首页 > 最新文献

Protein Engineering Design & Selection最新文献

英文 中文
Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. 通过蛋白质核心重新设计和深度突变扫描稳定 SARS-CoV-2 受体结合域。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac002
Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.

稳定作为疫苗免疫原或诊断试剂的抗原蛋白是蛋白质工程和设计的一个严格案例,因为其外表面必须保持受体和抗原特异性抗体对多个不同表位的识别。这是一个挑战,因为提高稳定性的突变必须集中在蛋白质核心,而成功的计算稳定化算法通常会选择面向溶剂位置的突变。在本研究中,我们报告了利用深度突变扫描和计算设计(包括 FuncLib 算法)相结合的方法稳定 SARS-CoV-2 武汉胡-1 穗状病毒受体结合域的情况。我们最成功的设计编码了 I358F、Y365W、T430I 和 I513L 受体结合结构域突变,保持了受体 ACE2 和一组不同的抗受体结合结构域单克隆抗体的识别能力,使用热位移测定法比原始受体结合结构域的热稳定性高 1 到 2°C,对糜蛋白酶和热溶解酶的蛋白水解敏感性比原始受体结合结构域低。我们的方法可应用于各种蛋白质的计算稳定化,而无需详细了解活性位点或结合表位。我们设想,当存在多个或未知结合位点时,这种策略可能会特别强大。
{"title":"Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning.","authors":"Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead","doi":"10.1093/protein/gzac002","DOIUrl":"10.1093/protein/gzac002","url":null,"abstract":"<p><p>Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077414/pdf/gzac002.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multivalent antibody assembled from different building blocks using tag/catcher systems: a case study. 使用标签/捕集器系统从不同构建块组装的多价抗体:一个案例研究。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac014
Christof Schindler, Christine Faust, Hanno Sjuts, Christian Lange, Jennifer Kühn, Werner Dittrich, Wulf Dirk Leuschner, Werner Schiebler, Joachim Hofmann, Ercole Rao, Thomas Langer

The field of therapeutic antibodies and, especially bi- or multispecific antibodies, is growing rapidly. Especially for treating cancers, multispecific antibodies are very promising, as there are multiple pathways involved and multispecific antibodies offer the possibility to interfere at two or more sites. Besides being used as therapeutic, multispecific antibodies can be helpful tools in basic research. However, the design and choice of the most appropriate multispecific antibody format are far from trivial. The generation of multispecific antibodies starts with the generation of antibodies directed against the desired targets and then combining the different antigen-binding sites in one molecule. This is a time-consuming and laborious approach since the most suitable geometry cannot be predicted. The SpyTag technology is based on a split-protein system, where a small peptide of said protein, the SpyTag, can bind to the remaining protein, the SpyCatcher. An irreversible isopeptide bond between the SpyTag and the SpyCatcher is formed. A related Tag-Catcher system is the SnoopTag-SnoopCatcher. These systems offer the opportunity to separately produce proteins fused to the tag-peptides and to the catcher-domains and assemble them in vitro. Our goal was to design and produce different antibody fragments, Fab domains and Fc-containing domains, with different tags and/or catchers as building blocks for the assembly of different multivalent antibodies. We have shown that large multivalent antibodies consisting of up to seven building blocks can be prepared. Binding experiments demonstrated that all binding sites in such a large molecule retained their accessibility to their corresponding antigens.

