首页 > 最新文献

Trends in Endocrinology and Metabolism最新文献

英文 中文
Melatonin. 褪黑素
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2024-07-30 DOI: 10.1016/j.tem.2024.07.007
Gregory E Demas, Yuqi Han, Hannah F Fink
{"title":"Melatonin.","authors":"Gregory E Demas, Yuqi Han, Hannah F Fink","doi":"10.1016/j.tem.2024.07.007","DOIUrl":"10.1016/j.tem.2024.07.007","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"191-192"},"PeriodicalIF":11.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashing metabolic power for axonal regeneration. 为轴突再生释放新陈代谢能量
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2024-07-27 DOI: 10.1016/j.tem.2024.07.001
Xiaoyan Yang, Bing Zhou

Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.

轴突再生需要调动细胞内资源,包括蛋白质、脂类和核苷酸。损伤后,神经元需要调整其新陈代谢,以满足轴突再生所需的生物合成要求。然而,细胞新陈代谢对这一过程的确切贡献仍然难以捉摸。对增殖细胞代谢特征的了解可能会揭示轴突再生过程中的类似机制;因此,揭示以前未被认识到的代谢适应作用对于实现神经元再生至关重要,这与脊髓损伤和中风等需要神经修复的神经系统疾病的治疗策略有关。在此,我们概述了代谢在轴突再生中的作用,并讨论了促进神经再生的因素,强调了恢复神经功能的潜在新型代谢疗法。
{"title":"Unleashing metabolic power for axonal regeneration.","authors":"Xiaoyan Yang, Bing Zhou","doi":"10.1016/j.tem.2024.07.001","DOIUrl":"10.1016/j.tem.2024.07.001","url":null,"abstract":"<p><p>Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"161-175"},"PeriodicalIF":11.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standardizing methodologies to study microplastics and nanoplastics in cardiovascular diseases. 研究心血管疾病中的微塑料和纳米塑料的标准化方法。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2024-08-08 DOI: 10.1016/j.tem.2024.07.013
Yilin Pan, Suowen Xu, Xiubin Yang

Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.

微塑料和纳米塑料(MNPs)被认为是新的心血管风险因素,通过不同的机制影响血管细胞功能并加剧动脉粥样硬化。然而,在主要心血管组织中检测到的 MNP 的浓度各不相同,这突出表明迫切需要标准化的研究方法来更好地了解它们的影响,并为未来的健康指南提供信息。
{"title":"Standardizing methodologies to study microplastics and nanoplastics in cardiovascular diseases.","authors":"Yilin Pan, Suowen Xu, Xiubin Yang","doi":"10.1016/j.tem.2024.07.013","DOIUrl":"10.1016/j.tem.2024.07.013","url":null,"abstract":"<p><p>Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"105-108"},"PeriodicalIF":11.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New anti-inflammatory mechanism of glucocorticoids uncovered. 糖皮质激素抗炎新机制揭秘
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2024-08-23 DOI: 10.1016/j.tem.2024.08.003
Carolyn L Cummins, Ido Goldstein

Glucocorticoids (GCs) are potent anti-inflammatory drugs. A new study by Auger et al. found that GCs increase itaconate, an anti-inflammatory tricarboxylic acid (TCA) cycle intermediate, by promoting movement of cytosolic pyruvate dehydrogenase (PDH) to mitochondria. Itaconate was sufficient for mediating the anti-inflammatory effects of GCs in mice, overriding the notion that nuclear glucocorticoid receptor (GR) is necessary for inflammation inhibition.

