Pub Date : 2021-06-01Epub Date: 2021-05-20DOI: 10.1007/s12064-021-00345-7
Paramahansa Pramanik
A stochastic differential game theoretic model has been proposed to determine optimal behavior of a fish while migrating against water currents both in rivers and oceans. Then, a dynamic objective function is maximized subject to two stochastic dynamics, one represents its location and another its relative velocity against water currents. In relative velocity stochastic dynamics, a Cucker-Smale type stochastic differential equation is introduced under white noise. As the information regarding hydrodynamic environment is incomplete and imperfect, a Feynman type path integral under [Formula: see text] Liouville-like quantum gravity surface has been introduced to obtain a Wick-rotated Schrödinger type equation to determine an optimal strategy of a fish during its migration. The advantage of having Feynman type path integral is that, it can be used in more generalized nonlinear stochastic differential equations where constructing a Hamiltonian-Jacobi-Bellman (HJB) equation is impossible. The mathematical analytic results show exact expression of an optimal strategy of a fish under imperfect information and uncertainty.
{"title":"Effects of water currents on fish migration through a Feynman-type path integral approach under [Formula: see text] Liouville-like quantum gravity surfaces.","authors":"Paramahansa Pramanik","doi":"10.1007/s12064-021-00345-7","DOIUrl":"https://doi.org/10.1007/s12064-021-00345-7","url":null,"abstract":"<p><p>A stochastic differential game theoretic model has been proposed to determine optimal behavior of a fish while migrating against water currents both in rivers and oceans. Then, a dynamic objective function is maximized subject to two stochastic dynamics, one represents its location and another its relative velocity against water currents. In relative velocity stochastic dynamics, a Cucker-Smale type stochastic differential equation is introduced under white noise. As the information regarding hydrodynamic environment is incomplete and imperfect, a Feynman type path integral under [Formula: see text] Liouville-like quantum gravity surface has been introduced to obtain a Wick-rotated Schrödinger type equation to determine an optimal strategy of a fish during its migration. The advantage of having Feynman type path integral is that, it can be used in more generalized nonlinear stochastic differential equations where constructing a Hamiltonian-Jacobi-Bellman (HJB) equation is impossible. The mathematical analytic results show exact expression of an optimal strategy of a fish under imperfect information and uncertainty.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-021-00345-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39001856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-05-25DOI: 10.1007/s12064-021-00347-5
Mohamed El Mahdi Hacini, Djammel Hammoudi, Salih Djilali, Soufiane Bentout
In this paper, the schooling behavior of prey fish population in a predator-prey interaction is investigated. By taking an economical interest which can be elaborated by the presence of nonselective harvesting into consideration, we studied the dynamical behavior. The existence, positivity and boundedness of solution have been established. The analysis of the equilibrium states is presented by studying the local and the global stability. The possible types of local bifurcation that the system can undergoes are discussed. The effect of fishing effort on the evolution of the species is examined. Further, by using Pontryagin's maximum principle a proper management strategy has been used for avoiding the extinction of the considered species and maximizing the benefits. For the validation of the theoretical result, several of graphical representations have been used.
