D Moya, Stephanie M Yan, Rajiv C McCoy, Erik C Andersen
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
{"title":"The long and short of hyperdivergent regions.","authors":"Nicolas D Moya, Stephanie M Yan, Rajiv C McCoy, Erik C Andersen","doi":"10.1016/j.tig.2024.11.005","DOIUrl":"10.1016/j.tig.2024.11.005","url":null,"abstract":"<p><p>The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1016/j.tig.2024.11.006
Adhithi R Raghavan, Andreas Hochwagen
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
减数分裂细胞在其基因组中引入大量程序化的DNA双链断裂(DSB),以刺激交叉重组。DSB数量必须足够多,以确保每对同源染色体都能获得减数分裂染色体准确分离所需的强制性交叉。然而,每一个 DSB 也会增加 DNA 修复异常或不完全的风险,从而导致基因组不稳定。为了降低这些风险,减数分裂细胞进化出了一个复杂的控制网络,可以调节减数分裂 DSB 的时间、水平和基因组位置。本综述总结了我们目前对这些控制的理解,尤其侧重于防止减数分裂 DSB 在错误的时间或地点形成,从而保护基因组免受潜在灾难性减数分裂错误的机制。
{"title":"Keeping it safe: control of meiotic chromosome breakage.","authors":"Adhithi R Raghavan, Andreas Hochwagen","doi":"10.1016/j.tig.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.tig.2024.11.006","url":null,"abstract":"<p><p>Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1016/j.tig.2024.11.011
Shashank Pritam, Sarah Signor
Transposable elements (TEs) shape every aspect of genome biology, influencing genome stability, size, and organismal fitness. Following the 2007 discovery of the piRNA defense system, researchers have made numerous findings about organisms' defenses against these genomic invaders. TEs are suppressed by a 'genomic immune system', where TE insertions within specialized regions called PIWI-interacting RNA (piRNA) clusters produce small RNAs responsible for their suppression. The evolution of piRNA clusters and the piRNA system is only now being understood, largely because most research has been conducted in developmental biology labs using only one to two genotypes of Drosophila melanogaster. While piRNAs themselves were identified simultaneously in various organisms (flies, mice, rats, and zebrafish) in 2006-2007, detailed work on piRNA clusters has only recently expanded beyond D. melanogaster. By studying piRNA cluster evolution in various organisms from an evolutionary perspective, we are beginning to understand more about TE suppression mechanisms and organism-TE coevolution.
{"title":"Evolution of piRNA-guided defense against transposable elements.","authors":"Shashank Pritam, Sarah Signor","doi":"10.1016/j.tig.2024.11.011","DOIUrl":"https://doi.org/10.1016/j.tig.2024.11.011","url":null,"abstract":"<p><p>Transposable elements (TEs) shape every aspect of genome biology, influencing genome stability, size, and organismal fitness. Following the 2007 discovery of the piRNA defense system, researchers have made numerous findings about organisms' defenses against these genomic invaders. TEs are suppressed by a 'genomic immune system', where TE insertions within specialized regions called PIWI-interacting RNA (piRNA) clusters produce small RNAs responsible for their suppression. The evolution of piRNA clusters and the piRNA system is only now being understood, largely because most research has been conducted in developmental biology labs using only one to two genotypes of Drosophila melanogaster. While piRNAs themselves were identified simultaneously in various organisms (flies, mice, rats, and zebrafish) in 2006-2007, detailed work on piRNA clusters has only recently expanded beyond D. melanogaster. By studying piRNA cluster evolution in various organisms from an evolutionary perspective, we are beginning to understand more about TE suppression mechanisms and organism-TE coevolution.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1016/j.tig.2024.11.008
Andrea Bernardini, Roberto Mantovani
Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.
{"title":"Q-rich activation domains: flexible 'rulers' for transcription start site selection?","authors":"Andrea Bernardini, Roberto Mantovani","doi":"10.1016/j.tig.2024.11.008","DOIUrl":"https://doi.org/10.1016/j.tig.2024.11.008","url":null,"abstract":"<p><p>Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spatial multiomics technologies have revolutionized biomedical research by enabling the simultaneous measurement of multiple omics modalities within intact tissue sections. This approach facilitates the reconstruction of 3D molecular architectures, providing unprecedented insights into complex cellular interactions and the intricate organization of biological systems, such as those underlying embryonic development.
{"title":"Leveraging spatial multiomics to unravel tissue architecture in embryo development.","authors":"Fuqing Jiang, Haoxian Wang, Zhuxia Li, Guizhong Cui, Guangdun Peng","doi":"10.1016/j.tig.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.tig.2024.11.007","url":null,"abstract":"<p><p>Spatial multiomics technologies have revolutionized biomedical research by enabling the simultaneous measurement of multiple omics modalities within intact tissue sections. This approach facilitates the reconstruction of 3D molecular architectures, providing unprecedented insights into complex cellular interactions and the intricate organization of biological systems, such as those underlying embryonic development.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-24DOI: 10.1016/j.tig.2024.10.002
Kevin Struhl
'Epigenetics' is the process by which distinct cell types or cell states are inherited through multiple cell divisions. 'Epigenomics' refers to DNA-associated physical and functional entities including histone modifications and DNA methylation, not concepts of inheritance. Conflating epigenetics and epigenomics is confusing and causes misunderstanding of a fundamental biological process.
表观遗传学 "是指不同的细胞类型或细胞状态通过多次细胞分裂得以遗传的过程。表观基因组学 "指的是与 DNA 相关的物理和功能实体,包括组蛋白修饰和 DNA 甲基化,而不是遗传的概念。将表观遗传学和表观基因组学混为一谈会造成混淆,并导致对基本生物学过程的误解。
{"title":"The distinction between epigenetics and epigenomics.","authors":"Kevin Struhl","doi":"10.1016/j.tig.2024.10.002","DOIUrl":"10.1016/j.tig.2024.10.002","url":null,"abstract":"<p><p>'Epigenetics' is the process by which distinct cell types or cell states are inherited through multiple cell divisions. 'Epigenomics' refers to DNA-associated physical and functional entities including histone modifications and DNA methylation, not concepts of inheritance. Conflating epigenetics and epigenomics is confusing and causes misunderstanding of a fundamental biological process.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"995-997"},"PeriodicalIF":13.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-26DOI: 10.1016/j.tig.2024.10.001
Reiner A Veitia
Recent studies have addressed the relevance of phase separation, by which membrane-less compartments are formed within the nucleus, to understand the impact of genetic variants. They highlight unsuspected links between phase separation and haploinsufficiency of transcription factors.
{"title":"Emerging links between phase separation and transcription factor haploinsufficiency.","authors":"Reiner A Veitia","doi":"10.1016/j.tig.2024.10.001","DOIUrl":"10.1016/j.tig.2024.10.001","url":null,"abstract":"<p><p>Recent studies have addressed the relevance of phase separation, by which membrane-less compartments are formed within the nucleus, to understand the impact of genetic variants. They highlight unsuspected links between phase separation and haploinsufficiency of transcription factors.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"998-1000"},"PeriodicalIF":13.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}