治疗性抗体领域,特别是双特异性或多特异性抗体,正在迅速发展。特别是在治疗癌症方面,多特异性抗体非常有前景,因为有多种途径参与其中,多特异性抗体提供了在两个或多个位点进行干扰的可能性。除了用于治疗之外,多特异性抗体还可以作为基础研究的有用工具。然而,设计和选择最合适的多特异性抗体格式远非微不足道。多特异性抗体的产生始于针对预期目标的抗体的产生,然后将不同的抗原结合位点结合在一个分子中。这是一种费时费力的方法,因为无法预测最合适的几何形状。SpyTag技术是基于一个分裂蛋白系统,其中一个小肽的蛋白质,SpyTag,可以结合到剩余的蛋白质,SpyCatcher。SpyTag和SpyCatcher之间形成了不可逆的异肽键。与之相关的标签捕捉系统是SnoopTag-SnoopCatcher。这些系统提供了分别产生与标签肽和捕获域融合的蛋白质并在体外组装它们的机会。我们的目标是设计和生产不同的抗体片段,Fab结构域和含fc结构域,使用不同的标签和/或捕获器作为组装不同多价抗体的构建块。我们已经证明,可以制备由多达七个构建块组成的大型多价抗体。结合实验表明,在这种大分子中,所有的结合位点都保持了对相应抗原的可及性。
{"title":"A multivalent antibody assembled from different building blocks using tag/catcher systems: a case study.","authors":"Christof Schindler,&nbsp;Christine Faust,&nbsp;Hanno Sjuts,&nbsp;Christian Lange,&nbsp;Jennifer Kühn,&nbsp;Werner Dittrich,&nbsp;Wulf Dirk Leuschner,&nbsp;Werner Schiebler,&nbsp;Joachim Hofmann,&nbsp;Ercole Rao,&nbsp;Thomas Langer","doi":"10.1093/protein/gzac014","DOIUrl":"https://doi.org/10.1093/protein/gzac014","url":null,"abstract":"<p><p>The field of therapeutic antibodies and, especially bi- or multispecific antibodies, is growing rapidly. Especially for treating cancers, multispecific antibodies are very promising, as there are multiple pathways involved and multispecific antibodies offer the possibility to interfere at two or more sites. Besides being used as therapeutic, multispecific antibodies can be helpful tools in basic research. However, the design and choice of the most appropriate multispecific antibody format are far from trivial. The generation of multispecific antibodies starts with the generation of antibodies directed against the desired targets and then combining the different antigen-binding sites in one molecule. This is a time-consuming and laborious approach since the most suitable geometry cannot be predicted. The SpyTag technology is based on a split-protein system, where a small peptide of said protein, the SpyTag, can bind to the remaining protein, the SpyCatcher. An irreversible isopeptide bond between the SpyTag and the SpyCatcher is formed. A related Tag-Catcher system is the SnoopTag-SnoopCatcher. These systems offer the opportunity to separately produce proteins fused to the tag-peptides and to the catcher-domains and assemble them in vitro. Our goal was to design and produce different antibody fragments, Fab domains and Fc-containing domains, with different tags and/or catchers as building blocks for the assembly of different multivalent antibodies. We have shown that large multivalent antibodies consisting of up to seven building blocks can be prepared. Binding experiments demonstrated that all binding sites in such a large molecule retained their accessibility to their corresponding antigens.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9226656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery. 基于结构工程的最小脯氨酸脱氢酶结构域抑制剂发现。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzac016
Alexandra N Bogner, Juan Ji, John J Tanner

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA α-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 Å resolution. Minimal PRODHs should be useful in chemical probe discovery.

脯氨酸脱氢酶(PRODH)可以催化fad依赖的l-脯氨酸氧化生成Δ1-pyrroline-5-carboxylate,由于其在癌细胞代谢中的重要性,因此是发现抑制剂的靶标。由于人类PRODH难以纯化,细菌双功能酶脯氨酸利用A (PutA)的PRODH结构域已被用于抑制剂的开发。由于多肽链长、构象灵活性和与PRODH活性无关的结构域的存在,这些系统具有局限性。在此,我们报道了用于抑制剂发现的最小PRODH结构域的工程。最好的设计包含了来自Sinorhizobium meliloti的1233个PutA残基的三分之一,并包含了一个取代PutA α-结构域的连接体。最小的PRODHs表现出接近野生型的酶活性,并且对已知的抑制剂和灭活剂敏感。在1.23和1.72 Å分辨率下测定了S-(-)-四氢-2-呋喃酸和2-(呋喃-2-基)乙酸抑制的最小PRODHs的晶体结构。最小PRODHs在化学探针发现中应该是有用的。
{"title":"Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.","authors":"Alexandra N Bogner, Juan Ji, John J Tanner","doi":"10.1093/protein/gzac016","DOIUrl":"10.1093/protein/gzac016","url":null,"abstract":"<p><p>Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA α-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 Å resolution. Minimal PRODHs should be useful in chemical probe discovery.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10670094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species. 基于酵母表面展示的 ACE2 突变鉴定可调节多种哺乳动物的 SARS-CoV-2 穗状结合。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-17 DOI: 10.1093/protein/gzab035
Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors elucidates determinants of virus transmission and facilitates development of vaccines for humans and animals. Yeast display-based directed evolution identified conserved ACE2 mutations that increase spike binding across multiple species. Gln42Leu increased ACE2-spike binding for human and four of four other mammalian ACE2s; Leu79Ile had an effect for human and three of three mammalian ACE2s. These residues are highly represented, 83% for Gln42 and 56% for Leu79, among mammalian ACE2s. The above findings can be important in protecting humans and animals from existing and future SARS-CoV-2 variants.