{"title":"Optimal harvesting and stability of a predator-prey model for fish populations with schooling behavior.","authors":"Mohamed El Mahdi Hacini, Djammel Hammoudi, Salih Djilali, Soufiane Bentout","doi":"10.1007/s12064-021-00347-5","DOIUrl":"https://doi.org/10.1007/s12064-021-00347-5","url":null,"abstract":"<p><p>In this paper, the schooling behavior of prey fish population in a predator-prey interaction is investigated. By taking an economical interest which can be elaborated by the presence of nonselective harvesting into consideration, we studied the dynamical behavior. The existence, positivity and boundedness of solution have been established. The analysis of the equilibrium states is presented by studying the local and the global stability. The possible types of local bifurcation that the system can undergoes are discussed. The effect of fishing effort on the evolution of the species is examined. Further, by using Pontryagin's maximum principle a proper management strategy has been used for avoiding the extinction of the considered species and maximizing the benefits. For the validation of the theoretical result, several of graphical representations have been used.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-021-00347-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39014965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-03-25DOI: 10.1007/s12064-021-00340-y
Bernhard Voelkl, Hanno Würbel
Reproducibility in biomedical research, and more specifically in preclinical animal research, has been seriously questioned. Several cases of spectacular failures to replicate findings published in the primary scientific literature have led to a perceived reproducibility crisis. Diverse threats to reproducibility have been proposed, including lack of scientific rigour, low statistical power, publication bias, analytical flexibility and fraud. An important aspect that is generally overlooked is the lack of external validity caused by rigorous standardization of both the animals and the environment. Here, we argue that a reaction norm approach to phenotypic variation, acknowledging gene-by-environment interactions, can help us seeing reproducibility of animal experiments in a new light. We illustrate how dominating environmental effects can affect inference and effect size estimates of studies and how elimination of dominant factors through standardization affects the nature of the expected phenotype variation through the reaction norms of small effect. Finally, we discuss the consequences of reaction norms of small effect for statistical analysis, specifically for random effect latent variable models and the random lab model.
{"title":"A reaction norm perspective on reproducibility.","authors":"Bernhard Voelkl, Hanno Würbel","doi":"10.1007/s12064-021-00340-y","DOIUrl":"10.1007/s12064-021-00340-y","url":null,"abstract":"<p><p>Reproducibility in biomedical research, and more specifically in preclinical animal research, has been seriously questioned. Several cases of spectacular failures to replicate findings published in the primary scientific literature have led to a perceived reproducibility crisis. Diverse threats to reproducibility have been proposed, including lack of scientific rigour, low statistical power, publication bias, analytical flexibility and fraud. An important aspect that is generally overlooked is the lack of external validity caused by rigorous standardization of both the animals and the environment. Here, we argue that a reaction norm approach to phenotypic variation, acknowledging gene-by-environment interactions, can help us seeing reproducibility of animal experiments in a new light. We illustrate how dominating environmental effects can affect inference and effect size estimates of studies and how elimination of dominant factors through standardization affects the nature of the expected phenotype variation through the reaction norms of small effect. Finally, we discuss the consequences of reaction norms of small effect for statistical analysis, specifically for random effect latent variable models and the random lab model.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25531423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-03-07DOI: 10.1007/s12064-021-00339-5
Saikat Batabyal, Arthita Batabyal
The outbreak of coronavirus COVID-19 is spreading at an unprecedented rate to the human populations and taking several thousands of life all over the world. Scientists are trying to map the pattern of the transmission of coronavirus (SARS-CoV-2). Many countries are in the phase of lockdown in the globe. In this paper we predict about the effect of coronavirus COVID-19 and give a sneak peak when it will reduce the transmission rate in the world via mathematical modelling. In this research work our study is based on extensions of the well-known susceptible-exposed-infected-recovered (SEIR) family of compartmental models and later we observe the new model changes into (SEIR) without changing its physical meanings. The stability analysis of the coronavirus depends on changing of its basic reproductive ratio. The progress rate of the virus in the critically infected cases and the recovery rate have major roles to control this epidemic. The impact of social distancing, lockdown of the country, self-isolation, home quarantine and the wariness of global public health system have significant influence on the parameters of the model system that can alter the effect of recovery rates, mortality rates and active contaminated cases with the progression of time in the real world. The prognostic ability of mathematical model is circumscribed as of the accuracy of the available data and its application to the problem.
