Pub Date : 2025-01-03DOI: 10.1016/j.tem.2024.12.006
Peter S Hamblin, Anthony W Russell, Stella Talic, Sophia Zoungas
With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role. We discuss these complications and the new approaches being developed to prevent and manage them, especially incretin-based therapies. We argue that these new interventions may work in a complementary way to other proven cardiorenal protective therapies to reduce the burden of T2DM complications.
{"title":"The growing range of complications of diabetes mellitus.","authors":"Peter S Hamblin, Anthony W Russell, Stella Talic, Sophia Zoungas","doi":"10.1016/j.tem.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.tem.2024.12.006","url":null,"abstract":"<p><p>With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role. We discuss these complications and the new approaches being developed to prevent and manage them, especially incretin-based therapies. We argue that these new interventions may work in a complementary way to other proven cardiorenal protective therapies to reduce the burden of T2DM complications.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1016/j.tem.2024.12.003
Lourdes Brea, Jindan Yu
Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.
{"title":"Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer.","authors":"Lourdes Brea, Jindan Yu","doi":"10.1016/j.tem.2024.12.003","DOIUrl":"10.1016/j.tem.2024.12.003","url":null,"abstract":"<p><p>Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-05-22DOI: 10.1016/j.tem.2024.04.021
Ruben Vazquez-Uribe, Karl Alex Hedin, Tine Rask Licht, Max Nieuwdorp, Morten O A Sommer
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
{"title":"Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases.","authors":"Ruben Vazquez-Uribe, Karl Alex Hedin, Tine Rask Licht, Max Nieuwdorp, Morten O A Sommer","doi":"10.1016/j.tem.2024.04.021","DOIUrl":"10.1016/j.tem.2024.04.021","url":null,"abstract":"<p><p>The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"29-41"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-03DOI: 10.1016/j.tem.2024.08.005
Jennifer van der Laan, Filipe Cabreiro
Interactions between the gut microbiome, nutrients, drugs, and host physiology are inherently complex. Gut microbes contribute significantly towards host homeostasis and can modulate host-targeted drugs, affecting therapeutic outcomes. Finding ways to harness the gut microbiome to improve drug efficacy can be a promising strategy to advance precision medicine.
{"title":"Microbes put drugs in(action).","authors":"Jennifer van der Laan, Filipe Cabreiro","doi":"10.1016/j.tem.2024.08.005","DOIUrl":"10.1016/j.tem.2024.08.005","url":null,"abstract":"<p><p>Interactions between the gut microbiome, nutrients, drugs, and host physiology are inherently complex. Gut microbes contribute significantly towards host homeostasis and can modulate host-targeted drugs, affecting therapeutic outcomes. Finding ways to harness the gut microbiome to improve drug efficacy can be a promising strategy to advance precision medicine.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"7-10"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-14DOI: 10.1016/j.tem.2024.06.016
Panwei Song, Zhi Peng, Xiaohuan Guo
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
{"title":"Gut microbial metabolites in cancer therapy.","authors":"Panwei Song, Zhi Peng, Xiaohuan Guo","doi":"10.1016/j.tem.2024.06.016","DOIUrl":"10.1016/j.tem.2024.06.016","url":null,"abstract":"<p><p>The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"55-69"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-02DOI: 10.1016/j.tem.2024.07.018
Yoshitaka Sakurai, Naoto Kubota, Takashi Kadowaki
The tumor suppressor p53 regulates metabolic homeostasis. Recently, Tsaousidou et al. reported that selective activation of p53 via downregulation of Tudor interacting repair regulator (TIRR) confers protection against cancer despite obesity and insulin resistance, providing new insights into the role of p53 at the intersection of oncogenesis and systemic metabolism.