了解严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)如何与不同哺乳动物的血管紧张素转换酶 II(ACE2)细胞入口受体相互作用,有助于阐明病毒传播的决定因素,并促进人类和动物疫苗的开发。基于酵母展示的定向进化发现了可增加多个物种尖峰结合的 ACE2 保守突变。Gln42Leu 增加了人类和其他四种哺乳动物 ACE2 中四种的 ACE2 穗状结合;Leu79Ile 对人类和三种哺乳动物 ACE2 中三种有影响。这些残基在哺乳动物 ACE2 中的比例很高,Gln42 和 Leu79 分别占 83% 和 56%。上述发现对于保护人类和动物免受现有和未来的 SARS-CoV-2 变体的感染非常重要。
{"title":"Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species.","authors":"Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero","doi":"10.1093/protein/gzab035","DOIUrl":"10.1093/protein/gzab035","url":null,"abstract":"<p><p>Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors elucidates determinants of virus transmission and facilitates development of vaccines for humans and animals. Yeast display-based directed evolution identified conserved ACE2 mutations that increase spike binding across multiple species. Gln42Leu increased ACE2-spike binding for human and four of four other mammalian ACE2s; Leu79Ile had an effect for human and three of three mammalian ACE2s. These residues are highly represented, 83% for Gln42 and 56% for Leu79, among mammalian ACE2s. The above findings can be important in protecting humans and animals from existing and future SARS-CoV-2 variants.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005050/pdf/gzab035.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10276456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protease-stable DARPins as promising oral therapeutics. 蛋白酶稳定的DARPins作为有前途的口服治疗药物。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab028
Rudo A Simeon, Yu Zeng, Vikas Chonira, Andrea Martinez Aguirre, Mauricio Lasagna, Marko Baloh, Joseph A Sorg, Cecilia Tommos, Zhilei Chen

Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.

艰难梭菌是一种肠道细菌,其外毒素TcdA和TcdB使宿主细胞内的小gtp酶失活,导致血性腹泻。在之前的工作中,我们的团队设计了一组有效的tcb中和设计的锚蛋白重复蛋白(DARPin)作为口服治疗艰难梭菌感染的药物。然而,所有这些darpin都很容易被肠道蛋白酶消化,如胰蛋白酶和凝乳胰蛋白酶。对蛋白质序列的密切评估显示,在DARPin支架中有大量带正电荷和芳香残基。在本研究中,我们通过蛋白工程显著提高了其中一种DARPins 1.4E的蛋白酶稳定性。与1.4E不同,在胰蛋白酶(1 mg/ml)或凝乳胰蛋白酶(0.5 mg/ml)孵育1小时后,其抗tcdb EC50增加了83倍,而最佳子代t10 -2和t10b在PBS中表现出与亲本相似的抗tcdb效力,无论蛋白酶处理如何。T10-2和T10b具有优异的蛋白酶稳定性,这是由于除直接参与目标结合的残基外,几乎去除了所有带正电的残基和芳香残基。此外,我们发现T10-2在离体盲肠液中仍具有明显的毒素中和能力,并且在口服给药的小鼠粪便样本中很容易检测到T10-2。T10-2和T10b都具有很高的热稳定性和化学稳定性,并且可以在大肠杆菌中非常有效地表达(摇瓶中100 mg/l)。我们相信,T10-2和T10b除了作为口服治疗艰难梭菌感染的潜力外,还可以作为具有优越蛋白酶稳定性的新一代DARPin支架。
{"title":"Protease-stable DARPins as promising oral therapeutics.","authors":"Rudo A Simeon, Yu Zeng, Vikas Chonira, Andrea Martinez Aguirre, Mauricio Lasagna, Marko Baloh, Joseph A Sorg, Cecilia Tommos, Zhilei Chen","doi":"10.1093/protein/gzab028","DOIUrl":"10.1093/protein/gzab028","url":null,"abstract":"<p><p>Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"34 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861517/pdf/gzab028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants. 准确、高效的基于结构的计算诱变法模拟维多利亚绿荧光蛋白突变体的荧光水平。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa022
Majid Masso