{"title":"Mathematical computations on epidemiology: a case study of the novel coronavirus (SARS-CoV-2).","authors":"Saikat Batabyal, Arthita Batabyal","doi":"10.1007/s12064-021-00339-5","DOIUrl":"10.1007/s12064-021-00339-5","url":null,"abstract":"<p><p>The outbreak of coronavirus COVID-19 is spreading at an unprecedented rate to the human populations and taking several thousands of life all over the world. Scientists are trying to map the pattern of the transmission of coronavirus (SARS-CoV-2). Many countries are in the phase of lockdown in the globe. In this paper we predict about the effect of coronavirus COVID-19 and give a sneak peak when it will reduce the transmission rate in the world via mathematical modelling. In this research work our study is based on extensions of the well-known susceptible-exposed-infected-recovered (SEIR) family of compartmental models and later we observe the new model changes into (SEIR) without changing its physical meanings. The stability analysis of the coronavirus depends on changing of its basic reproductive ratio. The progress rate of the virus in the critically infected cases and the recovery rate have major roles to control this epidemic. The impact of social distancing, lockdown of the country, self-isolation, home quarantine and the wariness of global public health system have significant influence on the parameters of the model system that can alter the effect of recovery rates, mortality rates and active contaminated cases with the progression of time in the real world. The prognostic ability of mathematical model is circumscribed as of the accuracy of the available data and its application to the problem.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25455706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-03-24DOI: 10.1007/s12064-021-00341-x
Elizabeth Watts, Ulrich Kutschera
As detailed in a Letter published in Science in 2017, the adherents of creationism and intelligent design are still active in promoting their biblical-literalist views of the origin and evolution of life on Earth. In this contribution, we take a look at this ideological phenomenon in the USA and analyze the philosophical roots of this ongoing movement. Specifically, we discuss Vernon Kellogg's book entitled Headquarters Nights (1917) with reference to the German 'Allmacht' (English-omnipotence) and Darwinian evolution to demonstrate how this publication bolstered the development of active anti-evolutionism in the USA among American fundamentalist Christians, inclusive of the Intelligent Design (ID)-agenda. The current activities of creationist associations in the USA and Germany are summarized, with reference to a new pro-ID-group established in Austria in 2019 that is sponsored by the Discovery Institute in Seattle, Washington (USA).
{"title":"On the historical roots of creationism and intelligent design: German Allmacht and Darwinian evolution in context.","authors":"Elizabeth Watts, Ulrich Kutschera","doi":"10.1007/s12064-021-00341-x","DOIUrl":"https://doi.org/10.1007/s12064-021-00341-x","url":null,"abstract":"<p><p>As detailed in a Letter published in Science in 2017, the adherents of creationism and intelligent design are still active in promoting their biblical-literalist views of the origin and evolution of life on Earth. In this contribution, we take a look at this ideological phenomenon in the USA and analyze the philosophical roots of this ongoing movement. Specifically, we discuss Vernon Kellogg's book entitled Headquarters Nights (1917) with reference to the German 'Allmacht' (English-omnipotence) and Darwinian evolution to demonstrate how this publication bolstered the development of active anti-evolutionism in the USA among American fundamentalist Christians, inclusive of the Intelligent Design (ID)-agenda. The current activities of creationist associations in the USA and Germany are summarized, with reference to a new pro-ID-group established in Austria in 2019 that is sponsored by the Discovery Institute in Seattle, Washington (USA).</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-021-00341-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25512317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01Epub Date: 2020-10-31DOI: 10.1007/s12064-020-00324-4
Miled El Hajji
A generalized model of intra-host CHIKV infection with two routes of infection has been proposed. In a first step, the basic reproduction number [Formula: see text] was calculated using the next-generation matrix method and the local and global stability analyses of the steady states are carried out using the Lyapunov method. It is proven that the CHIKV-free steady state [Formula: see text] is globally asymptotically stable when [Formula: see text] and the infected steady state [Formula: see text] is globally asymptotically stable when [Formula: see text]. In a second step, we applied an optimal strategy via the antibodies' flow rate in order to optimize infected compartment and to maximize the uninfected one. For this, we formulated a nonlinear optimal control problem. Existence of the optimal solution was discussed and characterized using an adjoint variables. Thus, an algorithm based on competitive Gauss-Seidel-like implicit difference method was applied in order to resolve the optimality system. The theoretical results are confirmed by some numerical simulations.