糖皮质激素(GCs)是一种强效抗炎药物。Auger 等人的一项新研究发现,GCs 可通过促进细胞膜丙酮酸脱氢酶(PDH)向线粒体移动来增加伊塔康酸(一种抗炎的三羧酸(TCA)循环中间体)。伊塔康酸足以介导 GCs 在小鼠体内的抗炎作用,从而推翻了核糖皮质激素受体(GR)是抑制炎症的必要条件这一观点。
{"title":"New anti-inflammatory mechanism of glucocorticoids uncovered.","authors":"Carolyn L Cummins, Ido Goldstein","doi":"10.1016/j.tem.2024.08.003","DOIUrl":"10.1016/j.tem.2024.08.003","url":null,"abstract":"<p><p>Glucocorticoids (GCs) are potent anti-inflammatory drugs. A new study by Auger et al. found that GCs increase itaconate, an anti-inflammatory tricarboxylic acid (TCA) cycle intermediate, by promoting movement of cytosolic pyruvate dehydrogenase (PDH) to mitochondria. Itaconate was sufficient for mediating the anti-inflammatory effects of GCs in mice, overriding the notion that nuclear glucocorticoid receptor (GR) is necessary for inflammation inhibition.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"99-101"},"PeriodicalIF":11.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palmitate. 棕榈酸酯。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-20 DOI: 10.1016/j.tem.2025.01.001
Atrayee Gope, Claudio Mauro
{"title":"Palmitate.","authors":"Atrayee Gope, Claudio Mauro","doi":"10.1016/j.tem.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.tem.2025.01.001","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucagon-like peptide-1. Glucagon-like peptide-1。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-15 DOI: 10.1016/j.tem.2024.12.011
Darleen A Sandoval
{"title":"Glucagon-like peptide-1.","authors":"Darleen A Sandoval","doi":"10.1016/j.tem.2024.12.011","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.011","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumarate. 延胡索酸酯。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-15 DOI: 10.1016/j.tem.2024.12.010
Désirée Schatton, Christian Frezza
{"title":"Fumarate.","authors":"Désirée Schatton, Christian Frezza","doi":"10.1016/j.tem.2024.12.010","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.010","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer. 扩大代谢功能障碍相关脂肪变性肝病和癌症的研究视野。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-09 DOI: 10.1016/j.tem.2024.12.009
Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani

Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.

在代谢功能障碍相关脂肪变性肝病(MASLD)的背景下,肝纤维化和生物性别可变地调节肝细胞癌(HCC)和肝外癌(EHCs)的风险。在这里,我们强调这些变量如何在MASLD的化学预防和精准医学方法的设置中产生影响,并指导进一步的研究。
{"title":"Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer.","authors":"Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani","doi":"10.1016/j.tem.2024.12.009","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.009","url":null,"abstract":"<p><p>Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic metabolic crosstalk as driver of cancer cachexia. 系统性代谢串扰作为癌症恶病质的驱动因素。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-04 DOI: 10.1016/j.tem.2024.12.005
Elisabeth Wyart, Giovanna Carrà, Elia Angelino, Fabio Penna, Paolo E Porporato

Cachexia is a complex metabolic disorder characterized by negative energy balance due to increased consumption and lowered intake, leading to progressive tissue wasting and inefficient energy distribution. Once considered as passive bystander, metabolism is now acknowledged as a regulator of biological functions and disease progression. This shift in perspective mirrors the evolving understanding of cachexia itself, no longer viewed merely as a secondary consequence of cancer but as an active process. However, metabolic dysregulations in cachexia are currently studied in an organ-specific manner, failing to be fully integrated into a comprehensive framework that explains their functional roles in disease progression. Thus, in this review, we aim to provide a general overview of the various metabolic alterations with a potential systemic impact.