A computational mutagenesis technique was used to characterize the structural effects associated with over 46 000 single and multiple amino acid variants of Aequorea victoria green fluorescent protein (GFP), whose functional effects (fluorescence levels) were recently measured by experimental researchers. For each GFP mutant, the approach generated a single score reflecting the overall change in sequence-structure compatibility relative to native GFP, as well as a vector of environmental perturbation (EP) scores characterizing the impact at all GFP residue positions. A significant GFP structure-function relationship (P < 0.0001) was elucidated by comparing the sequence-structure compatibility scores with the functional data. Next, the computed vectors for GFP mutants were used to train predictive models of fluorescence by implementing random forest (RF) classification and tree regression machine learning algorithms. Classification performance reached 0.93 for sensitivity, 0.91 for precision and 0.90 for balanced accuracy, and regression models led to Pearson's correlation as high as r = 0.83 between experimental and predicted GFP mutant fluorescence. An RF model trained on a subset of over 1000 experimental single residue GFP mutants with measured fluorescence was used for predicting the 3300 remaining unstudied single residue mutants, with results complementing known GFP biochemical and biophysical properties. In addition, models trained on the subset of experimental GFP mutants harboring multiple residue replacements successfully predicted fluorescence of the single residue GFP mutants. The models developed for this study were accurate and efficient, and their predictions outperformed those of several related state-of-the-art methods.

利用计算诱变技术表征了维多利亚绿荧光蛋白(Aequorea victoria green fluorescent protein, GFP)超过46000个单氨基酸和多氨基酸变异的结构效应,实验研究人员最近测量了这些变异的功能效应(荧光水平)。对于每个GFP突变体,该方法生成了一个单独的分数,反映了相对于原生GFP序列结构兼容性的总体变化,以及一个环境扰动(EP)分数向量,表征了所有GFP残基位置的影响。显著的GFP结构-功能关系(P
{"title":"Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants.","authors":"Majid Masso","doi":"10.1093/protein/gzaa022","DOIUrl":"https://doi.org/10.1093/protein/gzaa022","url":null,"abstract":"<p><p>A computational mutagenesis technique was used to characterize the structural effects associated with over 46 000 single and multiple amino acid variants of Aequorea victoria green fluorescent protein (GFP), whose functional effects (fluorescence levels) were recently measured by experimental researchers. For each GFP mutant, the approach generated a single score reflecting the overall change in sequence-structure compatibility relative to native GFP, as well as a vector of environmental perturbation (EP) scores characterizing the impact at all GFP residue positions. A significant GFP structure-function relationship (P < 0.0001) was elucidated by comparing the sequence-structure compatibility scores with the functional data. Next, the computed vectors for GFP mutants were used to train predictive models of fluorescence by implementing random forest (RF) classification and tree regression machine learning algorithms. Classification performance reached 0.93 for sensitivity, 0.91 for precision and 0.90 for balanced accuracy, and regression models led to Pearson's correlation as high as r = 0.83 between experimental and predicted GFP mutant fluorescence. An RF model trained on a subset of over 1000 experimental single residue GFP mutants with measured fluorescence was used for predicting the 3300 remaining unstudied single residue mutants, with results complementing known GFP biochemical and biophysical properties. In addition, models trained on the subset of experimental GFP mutants harboring multiple residue replacements successfully predicted fluorescence of the single residue GFP mutants. The models developed for this study were accurate and efficient, and their predictions outperformed those of several related state-of-the-art methods.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38478437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design. 通过合理设计提高烟曲霉纤维生物水解酶(Cel6A)的催化活性和稳定性。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa020
Subba Reddy Dodda, Nibedita Sarkar, Piyush Jain, Kaustav Aikat, Sudit S Mukhopadhyay

