首页 > 最新文献

Trends in Endocrinology and Metabolism最新文献

英文 中文
Rewiring of the glymphatic landscape in metabolic disorders. 代谢紊乱中淋巴系统景观的重新布线。
IF 12.6 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-08-01 Epub Date: 2024-12-04 DOI: 10.1016/j.tem.2024.11.005
Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger

The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system. Further investigation into how metabolic dysfunction disrupts glymphatic homeostasis and the domino effects on the neurovascular landscape, including neurovascular uncoupling, cerebral blood flow disruptions, blood-brain barrier leakage, and demyelination, can provide mechanistic insights into the link between obesity and neurological disorders.

脑生理学研究中淋巴清除系统的结合有助于神经系统疾病的创新诊断和治疗策略的发展。探索横跨神经系统和代谢性疾病的淋巴系统可能为肥胖和神经系统疾病之间提供更好的联系。最近的研究表明,代谢功能障碍通过破坏淋巴系统作为认知能力下降和神经系统疾病的危险因素。进一步研究代谢功能障碍如何破坏淋巴稳态和神经血管景观的多米诺骨牌效应,包括神经血管解耦、脑血流中断、血脑屏障泄漏和脱髓鞘,可以为肥胖和神经疾病之间的联系提供机制见解。
{"title":"Rewiring of the glymphatic landscape in metabolic disorders.","authors":"Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger","doi":"10.1016/j.tem.2024.11.005","DOIUrl":"10.1016/j.tem.2024.11.005","url":null,"abstract":"<p><p>The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system. Further investigation into how metabolic dysfunction disrupts glymphatic homeostasis and the domino effects on the neurovascular landscape, including neurovascular uncoupling, cerebral blood flow disruptions, blood-brain barrier leakage, and demyelination, can provide mechanistic insights into the link between obesity and neurological disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"710-720"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumarate. 延胡索酸酯。
IF 12.6 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-08-01 Epub Date: 2025-01-15 DOI: 10.1016/j.tem.2024.12.010
Désirée Schatton, Christian Frezza
{"title":"Fumarate.","authors":"Désirée Schatton, Christian Frezza","doi":"10.1016/j.tem.2024.12.010","DOIUrl":"10.1016/j.tem.2024.12.010","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"778-779"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial insulin resistance drives neurodegeneration. 小胶质细胞胰岛素抵抗驱动神经变性。
IF 12.6 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-08-01 Epub Date: 2025-07-02 DOI: 10.1016/j.tem.2025.06.006
Miao Sun, Weidong Mi

Brain insulin resistance (BIR) contributes to neurodegenerative diseases such as Alzheimer's disease (AD). Recently, Chen et al. revealed that microglial insulin signaling loss drives neuroinflammation and amyloid-β (Aβ) accumulation, promoting AD progression. These findings provide insights for the prevention and treatment of AD and cognitive disorders.

脑胰岛素抵抗(BIR)有助于神经退行性疾病,如阿尔茨海默病(AD)。最近,Chen等人发现,小胶质胰岛素信号丢失可驱动神经炎症和淀粉样蛋白-β (Aβ)积累,促进AD的进展。这些发现为阿尔茨海默病和认知障碍的预防和治疗提供了见解。
{"title":"Microglial insulin resistance drives neurodegeneration.","authors":"Miao Sun, Weidong Mi","doi":"10.1016/j.tem.2025.06.006","DOIUrl":"10.1016/j.tem.2025.06.006","url":null,"abstract":"<p><p>Brain insulin resistance (BIR) contributes to neurodegenerative diseases such as Alzheimer's disease (AD). Recently, Chen et al. revealed that microglial insulin signaling loss drives neuroinflammation and amyloid-β (Aβ) accumulation, promoting AD progression. These findings provide insights for the prevention and treatment of AD and cognitive disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"696-698"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria as sensors of intracellular pathogens. 线粒体是细胞内病原体的传感器。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2024-11-22 DOI: 10.1016/j.tem.2024.10.009
Jose M Delgado, Lena Pernas

Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.

线粒体必须感知环境,才能使细胞和生物体适应各种环境,并在压力下生存。然而,在真核细胞诞生以来的进化压力--微生物感染期间,这些细胞器传统上被视为微生物的目标。在这一观点中,我们认为线粒体是驯化的微生物,能感知并保护其 "宿主 "细胞免受病原体侵袭。我们探讨了线粒体检测细胞内病原体并诱导线粒体自主反应以激活细胞防御功能的潜在机制。
{"title":"Mitochondria as sensors of intracellular pathogens.","authors":"Jose M Delgado, Lena Pernas","doi":"10.1016/j.tem.2024.10.009","DOIUrl":"10.1016/j.tem.2024.10.009","url":null,"abstract":"<p><p>Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"638-644"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognizing the role of fibromyalgia in post-exertional malaise. 认识到纤维肌痛在运动后不适中的作用。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2025-03-11 DOI: 10.1016/j.tem.2025.02.005
Alessandro Giollo, Mariangela Salvato, Andrea Doria
{"title":"Recognizing the role of fibromyalgia in post-exertional malaise.","authors":"Alessandro Giollo, Mariangela Salvato, Andrea Doria","doi":"10.1016/j.tem.2025.02.005","DOIUrl":"10.1016/j.tem.2025.02.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"605-606"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine. 多巴胺
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2024-08-12 DOI: 10.1016/j.tem.2024.07.005
Siyao Zhou, Wenqiang Chen, Hongbin Yang
{"title":"Dopamine.","authors":"Siyao Zhou, Wenqiang Chen, Hongbin Yang","doi":"10.1016/j.tem.2024.07.005","DOIUrl":"10.1016/j.tem.2024.07.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"691-692"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-layer perspective on miRNA regulation in β cell inflammation. 从三层视角看β细胞炎症中的 miRNA 调控。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2024-11-12 DOI: 10.1016/j.tem.2024.10.002
Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani

MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.

微小RNA(miRNA)是一种非编码RNA分子,可转录后调节基因表达并影响多种生物过程。异常的 miRNA 表达与糖尿病等疾病有关;事实上,miRNA 可调节 1 型糖尿病(T1D)和 2 型糖尿病(T2D)的胰岛炎症。传统上,miRNA 研究侧重于典型序列,并提供了从表达到功能的双层视角。然而,RNA 测序技术的进步揭示了 miRNA 的变体(称为 isomiRs),这些变体产生于对典型序列的替代处理或修饰。这就引入了三层视角--从表达到序列修饰,再到功能。我们将讨论细胞压力与 isomiR 生物生成之间的潜在联系,以及这种联系如何能提高我们对胰岛炎症和功能障碍的认识。
{"title":"A three-layer perspective on miRNA regulation in β cell inflammation.","authors":"Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani","doi":"10.1016/j.tem.2024.10.002","DOIUrl":"10.1016/j.tem.2024.10.002","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"623-637"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer. 扩大代谢功能障碍相关脂肪变性肝病和癌症的研究视野。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2025-01-10 DOI: 10.1016/j.tem.2024.12.009
Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani

Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.

在代谢功能障碍相关脂肪变性肝病(MASLD)的背景下,肝纤维化和生物性别可变地调节肝细胞癌(HCC)和肝外癌(EHCs)的风险。在这里,我们强调这些变量如何在MASLD的化学预防和精准医学方法的设置中产生影响,并指导进一步的研究。
{"title":"Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer.","authors":"Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani","doi":"10.1016/j.tem.2024.12.009","DOIUrl":"10.1016/j.tem.2024.12.009","url":null,"abstract":"<p><p>Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"610-613"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid droplets as cell fate determinants in skeletal muscle. 脂滴作为骨骼肌细胞命运的决定因素。
IF 12.6 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2024-11-28 DOI: 10.1016/j.tem.2024.10.006
Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang

Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.

脂滴(ld)是一种动态细胞器,它与其他细胞成分进行交流,协调能量稳态和信号转导。在骨骼肌中,ld的存在和重要性已经在啮齿类动物和人类的肌纤维中得到了广泛的研究,这些肌纤维处于生理状态和代谢紊乱状态。然而,LDs在肌源性干细胞中的作用直到最近才开始被揭示。本文综述了目前最流行的LD生物发生和降解过程。然后我们回顾了最近关于骨骼肌和肌肉干细胞ld的知识。我们进一步介绍了LD成像和质谱的先进方法,这些方法促进了我们对LD动力学和异质性的理解。
{"title":"Lipid droplets as cell fate determinants in skeletal muscle.","authors":"Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang","doi":"10.1016/j.tem.2024.10.006","DOIUrl":"10.1016/j.tem.2024.10.006","url":null,"abstract":"<p><p>Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"645-659"},"PeriodicalIF":12.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeletal muscle adaptations and post-exertional malaise in long COVID. 长期COVID的骨骼肌适应和运动后不适。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-07-01 Epub Date: 2024-12-17 DOI: 10.1016/j.tem.2024.11.008
Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst

When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.

当急性SARS-CoV-2感染引起的症状持续时间超过3个月时,这种情况被称为长期COVID。患者所经历的症状通常包括肌痛、疲劳、脑雾、认知障碍和运动后不适(PEM),这是精神或体力消耗后症状的恶化。关于运动诱发的PEM和骨骼肌相关症状的病理生理机制还没有达成共识。在这篇观点文章中,我们强调了内在线粒体功能障碍、内皮异常和肌纤维类型向糖酵解表型的转变,这是导致长期COVID运动能力下降的主要原因。体育锻炼诱发PEM的机制尚不清楚,但骨骼肌组织的快速损伤和免疫细胞的肌内浸润可导致PEM相关症状。
{"title":"Skeletal muscle adaptations and post-exertional malaise in long COVID.","authors":"Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst","doi":"10.1016/j.tem.2024.11.008","DOIUrl":"10.1016/j.tem.2024.11.008","url":null,"abstract":"<p><p>When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"614-622"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Endocrinology and Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1