首页 > 最新文献

Trends in Endocrinology and Metabolism最新文献

英文 中文
Harnessing beta cell regeneration biology for diabetes therapy. 利用β细胞再生生物学治疗糖尿病。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-01 Epub Date: 2024-04-21 DOI: 10.1016/j.tem.2024.03.006
Stephanie Bourgeois, Sophie Coenen, Laure Degroote, Lien Willems, Annelore Van Mulders, Julie Pierreux, Yves Heremans, Nico De Leu, Willem Staels

The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.

糖尿病的流行规模令人震惊,其并发症仍具有毁灭性,而目前的治疗方法仍给患者和整个医疗系统带来沉重负担。胰岛素分泌的胰岛β细胞遭到破坏或功能失调是糖尿病的根源,要真正治愈糖尿病,就必须恢复和保护胰岛β细胞。一种有吸引力的策略是直接在胰腺内再生β细胞;然而,虽然过去提出了几种再生β细胞的方法,但临床转化被证明具有挑战性。本综述仔细研究了β细胞再生的最新发现,并讨论了其临床应用的可能性。在此,我们旨在为创新的靶向疗法划定一条道路,以帮助从 "护理 "糖尿病转变为 "治疗 "糖尿病。
{"title":"Harnessing beta cell regeneration biology for diabetes therapy.","authors":"Stephanie Bourgeois, Sophie Coenen, Laure Degroote, Lien Willems, Annelore Van Mulders, Julie Pierreux, Yves Heremans, Nico De Leu, Willem Staels","doi":"10.1016/j.tem.2024.03.006","DOIUrl":"10.1016/j.tem.2024.03.006","url":null,"abstract":"<p><p>The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"951-966"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-associated macrophages between aggravation and alleviation of metabolic diseases. 代谢性疾病恶化与缓解之间的脂质相关巨噬细胞。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-01 Epub Date: 2024-05-04 DOI: 10.1016/j.tem.2024.04.009
Ruonan Xu, Nemanja Vujić, Valentina Bianco, Isabel Reinisch, Dagmar Kratky, Jelena Krstic, Andreas Prokesch

Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.

脂质相关巨噬细胞(LAMs)是一种具有脂质处理能力的吞噬细胞,可在各种代谢失调中被发现。在疾病发展过程中,它们分布在动脉粥样硬化斑块、肥胖症患者的脂肪组织(AT)、脂肪变性和脂肪性肝炎的肝脏病变部位以及肠道固有层。某些肿瘤的代谢微环境中也会出现 LAMs。在这篇综述中,我们将讨论有关 LAM 招募、分化和自我更新的主要问题,以及最终它们对代谢性疾病发展的急性和慢性功能性影响。进一步的研究需要阐明 LAMs 是否以及在何种情况下驱动疾病的发展或缓解,以及如何调节其表型以改善代谢性疾病。
{"title":"Lipid-associated macrophages between aggravation and alleviation of metabolic diseases.","authors":"Ruonan Xu, Nemanja Vujić, Valentina Bianco, Isabel Reinisch, Dagmar Kratky, Jelena Krstic, Andreas Prokesch","doi":"10.1016/j.tem.2024.04.009","DOIUrl":"10.1016/j.tem.2024.04.009","url":null,"abstract":"<p><p>Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"981-995"},"PeriodicalIF":11.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gonadotropin-releasing hormone. 促性腺激素释放激素。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-31 DOI: 10.1016/j.tem.2024.10.003
Miguel Ruiz-Cruz, Juan Roa, Manuel Tena-Sempere
{"title":"Gonadotropin-releasing hormone.","authors":"Miguel Ruiz-Cruz, Juan Roa, Manuel Tena-Sempere","doi":"10.1016/j.tem.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.003","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GDF15 is still a mystery hormone. GDF15 仍是一种神秘的激素。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-29 DOI: 10.1016/j.tem.2024.09.002
Casper M Sigvardsen, Michael M Richter, Sarah Engelbeen, Maximilian Kleinert, Erik A Richter

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) superfamily. Despite its identification over 20 years ago, the functions of GDF15 remain complex and not fully elucidated. Its concentration in plasma varies widely depending on the physiological and pathophysiological state of the organism. GDF15 has been described to regulate food intake and insulin sensitivity in rodents via the GDNF family receptor α-like (GFRAL) receptor, and to be elevated in pregnancy and many disease states and decreased in physically fit individuals. We discuss the latest developments in the regulation of GDF15 secretion and its diverse physiological effects, and touch upon possible GFRAL-independent effects of GDF15. In addition, we discuss the effects of proteins and peptides derived from the same precursor protein as GDF15.