{"title":"Modelling and optimal control for Chikungunya disease.","authors":"Miled El Hajji","doi":"10.1007/s12064-020-00324-4","DOIUrl":"https://doi.org/10.1007/s12064-020-00324-4","url":null,"abstract":"<p><p>A generalized model of intra-host CHIKV infection with two routes of infection has been proposed. In a first step, the basic reproduction number [Formula: see text] was calculated using the next-generation matrix method and the local and global stability analyses of the steady states are carried out using the Lyapunov method. It is proven that the CHIKV-free steady state [Formula: see text] is globally asymptotically stable when [Formula: see text] and the infected steady state [Formula: see text] is globally asymptotically stable when [Formula: see text]. In a second step, we applied an optimal strategy via the antibodies' flow rate in order to optimize infected compartment and to maximize the uninfected one. For this, we formulated a nonlinear optimal control problem. Existence of the optimal solution was discussed and characterized using an adjoint variables. Thus, an algorithm based on competitive Gauss-Seidel-like implicit difference method was applied in order to resolve the optimality system. The theoretical results are confirmed by some numerical simulations.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00324-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38551241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01Epub Date: 2020-10-23DOI: 10.1007/s12064-020-00326-2
P Tassy, M S Fischer
The fate of "clade," both as concept and word, is reconstructed here beginning with its first appearance in 1866 as "Cladus," in Haeckel's Generelle Morphologie, continuing up to the present. Although central to phylogenetics, the concept of clade is paradoxical since it has been ambiguously understood or even misunderstood by its own promoters. Writings by Ernst Haeckel, Lucien Cuénot, and Julian Huxley, the three authors who discussed the notion of clade at length, are analyzed here in detail as a means of exploring this paradox. First conceived as a rank for a higher-level category, and later as a taxon, the clade is understood today in connection with Hennig's definition of a monophyletic group rather than through Huxley's successful but somehow ambiguous formalization. The inability of these authors to formulate a clear-cut exposition of the concept is considered here within three contexts: firstly, the burden of pre-Darwinian classifications based on similarity; secondly, the underestimation of Darwin's description of a genealogical group; and thirdly, the predominance of thinking in process (vs thinking in pattern), which was the basis of evolutionary systematics in the mid-twentieth century.
{"title":"\"Cladus\" and clade: a taxonomic odyssey.","authors":"P Tassy, M S Fischer","doi":"10.1007/s12064-020-00326-2","DOIUrl":"https://doi.org/10.1007/s12064-020-00326-2","url":null,"abstract":"<p><p>The fate of \"clade,\" both as concept and word, is reconstructed here beginning with its first appearance in 1866 as \"Cladus,\" in Haeckel's Generelle Morphologie, continuing up to the present. Although central to phylogenetics, the concept of clade is paradoxical since it has been ambiguously understood or even misunderstood by its own promoters. Writings by Ernst Haeckel, Lucien Cuénot, and Julian Huxley, the three authors who discussed the notion of clade at length, are analyzed here in detail as a means of exploring this paradox. First conceived as a rank for a higher-level category, and later as a taxon, the clade is understood today in connection with Hennig's definition of a monophyletic group rather than through Huxley's successful but somehow ambiguous formalization. The inability of these authors to formulate a clear-cut exposition of the concept is considered here within three contexts: firstly, the burden of pre-Darwinian classifications based on similarity; secondly, the underestimation of Darwin's description of a genealogical group; and thirdly, the predominance of thinking in process (vs thinking in pattern), which was the basis of evolutionary systematics in the mid-twentieth century.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00326-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38522349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01Epub Date: 2020-10-23DOI: 10.1007/s12064-020-00323-5
Yoan Konto-Ghiorghi, Vic Norris
The generation of a phenotypic diversity that is coherent across a bacterial population is a fundamental problem. We propose here that the DNA strand-specific segregation of certain nucleoid-associated proteins or NAPs results in these proteins being asymmetrically distributed to the daughter cells. We invoke a variety of mechanisms as responsible for this asymmetrical segregation including those based on differences between the leading and lagging strands, post-translational modifications, oligomerisation and association with membrane domains.
