Pub Date : 2024-11-16DOI: 10.1016/j.tem.2024.10.008
Herbert Herzog, Lei Zhang, Luigi Fontana, G Gregory Neely
Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.
{"title":"Impact of non-sugar sweeteners on metabolism beyond sweet taste perception.","authors":"Herbert Herzog, Lei Zhang, Luigi Fontana, G Gregory Neely","doi":"10.1016/j.tem.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.008","url":null,"abstract":"<p><p>Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.tem.2024.10.002
Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.
{"title":"A three-layer perspective on miRNA regulation in β cell inflammation.","authors":"Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani","doi":"10.1016/j.tem.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.002","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.tem.2024.10.004
Erin E Mauney, Marsha C Wibowo, Yu-Hua Tseng, Aleksandar D Kostic
Previously characterized as inert fat depots, adipocytes are now recognized as dynamic mediators of inflammatory tone, metabolic health, and nutrient homeostasis. As endocrine organs, specialized depots of adipose tissue engage in crosstalk between the gut, liver, pancreas, and brain to coordinate appetite, thermogenesis, and ultimately body weight. These functions are tightly linked to the inflammatory status of adipose tissue, which is in turn influenced by the health of the gut microbiome. Here, we review recent findings linking specific gut microbes and their secreted factors, including recently identified elements such as bacterial extracellular vesicles, to the functional status of adipocytes. We conclude that further study may generate novel approaches for treating obesity and metabolic disease.
{"title":"Adipose tissue-gut microbiome crosstalk in inflammation and thermogenesis.","authors":"Erin E Mauney, Marsha C Wibowo, Yu-Hua Tseng, Aleksandar D Kostic","doi":"10.1016/j.tem.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.004","url":null,"abstract":"<p><p>Previously characterized as inert fat depots, adipocytes are now recognized as dynamic mediators of inflammatory tone, metabolic health, and nutrient homeostasis. As endocrine organs, specialized depots of adipose tissue engage in crosstalk between the gut, liver, pancreas, and brain to coordinate appetite, thermogenesis, and ultimately body weight. These functions are tightly linked to the inflammatory status of adipose tissue, which is in turn influenced by the health of the gut microbiome. Here, we review recent findings linking specific gut microbes and their secreted factors, including recently identified elements such as bacterial extracellular vesicles, to the functional status of adipocytes. We conclude that further study may generate novel approaches for treating obesity and metabolic disease.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.tem.2024.10.005
Huadong Chen, Pomme I H G Simons, Martijn C G J Brouwers
Recent genetic studies have implicated an active role for intrahepatic lipid accumulation in the pathogenesis of both polycystic ovary syndrome (PCOS) and cardiovascular disease. These new insights may provide novel (non)pharmacological opportunities for the prevention and treatment of PCOS and cardiovascular disease at both the societal and clinical level.
{"title":"Is cardiovascular disease in PCOS driven by MASLD?","authors":"Huadong Chen, Pomme I H G Simons, Martijn C G J Brouwers","doi":"10.1016/j.tem.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.005","url":null,"abstract":"<p><p>Recent genetic studies have implicated an active role for intrahepatic lipid accumulation in the pathogenesis of both polycystic ovary syndrome (PCOS) and cardiovascular disease. These new insights may provide novel (non)pharmacological opportunities for the prevention and treatment of PCOS and cardiovascular disease at both the societal and clinical level.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-23DOI: 10.1016/j.tem.2024.07.002
Maria E R Garcia-Rendueles, Luis Varela, Tamas L Horvath
{"title":"Ghrelin.","authors":"Maria E R Garcia-Rendueles, Luis Varela, Tamas L Horvath","doi":"10.1016/j.tem.2024.07.002","DOIUrl":"10.1016/j.tem.2024.07.002","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1021-1022"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-25DOI: 10.1016/j.tem.2024.05.010
Yajing Qiu, Ermei Xie, Haipeng Xu, Hongcheng Cheng, Guideng Li
One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.