恶病质是一种复杂的代谢紊乱,其特征是消耗增加,摄入减少,能量呈负平衡,导致进行性组织浪费和能量分配效率低下。新陈代谢曾经被认为是被动的旁观者,现在被认为是生物功能和疾病进展的调节者。这种观点的转变反映了对恶病质本身的不断发展的理解,不再仅仅被视为癌症的次要后果,而是一个积极的过程。然而,目前对恶病质代谢失调的研究是以器官特异性的方式进行的,未能完全整合到一个全面的框架中来解释它们在疾病进展中的功能作用。因此,在这篇综述中,我们的目的是提供各种代谢改变与潜在的系统性影响的总体概述。
{"title":"Systemic metabolic crosstalk as driver of cancer cachexia.","authors":"Elisabeth Wyart, Giovanna Carrà, Elia Angelino, Fabio Penna, Paolo E Porporato","doi":"10.1016/j.tem.2024.12.005","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.005","url":null,"abstract":"<p><p>Cachexia is a complex metabolic disorder characterized by negative energy balance due to increased consumption and lowered intake, leading to progressive tissue wasting and inefficient energy distribution. Once considered as passive bystander, metabolism is now acknowledged as a regulator of biological functions and disease progression. This shift in perspective mirrors the evolving understanding of cachexia itself, no longer viewed merely as a secondary consequence of cancer but as an active process. However, metabolic dysregulations in cachexia are currently studied in an organ-specific manner, failing to be fully integrated into a comprehensive framework that explains their functional roles in disease progression. Thus, in this review, we aim to provide a general overview of the various metabolic alterations with a potential systemic impact.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut feelings on short-chain fatty acids to regulate respiratory health. 肠道对短链脂肪酸的感觉调节呼吸系统健康。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-01-04 DOI: 10.1016/j.tem.2024.12.007
Samantha N Rowland, Christopher G Green, John R Halliwill, Aran Singanayagam, Liam M Heaney

Respiratory infections and diseases pose significant challenges to society and healthcare systems, underscoring the need for preventative and therapeutic strategies. Recent research in rodent models indicates that short-chain fatty acids (SCFAs), metabolites produced by gut bacteria, may offer medicinal benefits for respiratory conditions. In this opinion, we summarize the current literature that highlights the potential of SCFAs to enhance immune balance in humans. SCFAs have demonstrated the potential to decrease the risk of primary and secondary respiratory infections, modulate allergic airway exacerbations, and improve overall epithelial pathogen defenses. Therefore, we suggest that systemic SCFA levels could be targeted to support gut and respiratory health in specific groups, such as patients in hospital, women and their offspring, children, older adults, and athletes/military personnel.

呼吸道感染和疾病对社会和卫生保健系统构成重大挑战,强调需要采取预防和治疗策略。最近对啮齿动物模型的研究表明,肠道细菌产生的代谢物短链脂肪酸(SCFAs)可能对呼吸系统疾病有药用价值。在这种观点下,我们总结了当前强调scfa增强人类免疫平衡潜力的文献。scfa已被证明具有降低原发性和继发性呼吸道感染风险、调节过敏性气道恶化和改善整体上皮病原体防御的潜力。因此,我们建议系统SCFA水平可用于支持特定人群的肠道和呼吸健康,如住院患者、妇女及其后代、儿童、老年人和运动员/军人。
{"title":"Gut feelings on short-chain fatty acids to regulate respiratory health.","authors":"Samantha N Rowland, Christopher G Green, John R Halliwill, Aran Singanayagam, Liam M Heaney","doi":"10.1016/j.tem.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.007","url":null,"abstract":"<p><p>Respiratory infections and diseases pose significant challenges to society and healthcare systems, underscoring the need for preventative and therapeutic strategies. Recent research in rodent models indicates that short-chain fatty acids (SCFAs), metabolites produced by gut bacteria, may offer medicinal benefits for respiratory conditions. In this opinion, we summarize the current literature that highlights the potential of SCFAs to enhance immune balance in humans. SCFAs have demonstrated the potential to decrease the risk of primary and secondary respiratory infections, modulate allergic airway exacerbations, and improve overall epithelial pathogen defenses. Therefore, we suggest that systemic SCFA levels could be targeted to support gut and respiratory health in specific groups, such as patients in hospital, women and their offspring, children, older adults, and athletes/military personnel.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Endocrinology and Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1