Cheap production of glucose is the current challenge for the production of cheap bioethanol. Ideal protein engineering approaches are required for improving the efficiency of the members of the cellulase, the enzyme complex involved in the saccharification process of cellulose. An attempt was made to improve the efficiency of the cellobiohydrolase (Cel6A), the important member of the cellulase isolated from Aspergillus fumigatus (AfCel6A). Structure-based variants of AfCel6A were designed. Amino acids surrounding the catalytic site and conserved residues in the cellulose-binding domain were targeted (N449V, N168G, Y50W and W24YW32Y). I mutant 3 server was used to identify the potential variants based on the free energy values (∆∆G). In silico structural analyses and molecular dynamics simulations evaluated the potentiality of the variants for increasing thermostability and catalytic activity of Cel6A. Further enzyme studies with purified protein identified the N449V is highly thermo stable (60°C) and pH tolerant (pH 5-7). Kinetic studies with Avicel determined that substrate affinity of N449V (Km =0.90 ± 0.02) is higher than the wild type (1.17 ± 0.04) and the catalytic efficiency (Kcat/Km) of N449V is ~2-fold higher than wild type. All these results suggested that our strategy for the development of recombinant enzyme is a right approach for protein engineering.

廉价生产葡萄糖是目前廉价生产生物乙醇的挑战。理想的蛋白质工程方法需要提高纤维素酶成员的效率,纤维素酶是参与纤维素糖化过程的酶复合物。本文对烟曲霉纤维素酶的重要成员——纤维素生物水解酶(Cel6A)的酶效进行了研究。设计了基于结构的AfCel6A变体。催化位点周围的氨基酸和纤维素结合域中的保守残基(N449V, N168G, Y50W和W24YW32Y)被靶向。利用I突变体3服务器根据自由能值(∆∆G)识别潜在变异。硅结构分析和分子动力学模拟评估了这些变体对提高Cel6A的热稳定性和催化活性的潜力。进一步的纯化蛋白酶学研究发现N449V具有高度的热稳定性(60°C)和耐pH (pH 5-7)。Avicel动力学研究表明,N449V的底物亲和力(Km =0.90±0.02)高于野生型(1.17±0.04),催化效率(Kcat/Km)是野生型的2倍。这些结果表明,我们的重组酶开发策略是蛋白质工程的正确途径。
{"title":"Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design.","authors":"Subba Reddy Dodda,&nbsp;Nibedita Sarkar,&nbsp;Piyush Jain,&nbsp;Kaustav Aikat,&nbsp;Sudit S Mukhopadhyay","doi":"10.1093/protein/gzaa020","DOIUrl":"https://doi.org/10.1093/protein/gzaa020","url":null,"abstract":"<p><p>Cheap production of glucose is the current challenge for the production of cheap bioethanol. Ideal protein engineering approaches are required for improving the efficiency of the members of the cellulase, the enzyme complex involved in the saccharification process of cellulose. An attempt was made to improve the efficiency of the cellobiohydrolase (Cel6A), the important member of the cellulase isolated from Aspergillus fumigatus (AfCel6A). Structure-based variants of AfCel6A were designed. Amino acids surrounding the catalytic site and conserved residues in the cellulose-binding domain were targeted (N449V, N168G, Y50W and W24YW32Y). I mutant 3 server was used to identify the potential variants based on the free energy values (∆∆G). In silico structural analyses and molecular dynamics simulations evaluated the potentiality of the variants for increasing thermostability and catalytic activity of Cel6A. Further enzyme studies with purified protein identified the N449V is highly thermo stable (60°C) and pH tolerant (pH 5-7). Kinetic studies with Avicel determined that substrate affinity of N449V (Km =0.90 ± 0.02) is higher than the wild type (1.17 ± 0.04) and the catalytic efficiency (Kcat/Km) of N449V is ~2-fold higher than wild type. All these results suggested that our strategy for the development of recombinant enzyme is a right approach for protein engineering.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38478434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Protein Engineering, Design and Selection. 蛋白质工程,设计与选择。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa024
R. Chica
{"title":"Protein Engineering, Design and Selection.","authors":"R. Chica","doi":"10.1093/protein/gzaa024","DOIUrl":"https://doi.org/10.1093/protein/gzaa024","url":null,"abstract":"","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"105 2 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77758449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid. 基于arac的生物传感器对三乙酸内酯和茴香酸的工程灵敏度和特异性。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa027
Zhiqing Wang, Aarti Doshi, Ratul Chowdhury, Yixi Wang, Costas D Maranas, Patrick C Cirino