生长分化因子 15(GDF15)是转化生长因子-β(TGF-β)超家族的成员。尽管 GDF15 早在 20 多年前就已被发现,但其功能依然复杂,尚未完全阐明。它在血浆中的浓度随机体的生理和病理生理状态而变化很大。据描述,GDF15可通过GDNF家族受体α样(GFRAL)受体调节啮齿类动物的食物摄入量和胰岛素敏感性,并在妊娠和许多疾病状态下升高,而在体能良好的个体中降低。我们讨论了 GDF15 分泌调控及其各种生理效应的最新进展,并探讨了 GDF15 可能产生的与 GFRAL 无关的效应。此外,我们还讨论了从与 GDF15 相同的前体蛋白中提取的蛋白质和肽的作用。
{"title":"GDF15 is still a mystery hormone.","authors":"Casper M Sigvardsen, Michael M Richter, Sarah Engelbeen, Maximilian Kleinert, Erik A Richter","doi":"10.1016/j.tem.2024.09.002","DOIUrl":"https://doi.org/10.1016/j.tem.2024.09.002","url":null,"abstract":"<p><p>Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) superfamily. Despite its identification over 20 years ago, the functions of GDF15 remain complex and not fully elucidated. Its concentration in plasma varies widely depending on the physiological and pathophysiological state of the organism. GDF15 has been described to regulate food intake and insulin sensitivity in rodents via the GDNF family receptor α-like (GFRAL) receptor, and to be elevated in pregnancy and many disease states and decreased in physically fit individuals. We discuss the latest developments in the regulation of GDF15 secretion and its diverse physiological effects, and touch upon possible GFRAL-independent effects of GDF15. In addition, we discuss the effects of proteins and peptides derived from the same precursor protein as GDF15.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-specific fatty acid uptake is a finely-tuned multi-level effort. 针对具体情况的脂肪酸摄取是一项多层次的精细工作。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-25 DOI: 10.1016/j.tem.2024.10.001
Juan Wang, Huiling Guo, Lang-Fan Zheng, Peng Li, Tong-Jin Zhao

Fatty acids (FAs) are essential nutrients that play multiple roles in cellular activities. To meet cell-specific needs, cells exhibit differential uptake of FAs in diverse physiological or pathological contexts, coordinating to maintain metabolic homeostasis. Cells tightly regulate the localization and transcription of CD36 and other key proteins that transport FAs across the plasma membrane in response to different stimuli. Dysregulation of FA uptake results in diseases such as obesity, steatotic liver, heart failure, and cancer progression. Targeting FA uptake might provide potential therapeutic strategies for metabolic diseases and cancer. Here, we review recent advances in context-specific regulation of FA uptake, focusing on the regulation of CD36 in metabolic organs and other cells.

脂肪酸(FA)是人体必需的营养物质,在细胞活动中发挥着多重作用。为了满足细胞的特定需求,细胞在不同的生理或病理情况下会表现出对脂肪酸的不同吸收,从而协调维持新陈代谢的平衡。细胞会密切调节 CD36 和其他关键蛋白的定位和转录,这些蛋白会在不同刺激下将脂肪酸转运到质膜上。FA 摄取失调会导致肥胖、脂肪肝、心力衰竭和癌症进展等疾病。以脂肪酸摄取为靶点可能为代谢性疾病和癌症提供潜在的治疗策略。在此,我们回顾了在特定环境下调控 FA 吸收方面的最新进展,重点是 CD36 在代谢器官和其他细胞中的调控。
{"title":"Context-specific fatty acid uptake is a finely-tuned multi-level effort.","authors":"Juan Wang, Huiling Guo, Lang-Fan Zheng, Peng Li, Tong-Jin Zhao","doi":"10.1016/j.tem.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.001","url":null,"abstract":"<p><p>Fatty acids (FAs) are essential nutrients that play multiple roles in cellular activities. To meet cell-specific needs, cells exhibit differential uptake of FAs in diverse physiological or pathological contexts, coordinating to maintain metabolic homeostasis. Cells tightly regulate the localization and transcription of CD36 and other key proteins that transport FAs across the plasma membrane in response to different stimuli. Dysregulation of FA uptake results in diseases such as obesity, steatotic liver, heart failure, and cancer progression. Targeting FA uptake might provide potential therapeutic strategies for metabolic diseases and cancer. Here, we review recent advances in context-specific regulation of FA uptake, focusing on the regulation of CD36 in metabolic organs and other cells.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulin. 胰岛素
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-16 DOI: 10.1016/j.tem.2024.09.001
Wenqiang Chen, C Ronald Kahn
{"title":"Insulin.","authors":"Wenqiang Chen, C Ronald Kahn","doi":"10.1016/j.tem.2024.09.001","DOIUrl":"https://doi.org/10.1016/j.tem.2024.09.001","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ISR pathway contribution to tissue specificity of mitochondrial diseases. ISR 途径对线粒体疾病组织特异性的贡献。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-05-27 DOI: 10.1016/j.tem.2024.05.001
Ana Vela-Sebastián, Pilar Bayona-Bafaluy, David Pacheu-Grau

Mitochondrial genetic defects caused by whole-body mutations typically affect different tissues in different ways. Elucidating the molecular determinants that cause certain cell types to be primarily affected has become a critical research target within the field. We propose a differential activation of the integrated stress response as a potential contributor to this tissue specificity.