{"title":"Hypothesis: nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity.","authors":"Yoan Konto-Ghiorghi, Vic Norris","doi":"10.1007/s12064-020-00323-5","DOIUrl":"https://doi.org/10.1007/s12064-020-00323-5","url":null,"abstract":"<p><p>The generation of a phenotypic diversity that is coherent across a bacterial population is a fundamental problem. We propose here that the DNA strand-specific segregation of certain nucleoid-associated proteins or NAPs results in these proteins being asymmetrically distributed to the daughter cells. We invoke a variety of mechanisms as responsible for this asymmetrical segregation including those based on differences between the leading and lagging strands, post-translational modifications, oligomerisation and association with membrane domains.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00323-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38522350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1007/s12064-020-00337-z
Fariba Fayazi, Elena Fimmel, Lutz Strüngmann
In the 1950s, Crick proposed the concept of so-called comma-free codes as an answer to the frame-shift problem that biologists have encountered when studying the process of translating a sequence of nucleotide bases into a protein. A little later it turned out that this proposal unfortunately does not correspond to biological reality. However, in the mid-90s, a weaker version of comma-free codes, so-called circular codes, was discovered in nature in J Theor Biol 182:45-58, 1996. Circular codes allow to retrieve the reading frame during the translational process in the ribosome and surprisingly the circular code discovered in nature is even circular in all three possible reading-frames ([Formula: see text]-property). Moreover, it is maximal in the sense that it contains 20 codons and is self-complementary which means that it consists of pairs of codons and corresponding anticodons. In further investigations, it was found that there are exactly 216 codes that have the same strong properties as the originally found code from J Theor Biol 182:45-58. Using an algebraic approach, it was shown in J Math Biol, 2004 that the class of 216 maximal self-complementary [Formula: see text]-codes can be partitioned into 27 equally sized equivalence classes by the action of a transformation group [Formula: see text] which is isomorphic to the dihedral group. Here, we extend the above findings to circular codes over a finite alphabet of even cardinality [Formula: see text] for [Formula: see text]. We describe the corresponding group [Formula: see text] using matrices and we investigate what classes of circular codes are split into equally sized equivalence classes under the natural equivalence relation induced by [Formula: see text]. Surprisingly, this is not always the case. All results and constructions are illustrated by examples.
在20世纪50年代,克里克提出了所谓的无逗号代码的概念,作为生物学家在研究将核苷酸碱基序列翻译成蛋白质的过程中遇到的帧移位问题的答案。不久之后,不幸的是,这个建议并不符合生物学的现实。然而,在90年代中期,在自然界中发现了一种弱版本的无逗号代码,即所谓的循环代码。《理论生物学杂志》182:45-58,1996。循环代码允许在核糖体的翻译过程中检索阅读框架,令人惊讶的是,在自然界中发现的循环代码甚至在所有三种可能的阅读框架中都是循环的([公式:见文本]-属性)。此外,它是极大的,因为它包含20个密码子,并且是自互补的,这意味着它由对密码子和相应的反密码子组成。在进一步的研究中,发现有216个编码与J Theor Biol 182:45-58中最初发现的编码具有相同的强性质。利用代数方法,在J Math Biol, 2004中证明了216个极大自互补(公式:见文)码类可以在一个与二面体群同构的变换群(公式:见文)的作用下被划分为27个大小相等的等价类。在这里,我们将上述发现扩展到偶数基数的有限字母表上的循环代码[公式:见文本]。我们用矩阵描述了相应的群[公式:见文],并研究了在由[公式:见文]导出的自然等价关系下,哪些类的圆码被分成大小相等的等价类。令人惊讶的是,情况并非总是如此。所有的结果和结构都通过实例加以说明。
{"title":"Equivalence classes of circular codes induced by permutation groups.","authors":"Fariba Fayazi, Elena Fimmel, Lutz Strüngmann","doi":"10.1007/s12064-020-00337-z","DOIUrl":"https://doi.org/10.1007/s12064-020-00337-z","url":null,"abstract":"<p><p>In the 1950s, Crick proposed the concept of so-called comma-free codes as an answer to the frame-shift problem that biologists have encountered when studying the process of translating a sequence of nucleotide bases into a protein. A little later it turned out that this proposal unfortunately does not correspond to biological reality. However, in the mid-90s, a weaker version of comma-free codes, so-called circular codes, was discovered in nature in J Theor