单碳代谢(1CM)包括叶酸代谢和蛋氨酸代谢,是细胞提供能量和产生重要信号分子(包括单碳分子)的重要机制。它的调节在维持癌细胞增殖和促进癌细胞转移方面起着重要作用;此外,最近的研究还揭示了它对 T 细胞介导的免疫疗法疗效的影响。在本综述中,我们整合了目前对 1CM 如何影响 T 细胞活化、分化和功能的见解。此外,我们还深入探讨了调节 T 细胞和肿瘤细胞中 1CM 的策略,以提高被收养转移 T 细胞的疗效,克服肿瘤微环境 (TME) 中的代谢挑战,并最大限度地提高 T 细胞介导的免疫疗法的效益。
{"title":"One-carbon metabolism shapes T cell immunity in cancer.","authors":"Yajing Qiu, Ermei Xie, Haipeng Xu, Hongcheng Cheng, Guideng Li","doi":"10.1016/j.tem.2024.05.010","DOIUrl":"10.1016/j.tem.2024.05.010","url":null,"abstract":"<p><p>One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"967-980"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-29DOI: 10.1016/j.tem.2024.06.013
Aneta Balcerczyk, Assia Eljaafari, Luciano Pirola
Obesity is often associated with adipose tissue (AT) inflammation and immune cell infiltration. Writing recently in Cell Reports, Liao et al. investigated the mechanisms of T cell infiltration of AT using single cell (sc)RNA-sequencing (RNA-seq), transplantation studies, in vitro co-cultures, and knock-out mice. They highlighted the crucial role of C-C motif chemokine ligand 5 (CCL5)-secreting adipose stem cells (ASCs), offering insights for potential therapies.
肥胖通常与脂肪组织(AT)炎症和免疫细胞浸润有关。最近,Liao 等人在《细胞报告》(Cell Reports)上撰文,利用单细胞(sc)RNA 序列分析(RNA-seq)、移植研究、体外共培养和基因敲除小鼠研究了 T 细胞浸润脂肪组织的机制。他们强调了分泌 C-C motif 趋化因子配体 5(CCL5)的脂肪干细胞(ASCs)的关键作用,为潜在疗法提供了启示。
{"title":"Adipose stem cells drive T cell infiltration in obesity.","authors":"Aneta Balcerczyk, Assia Eljaafari, Luciano Pirola","doi":"10.1016/j.tem.2024.06.013","DOIUrl":"10.1016/j.tem.2024.06.013","url":null,"abstract":"<p><p>Obesity is often associated with adipose tissue (AT) inflammation and immune cell infiltration. Writing recently in Cell Reports, Liao et al. investigated the mechanisms of T cell infiltration of AT using single cell (sc)RNA-sequencing (RNA-seq), transplantation studies, in vitro co-cultures, and knock-out mice. They highlighted the crucial role of C-C motif chemokine ligand 5 (CCL5)-secreting adipose stem cells (ASCs), offering insights for potential therapies.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"931-933"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-01DOI: 10.1016/j.tem.2024.04.008
Christopher J Nolan, Gernot Desoye
Disentangling which of insulin hypersecretion and insulin resistance is upstream in obesity-related type 2 diabetes (T2D) is challenging. Here, we consider the dynamics of insulin secretion and action in the fetuses of mothers with diabetes. We argue that fetal insulin hypersecretion occurs first, with insulin resistance being an adaptive protective response.
{"title":"Disentangling fetal insulin hypersecretion and insulin resistance.","authors":"Christopher J Nolan, Gernot Desoye","doi":"10.1016/j.tem.2024.04.008","DOIUrl":"10.1016/j.tem.2024.04.008","url":null,"abstract":"<p><p>Disentangling which of insulin hypersecretion and insulin resistance is upstream in obesity-related type 2 diabetes (T2D) is challenging. Here, we consider the dynamics of insulin secretion and action in the fetuses of mothers with diabetes. We argue that fetal insulin hypersecretion occurs first, with insulin resistance being an adaptive protective response.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"934-936"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-05DOI: 10.1016/j.tem.2024.04.013
Chae Won Kim, Hyun-Jin Kim, Heung Kyu Lee
Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.
{"title":"Microbiome dynamics in immune checkpoint blockade.","authors":"Chae Won Kim, Hyun-Jin Kim, Heung Kyu Lee","doi":"10.1016/j.tem.2024.04.013","DOIUrl":"10.1016/j.tem.2024.04.013","url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"996-1005"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.
{"title":"Understanding gut dysbiosis for hepatocellular carcinoma diagnosis and treatment.","authors":"Jingjing Yu, Xiaoping Chen, Xiangliang Yang, Bixiang Zhang","doi":"10.1016/j.tem.2024.06.003","DOIUrl":"10.1016/j.tem.2024.06.003","url":null,"abstract":"<p><p>The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1006-1020"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}