首页 > 最新文献

Trends in Endocrinology and Metabolism最新文献

英文 中文
How obesity affects adipocyte turnover. 肥胖是如何影响脂肪细胞周转的?
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-01 DOI: 10.1016/j.tem.2024.07.004
Sang Mun Han, Hahn Nahmgoong, Kyung Min Yim, Jae Bum Kim

Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.

细胞更替是组织平衡和完整性的基础。脂肪细胞的新陈代谢占人类细胞新陈代谢总量的 4%,在新陈代谢压力下对脂肪组织的平衡至关重要。在肥胖症中,脂肪组织微环境的改变会促进脂肪细胞的死亡。为了清除死亡的脂肪细胞,巨噬细胞被招募进来并形成一种独特的结构,即冠状结构;随后,脂肪干细胞和祖细胞在脂肪生成龛中生成新的脂肪细胞,以取代死亡的脂肪细胞。越来越多的证据表明,在脂肪细胞更替过程中,脂肪细胞的死亡、清除和脂肪生成是复杂的协调过程。在这篇综述中,我们总结了目前对脂肪细胞更替过程中每个步骤的理解,讨论了其关键参与者和调控机制。
{"title":"How obesity affects adipocyte turnover.","authors":"Sang Mun Han, Hahn Nahmgoong, Kyung Min Yim, Jae Bum Kim","doi":"10.1016/j.tem.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.004","url":null,"abstract":"<p><p>Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of APOE4 on omega-3 brain metabolism across the lifespan. APOE4对整个生命周期中omega-3脑代谢的影响。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-01 Epub Date: 2024-04-12 DOI: 10.1016/j.tem.2024.03.003
Brandon Ebright, Marlon V Duro, Kai Chen, Stan Louie, Hussein N Yassine

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.

欧米伽-3(n-3)多不饱和脂肪酸(PUFA),如二十二碳六烯酸(DHA),通过促进神经元功能、维持炎症平衡和提供结构完整性,在人类营养和大脑健康中发挥着重要作用。随着阿尔茨海默病(AD)病理的发展,大脑中的 DHA 代谢会出现失调,其发生的时间和程度可能会受到载脂蛋白 E ε4(APOE4)等位基因的影响。在此,我们将讨论在生命早期保持足够的 DHA 摄入量可如何减缓认知正常的 APOE4 患者向 AD 痴呆症的进展,DHA 脑成像的最新进展可如何为制定更个性化的预防策略提供启示,以及针对 PUFA 代谢途径的替代策略可如何更有效地缓解现有 AD 痴呆症患者的疾病进展。
{"title":"Effects of APOE4 on omega-3 brain metabolism across the lifespan.","authors":"Brandon Ebright, Marlon V Duro, Kai Chen, Stan Louie, Hussein N Yassine","doi":"10.1016/j.tem.2024.03.003","DOIUrl":"10.1016/j.tem.2024.03.003","url":null,"abstract":"<p><p>Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges in phage therapy for cardiometabolic diseases. 噬菌体疗法治疗心脏代谢疾病的机遇与挑战。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-01 Epub Date: 2024-04-17 DOI: 10.1016/j.tem.2024.03.007
Koen Wortelboer, Hilde Herrema

The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.

全球范围内心脏代谢疾病(CMD)的发病率正在上升,而新出现的证据表明,肠道微生物群与这种多因素疾病的发生有关。噬菌体(噬菌体)是一种选择性针对细菌宿主的病毒;因此,噬菌体疗法提供了一种精确调节肠道微生物群的方法,限制了对生态系统的附带损害。多项研究证明了噬菌体在人类疾病(包括酒精性肝病和脂肪肝)中的潜力。在这篇观点文章中,我们讨论了噬菌体疗法作为治疗慢性阻塞性肺病的预定义药物的潜力,并讨论了其目前面临的挑战,包括生成有效的噬菌体组合、产品配方和严格的生产要求。
{"title":"Opportunities and challenges in phage therapy for cardiometabolic diseases.","authors":"Koen Wortelboer, Hilde Herrema","doi":"10.1016/j.tem.2024.03.007","DOIUrl":"10.1016/j.tem.2024.03.007","url":null,"abstract":"<p><p>The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota and eating behaviour in circadian syndrome. 昼夜节律综合征中的肠道微生物群和饮食行为。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-01 DOI: 10.1016/j.tem.2024.07.008
Jorge R Soliz-Rueda, Cristina Cuesta-Marti, Siobhain M O'Mahony, Gerard Clarke, Harriët Schellekens, Begoña Muguerza

Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.