Biol 182:45-58, 1996. Circular codes allow to retrieve the reading frame during the translational process in the ribosome and surprisingly the circular code discovered in nature is even circular in all three possible reading-frames ([Formula: see text]-property). Moreover, it is maximal in the sense that it contains 20 codons and is self-complementary which means that it consists of pairs of codons and corresponding anticodons. In further investigations, it was found that there are exactly 216 codes that have the same strong properties as the originally found code from J Theor Biol 182:45-58. Using an algebraic approach, it was shown in J Math Biol, 2004 that the class of 216 maximal self-complementary [Formula: see text]-codes can be partitioned into 27 equally sized equivalence classes by the action of a transformation group [Formula: see text] which is isomorphic to the dihedral group. Here, we extend the above findings to circular codes over a finite alphabet of even cardinality [Formula: see text] for [Formula: see text]. We describe the corresponding group [Formula: see text] using matrices and we investigate what classes of circular codes are split into equally sized equivalence classes under the natural equivalence relation induced by [Formula: see text]. Surprisingly, this is not always the case. All results and constructions are illustrated by examples.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00337-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25318410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01Epub Date: 2021-02-15DOI: 10.1007/s12064-020-00334-2
Auni Aslah Mat Daud, Cher Qing Toh, Salilah Saidun
Anemia is a significant public health problem worldwide especially among pregnant women in low- and middle-income countries. In this study, a mathematical model of the population dynamics of anemia during pregnancy and postpartum is constructed. In the modeling process, four independent variables have been considered: (1) the numbers of nonpregnant nonanemic women, (2) anemic nonpregnant women, (3) anemic pregnant or postpartum women and (4) anemic pregnant or postpartum women with complications. The mathematical model is governed by a system of first-order ordinary differential equations. The stability analysis of the model is conducted using Routh-Hurwitz criteria. There is one nonnegative equilibrium point which is asymptotically stable. The equilibrium point obtained indicates the influential parameters that can be controlled to minimize the number of patients at each stage. The proposed model can be employed to forecast the future incidence and prevalence of the disease and appraise intervention programs.
{"title":"Mathematical modeling and analysis of anemia during pregnancy and postpartum.","authors":"Auni Aslah Mat Daud, Cher Qing Toh, Salilah Saidun","doi":"10.1007/s12064-020-00334-2","DOIUrl":"https://doi.org/10.1007/s12064-020-00334-2","url":null,"abstract":"<p><p>Anemia is a significant public health problem worldwide especially among pregnant women in low- and middle-income countries. In this study, a mathematical model of the population dynamics of anemia during pregnancy and postpartum is constructed. In the modeling process, four independent variables have been considered: (1) the numbers of nonpregnant nonanemic women, (2) anemic nonpregnant women, (3) anemic pregnant or postpartum women and (4) anemic pregnant or postpartum women with complications. The mathematical model is governed by a system of first-order ordinary differential equations. The stability analysis of the model is conducted using Routh-Hurwitz criteria. There is one nonnegative equilibrium point which is asymptotically stable. The equilibrium point obtained indicates the influential parameters that can be controlled to minimize the number of patients at each stage. The proposed model can be employed to forecast the future incidence and prevalence of the disease and appraise intervention programs.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12064-020-00334-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25376201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}