全身突变导致的线粒体基因缺陷通常会以不同的方式影响不同的组织。阐明导致某些细胞类型主要受影响的分子决定因素已成为该领域的一个重要研究目标。我们提出,综合应激反应的不同激活方式是造成这种组织特异性的潜在因素。
{"title":"ISR pathway contribution to tissue specificity of mitochondrial diseases.","authors":"Ana Vela-Sebastián, Pilar Bayona-Bafaluy, David Pacheu-Grau","doi":"10.1016/j.tem.2024.05.001","DOIUrl":"10.1016/j.tem.2024.05.001","url":null,"abstract":"<p><p>Mitochondrial genetic defects caused by whole-body mutations typically affect different tissues in different ways. Elucidating the molecular determinants that cause certain cell types to be primarily affected has become a critical research target within the field. We propose a differential activation of the integrated stress response as a potential contributor to this tissue specificity.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"851-853"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study. 绘制心灵-线粒体联系和心理生物学特征的平台:MiSBIE 研究。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-10-09 DOI: 10.1016/j.tem.2024.08.006
Catherine Kelly, Caroline Trumpff, Carlos Acosta, Stephanie Assuras, Jack Baker, Sophia Basarrate, Alexander Behnke, Ke Bo, Natalia Bobba-Alves, Frances A Champagne, Quinn Conklin, Marissa Cross, Philip De Jager, Kris Engelstad, Elissa Epel, Soah G Franklin, Michio Hirano, Qiuhan Huang, Alex Junker, Robert-Paul Juster, Darshana Kapri, Clemens Kirschbaum, Mangesh Kurade, Vincenzo Lauriola, Shufang Li, Cynthia C Liu, Grace Liu, Bruce McEwen, Marlon A McGill, Kathleen McIntyre, Anna S Monzel, Jeremy Michelson, Aric A Prather, Eli Puterman, Xiomara Q Rosales, Peter A Shapiro, David Shire, George M Slavich, Richard P Sloan, Janell L M Smith, Marisa Spann, Julie Spicer, Gabriel Sturm, Sophia Tepler, Michel Thiebaut de Schotten, Tor D Wager, Martin Picard

Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.

健康源于线粒体能量转化所驱动的协调心理生物过程。但线粒体是如何调节多系统反应,从而形成整个生命周期的恢复能力和疾病风险的呢?线粒体应激、脑成像和表观遗传学(MiSBIE)研究就是为了解决这个问题而设立的,该研究将确定线粒体如何影响神经内分泌、免疫、代谢、心血管、认知和情感系统,研究对象包括线粒体能量转化能力跨度较大的个体,包括患有罕见线粒体DNA(mtDNA)病变导致线粒体疾病(MitoDs)的参与者。这项跨学科研究有望对线粒体疾病(MitoDs)的病理生理学产生新的认识,为开发新的人体健康生物标志物奠定基础,并整合我们对与医学和公共卫生相关的生物能、大脑-身体和心智-线粒体过程的零散知识。
{"title":"A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study.","authors":"Catherine Kelly, Caroline Trumpff, Carlos Acosta, Stephanie Assuras, Jack Baker, Sophia Basarrate, Alexander Behnke, Ke Bo, Natalia Bobba-Alves, Frances A Champagne, Quinn Conklin, Marissa Cross, Philip De Jager, Kris Engelstad, Elissa Epel, Soah G Franklin, Michio Hirano, Qiuhan Huang, Alex Junker, Robert-Paul Juster, Darshana Kapri, Clemens Kirschbaum, Mangesh Kurade, Vincenzo Lauriola, Shufang Li, Cynthia C Liu, Grace Liu, Bruce McEwen, Marlon A McGill, Kathleen McIntyre, Anna S Monzel, Jeremy Michelson, Aric A Prather, Eli Puterman, Xiomara Q Rosales, Peter A Shapiro, David Shire, George M Slavich, Richard P Sloan, Janell L M Smith, Marisa Spann, Julie Spicer, Gabriel Sturm, Sophia Tepler, Michel Thiebaut de Schotten, Tor D Wager, Martin Picard","doi":"10.1016/j.tem.2024.08.006","DOIUrl":"10.1016/j.tem.2024.08.006","url":null,"abstract":"<p><p>Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"884-901"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial morphology, distribution and activity during oocyte development. 卵母细胞发育过程中线粒体的形态、分布和活性。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-04-09 DOI: 10.1016/j.tem.2024.03.002
Devesh Bahety, Elvan Böke, Aida Rodríguez-Nuevo

Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.