进食行为与昼夜节律密切相关。摄入食物的种类、时间和数量以及宿主的昼夜节律直接影响肠道微生物群,而肠道微生物群反过来又影响宿主的昼夜节律,并调节食物摄入量,使其超出平衡饮食的范围。本观点讨论了肥胖环境引起的食物摄入量和昼夜节律紊乱对肠道-大脑轴信号传导的影响。我们还探讨了肠道微生物群改变对食物摄入行为和昼夜节律性影响的潜在机制。了解肠道微生物群、昼夜节律和不健康饮食行为之间的相互影响对于解决肥胖问题至关重要,而肥胖仍是当代最大的社会挑战之一。
{"title":"Gut microbiota and eating behaviour in circadian syndrome.","authors":"Jorge R Soliz-Rueda, Cristina Cuesta-Marti, Siobhain M O'Mahony, Gerard Clarke, Harriët Schellekens, Begoña Muguerza","doi":"10.1016/j.tem.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.008","url":null,"abstract":"<p><p>Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin. 褪黑素
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-30 DOI: 10.1016/j.tem.2024.07.007
Gregory E Demas, Yuqi Han, Hannah F Fink
{"title":"Melatonin.","authors":"Gregory E Demas, Yuqi Han, Hannah F Fink","doi":"10.1016/j.tem.2024.07.007","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.007","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal–fetal mechanisms underlying adaptation to hypoxia during early pregnancy 孕早期母胎适应缺氧的机制
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-29 DOI: 10.1016/j.tem.2024.07.006
I. Bagchi, M. Bagchi
{"title":"Maternal–fetal mechanisms underlying adaptation to hypoxia during early pregnancy","authors":"I. Bagchi, M. Bagchi","doi":"10.1016/j.tem.2024.07.006","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.006","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141796694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashing metabolic power for axonal regeneration. 为轴突再生释放新陈代谢能量
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-27 DOI: 10.1016/j.tem.2024.07.001
Xiaoyan Yang, Bing Zhou

Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.

轴突再生需要调动细胞内资源,包括蛋白质、脂类和核苷酸。损伤后,神经元需要调整其新陈代谢,以满足轴突再生所需的生物合成要求。然而,细胞新陈代谢对这一过程的确切贡献仍然难以捉摸。对增殖细胞代谢特征的了解可能会揭示轴突再生过程中的类似机制;因此,揭示以前未被认识到的代谢适应作用对于实现神经元再生至关重要,这与脊髓损伤和中风等需要神经修复的神经系统疾病的治疗策略有关。在此,我们概述了代谢在轴突再生中的作用,并讨论了促进神经再生的因素,强调了恢复神经功能的潜在新型代谢疗法。
{"title":"Unleashing metabolic power for axonal regeneration.","authors":"Xiaoyan Yang, Bing Zhou","doi":"10.1016/j.tem.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.001","url":null,"abstract":"<p><p>Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy and lysosomal dysfunction in diabetes and its complications. 糖尿病及其并发症中的自噬和溶酶体功能障碍。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-24 DOI: 10.1016/j.tem.2024.06.010
Catherine Arden, Seo H Park, Xaviera Riani Yasasilka, Eun Y Lee, Myung-Shik Lee

Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.

自噬对能量平衡以及内质网(ER)和线粒体等细胞器的功能至关重要。由于衰老、环境因素或遗传易感性而导致的自噬失调不仅是通过β细胞功能障碍和代谢炎症引起糖尿病的根本原因,也是糖尿病并发症如糖尿病肾病(DKDs)的根本原因。溶酶体是自噬降解的效应细胞器,由于代谢应激或代谢性疾病中营养物质/代谢物的积累而导致的溶酶体功能障碍也正在成为糖尿病及其并发症的病因或加重因素。在此,我们将讨论自噬失调和溶酶体功能障碍在糖尿病中的病因作用,以及自噬或溶酶体调节作为治疗糖尿病及其并发症的新途径的潜在作用。
{"title":"Autophagy and lysosomal dysfunction in diabetes and its complications.","authors":"Catherine Arden, Seo H Park, Xaviera Riani Yasasilka, Eun Y Lee, Myung-Shik Lee","doi":"10.1016/j.tem.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.tem.2024.06.010","url":null,"abstract":"<p><p>Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-hydroxybutyrate β-羟基丁酸
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-17 DOI: 10.1016/j.tem.2024.06.005
S. Madhavan, Brian Stubbs
{"title":"Beta-hydroxybutyrate","authors":"S. Madhavan, Brian Stubbs","doi":"10.1016/j.tem.2024.06.005","DOIUrl":"https://doi.org/10.1016/j.tem.2024.06.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepcidin 肝素
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-17 DOI: 10.1016/j.tem.2024.06.004
Tomas Ganz, E. Nemeth
{"title":"Hepcidin","authors":"Tomas Ganz, E. Nemeth","doi":"10.1016/j.tem.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.tem.2024.06.004","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Endocrinology and Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1