{"title":"Dissociating the metabolic and tumor-suppressive activity of p53.","authors":"Yoshitaka Sakurai, Naoto Kubota, Takashi Kadowaki","doi":"10.1016/j.tem.2024.07.018","DOIUrl":"10.1016/j.tem.2024.07.018","url":null,"abstract":"<p><p>The tumor suppressor p53 regulates metabolic homeostasis. Recently, Tsaousidou et al. reported that selective activation of p53 via downregulation of Tudor interacting repair regulator (TIRR) confers protection against cancer despite obesity and insulin resistance, providing new insights into the role of p53 at the intersection of oncogenesis and systemic metabolism.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"4-6"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-13DOI: 10.1016/j.tem.2024.07.014
Emilia Nunzi, Marilena Pariano, Claudio Costantini, Enrico Garaci, Paolo Puccetti, Luigina Romani
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
{"title":"Host-microbe serotonin metabolism.","authors":"Emilia Nunzi, Marilena Pariano, Claudio Costantini, Enrico Garaci, Paolo Puccetti, Luigina Romani","doi":"10.1016/j.tem.2024.07.014","DOIUrl":"10.1016/j.tem.2024.07.014","url":null,"abstract":"<p><p>As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"83-95"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-05-30DOI: 10.1016/j.tem.2024.05.002
Tim Gruber, Franziska Lechner, Jean-Philippe Krieger, Cristina García-Cáceres
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
{"title":"Neuroendocrine gut-brain signaling in obesity.","authors":"Tim Gruber, Franziska Lechner, Jean-Philippe Krieger, Cristina García-Cáceres","doi":"10.1016/j.tem.2024.05.002","DOIUrl":"10.1016/j.tem.2024.05.002","url":null,"abstract":"<p><p>The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"42-54"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-06DOI: 10.1016/j.tem.2024.06.007
Miguel López, Carlos Diéguez, Manuel Tena-Sempere, Ismael González-García
Central ceramides regulate energy metabolism by impacting hypothalamic neurons. This allows ceramides to integrate endocrine signals - such as leptin, ghrelin, thyroid hormones, or estradiol - and to modulate the central control of puberty. In this forum article we discuss recent evidence suggesting that specific ceramide species and neuronal populations are involved in these effects.
{"title":"Ceramides in the central control of metabolism.","authors":"Miguel López, Carlos Diéguez, Manuel Tena-Sempere, Ismael González-García","doi":"10.1016/j.tem.2024.06.007","DOIUrl":"10.1016/j.tem.2024.06.007","url":null,"abstract":"<p><p>Central ceramides regulate energy metabolism by impacting hypothalamic neurons. This allows ceramides to integrate endocrine signals - such as leptin, ghrelin, thyroid hormones, or estradiol - and to modulate the central control of puberty. In this forum article we discuss recent evidence suggesting that specific ceramide species and neuronal populations are involved in these effects.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"11-14"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-10DOI: 10.1016/j.tem.2024.06.009
Erica T Grant, Hélène De Franco, Mahesh S Desai
Dietary fiber is degraded by commensal gut microbes to yield host-beneficial short-chain fatty acids (SCFAs), but personalized responses to fiber supplementation highlight a role for other microbial metabolites in shaping host health. In this review we summarize recent findings from dietary fiber intervention studies describing health impacts attributed to microbial metabolites other than SCFAs, particularly secondary bile acids (2°BAs), aromatic amino acid derivatives, neurotransmitters, and B vitamins. We also discuss shifts in microbial metabolism occurring through altered maternal dietary fiber intake and agricultural practices, which warrant further investigation. To optimize the health benefits of dietary fibers, it is essential to survey a range of metabolites and adapt recommendations on a personalized basis, according to the different functional aspects of the microbiome.
膳食纤维会被肠道共生微生物降解,产生对宿主有益的短链脂肪酸(SCFAs),但对补充纤维的个性化反应凸显了其他微生物代谢物在影响宿主健康方面的作用。在这篇综述中,我们总结了膳食纤维干预研究的最新发现,这些发现描述了除 SCFAs 之外的微生物代谢物对健康的影响,特别是次级胆汁酸 (2°BAs)、芳香族氨基酸衍生物、神经递质和 B 族维生素。我们还讨论了由于母体膳食纤维摄入量和农业实践的改变而引起的微生物代谢的变化,这值得进一步研究。为了优化膳食纤维对健康的益处,有必要对一系列代谢物进行调查,并根据微生物组的不同功能调整个性化建议。
{"title":"Non-SCFA microbial metabolites associated with fiber fermentation and host health.","authors":"Erica T Grant, Hélène De Franco, Mahesh S Desai","doi":"10.1016/j.tem.2024.06.009","DOIUrl":"10.1016/j.tem.2024.06.009","url":null,"abstract":"<p><p>Dietary fiber is degraded by commensal gut microbes to yield host-beneficial short-chain fatty acids (SCFAs), but personalized responses to fiber supplementation highlight a role for other microbial metabolites in shaping host health. In this review we summarize recent findings from dietary fiber intervention studies describing health impacts attributed to microbial metabolites other than SCFAs, particularly secondary bile acids (2°BAs), aromatic amino acid derivatives, neurotransmitters, and B vitamins. We also discuss shifts in microbial metabolism occurring through altered maternal dietary fiber intake and agricultural practices, which warrant further investigation. To optimize the health benefits of dietary fibers, it is essential to survey a range of metabolites and adapt recommendations on a personalized basis, according to the different functional aspects of the microbiome.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"70-82"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}