线粒体在细胞功能中起着至关重要的作用,并具有显著的可塑性,可调整其结构和活性,以满足细胞不断变化的能量需求。卵母细胞是成为卵子的雌性生殖细胞,它经历了独特的转变:休眠期延长,细胞体积大幅增大,随后成熟,涉及下一代遗传物质的分离,这些都带来了独特的新陈代谢挑战,需要线粒体做出不同的适应性调整。最近在休眠卵母细胞中的发现挑战了既有的呼吸复合体层次结构,并强调了长寿命卵母细胞中线粒体的可塑性程度。在这篇综述中,我们讨论了在三个脊椎动物物种(爪蟾、小鼠和人类)的卵母细胞发育过程中观察到的线粒体适应性,强调了当前的知识,承认了局限性,并概述了未来的研究方向。
{"title":"Mitochondrial morphology, distribution and activity during oocyte development.","authors":"Devesh Bahety, Elvan Böke, Aida Rodríguez-Nuevo","doi":"10.1016/j.tem.2024.03.002","DOIUrl":"10.1016/j.tem.2024.03.002","url":null,"abstract":"<p><p>Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"902-917"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCU genetically altered mice suggest how mitochondrial Ca2+ regulates metabolism. MCU 基因改变小鼠表明线粒体 Ca2+ 如何调节新陈代谢。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-04-29 DOI: 10.1016/j.tem.2024.04.005
Jiuzhou Huo, Jeffery D Molkentin

Skeletal muscle has a major impact on total body metabolism and obesity, and is characterized by dynamic regulation of substrate utilization. While it is accepted that acute increases in mitochondrial matrix Ca2+ increase carbohydrate usage to augment ATP production, recent studies in mice with deleted genes for components of the mitochondrial Ca2+ uniporter (MCU) complex have suggested a more complicated regulatory scenario. Indeed, mice with a deleted Mcu gene in muscle, which lack acute mitochondrial Ca2+ uptake, have greater fatty acid oxidation (FAO) and less adiposity. By contrast, mice deleted for the inhibitory Mcub gene in skeletal muscle, which have greater acute mitochondrial Ca2+ uptake, antithetically display reduced FAO and progressive obesity. In this review we discuss the emerging concept that dynamic fluxing of mitochondrial matrix Ca2+ regulates metabolism.

骨骼肌对全身代谢和肥胖有重大影响,其特点是对底物利用进行动态调节。虽然线粒体基质 Ca2+ 的急性增加会增加碳水化合物的使用以提高 ATP 的产生,但最近对线粒体 Ca2+ 单端口复合体(MCU)成分基因缺失的小鼠进行的研究表明,这种调控情况更为复杂。事实上,肌肉中的 Mcu 基因被缺失的小鼠缺乏线粒体 Ca2+ 的急性摄取,但它们的脂肪酸氧化(FAO)能力更强,脂肪含量更低。与此相反,骨骼肌中的抑制性 Mcub 基因被删除的小鼠,线粒体 Ca2+ 的急性摄取能力较强,但反过来却显示出较低的脂肪酸氧化能力和进行性肥胖。在这篇综述中,我们讨论了线粒体基质 Ca2+ 动态通量调节新陈代谢这一新兴概念。
{"title":"MCU genetically altered mice suggest how mitochondrial Ca<sup>2+</sup> regulates metabolism.","authors":"Jiuzhou Huo, Jeffery D Molkentin","doi":"10.1016/j.tem.2024.04.005","DOIUrl":"10.1016/j.tem.2024.04.005","url":null,"abstract":"<p><p>Skeletal muscle has a major impact on total body metabolism and obesity, and is characterized by dynamic regulation of substrate utilization. While it is accepted that acute increases in mitochondrial matrix Ca<sup>2+</sup> increase carbohydrate usage to augment ATP production, recent studies in mice with deleted genes for components of the mitochondrial Ca<sup>2+</sup> uniporter (MCU) complex have suggested a more complicated regulatory scenario. Indeed, mice with a deleted Mcu gene in muscle, which lack acute mitochondrial Ca<sup>2+</sup> uptake, have greater fatty acid oxidation (FAO) and less adiposity. By contrast, mice deleted for the inhibitory Mcub gene in skeletal muscle, which have greater acute mitochondrial Ca<sup>2+</sup> uptake, antithetically display reduced FAO and progressive obesity. In this review we discuss the emerging concept that dynamic fluxing of mitochondrial matrix Ca<sup>2+</sup> regulates metabolism.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"918-928"},"PeriodicalIF":11.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Endocrinology and Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1