We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.

我们之前描述了基于AraC调节蛋白的三乙酸内酯(TAL)生物传感器“AraC- tal1”的设计。虽然作为筛选增强TAL生物合成的工具有用,但该变体显示背景(泄漏)表达升高,敏感性差和诱导剂特异性降低,包括对orsellinic酸(OA)的反应性。对TAL或OA更敏感的生物传感器可以帮助研究和设计产生这些和类似化合物的聚酮合成酶。在这项工作中,我们采用基于teta的双重选择来分离新的TAL反应性AraC变体,这些变体显示背景表达减少和TAL敏感性提高。为了提高TAL特异性,在阴性选择期间将OA作为“诱饵”配体,从而分离出被OA抑制的TAL生物传感器。最后,为了设计OA特异性的AraC变异,采用了迭代蛋白质重新设计和优化计算框架,随后进行了2轮定向进化,得到了相对于AraC- tal1, OA/TAL特异性提高24倍的生物传感器。
{"title":"Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid.","authors":"Zhiqing Wang,&nbsp;Aarti Doshi,&nbsp;Ratul Chowdhury,&nbsp;Yixi Wang,&nbsp;Costas D Maranas,&nbsp;Patrick C Cirino","doi":"10.1093/protein/gzaa027","DOIUrl":"https://doi.org/10.1093/protein/gzaa027","url":null,"abstract":"<p><p>We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38626956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structure- and sequence-based design of synthetic single-domain antibody libraries. 基于结构和序列的合成单域抗体文库设计。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa028
Alexander M Sevy, Ming-Tang Chen, Michelle Castor, Tyler Sylvia, Harini Krishnamurthy, Andrii Ishchenko, Chung-Ming Hsieh

Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-β peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.

被称为VHH的单域抗体片段已作为有用的生物治疗药物出现在制药工业中。这些分子是由骆驼类自然产生的,与传统的人类免疫球蛋白具有高亲和力和特异性的特点,但仅由一条重链组成。目前,产生VHH的最常见方法是通过动物免疫,这可能既昂贵又耗时。在这里,我们描述了一个用于体外选择单域结合物的合成VHH文库的开发。我们将基于结构的设计和下一代测序分析相结合,建立了一个具有密切模仿自然曲目特征的库。为了验证我们的合成文库的性能,我们分离了三种不同大小和特征的模型抗原(可溶性小鼠PD-1外畴、淀粉样蛋白-β肽和MrgX1 GPCR)的VHH。我们能够分离出针对不同表位的不同结合物,对这三个靶标具有高亲和力(高达5 nM)。然后,我们在受体阻断试验中证明抗mpd -1结合物具有功能活性。
{"title":"Structure- and sequence-based design of synthetic single-domain antibody libraries.","authors":"Alexander M Sevy,&nbsp;Ming-Tang Chen,&nbsp;Michelle Castor,&nbsp;Tyler Sylvia,&nbsp;Harini Krishnamurthy,&nbsp;Andrii Ishchenko,&nbsp;Chung-Ming Hsieh","doi":"10.1093/protein/gzaa028","DOIUrl":"https://doi.org/10.1093/protein/gzaa028","url":null,"abstract":"<p><p>Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-β peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38737808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Protein Engineering Design & Selection
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1