首页 > 最新文献

Protein Engineering Design & Selection最新文献

英文 中文
Improving plastic degrading enzymes via directed evolution. 通过定向进化改进塑料降解酶。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2024-01-29 DOI: 10.1093/protein/gzae009
Yvonne Joho, Vanessa Vongsouthi, Chloe Gomez, Joachim S Larsen, Albert Ardevol, Colin J Jackson

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.

塑料降解酶在工业应用中具有巨大的潜力。过去十年中,蛋白质工程学的努力大大提高了这些酶的许多特性。定向进化是一种在实验室中模拟自然进化过程的蛋白质工程方法,在克服基于结构的蛋白质工程的一些挑战方面特别有用。例如,定向进化已被用于改善聚对苯二甲酸乙二醇酯(PET)降解酶的催化活性和热稳定性,但用于改善其他理想特性(如耐溶剂性)的研究却较少。在这篇综述中,我们旨在找出一些知识空白和当前的挑战,并重点介绍与塑料降解酶定向进化有关的最新研究。
{"title":"Improving plastic degrading enzymes via directed evolution.","authors":"Yvonne Joho, Vanessa Vongsouthi, Chloe Gomez, Joachim S Larsen, Albert Ardevol, Colin J Jackson","doi":"10.1093/protein/gzae009","DOIUrl":"10.1093/protein/gzae009","url":null,"abstract":"<p><p>Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The shortest path method (SPM) webserver for computational enzyme design. 用于计算酶设计的最短路径法(SPM)网络服务器。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2024-01-29 DOI: 10.1093/protein/gzae005
Guillem Casadevall, Jordi Casadevall, Cristina Duran, Sílvia Osuna

SPMweb is the online webserver of the Shortest Path Map (SPM) tool for identifying the key conformationally-relevant positions of a given enzyme structure and dynamics. The server is built on top of the DynaComm.py code and enables the calculation and visualization of the SPM pathways. SPMweb is easy-to-use as it only requires three input files: the three-dimensional structure of the protein of interest, and the two matrices (distance and correlation) previously computed from a Molecular Dynamics simulation. We provide in this publication information on how to generate the files for SPM construction even for non-expert users and discuss the most relevant parameters that can be modified. The tool is extremely fast (it takes less than one minute per job), thus allowing the rapid identification of distal positions connected to the active site pocket of the enzyme. SPM applications expand from computational enzyme design, especially if combined with other tools to identify the preferred substitution at the identified position, but also to rationalizing allosteric regulation, and even cryptic pocket identification for drug discovery. The simple user interface and setup make the SPM tool accessible to the whole scientific community. SPMweb is freely available for academia at http://spmosuna.com/.

SPMweb 是最短路径图(SPM)工具的在线网络服务器,用于识别给定酶结构和动力学构象相关的关键位置。该服务器建立在 DynaComm.py 代码之上,可实现 SPM 路径的计算和可视化。SPMweb 易于使用,因为它只需要三个输入文件:相关蛋白质的三维结构,以及之前通过分子动力学模拟计算的两个矩阵(距离和相关性)。我们在本出版物中介绍了如何为非专业用户生成用于构建 SPM 的文件,并讨论了可修改的最相关参数。该工具运行速度极快(每次工作耗时不到一分钟),因此可以快速确定与酶活性位点口袋相连的远端位置。SPM 的应用范围很广,不仅包括计算酶设计,尤其是与其他工具结合使用,以确定所确定位置的首选替代物,还包括合理化异生调节,甚至用于药物发现的隐蔽口袋识别。简单的用户界面和设置使整个科学界都能使用 SPM 工具。学术界可通过 http://spmosuna.com/ 免费使用 SPMweb。
{"title":"The shortest path method (SPM) webserver for computational enzyme design.","authors":"Guillem Casadevall, Jordi Casadevall, Cristina Duran, Sílvia Osuna","doi":"10.1093/protein/gzae005","DOIUrl":"10.1093/protein/gzae005","url":null,"abstract":"<p><p>SPMweb is the online webserver of the Shortest Path Map (SPM) tool for identifying the key conformationally-relevant positions of a given enzyme structure and dynamics. The server is built on top of the DynaComm.py code and enables the calculation and visualization of the SPM pathways. SPMweb is easy-to-use as it only requires three input files: the three-dimensional structure of the protein of interest, and the two matrices (distance and correlation) previously computed from a Molecular Dynamics simulation. We provide in this publication information on how to generate the files for SPM construction even for non-expert users and discuss the most relevant parameters that can be modified. The tool is extremely fast (it takes less than one minute per job), thus allowing the rapid identification of distal positions connected to the active site pocket of the enzyme. SPM applications expand from computational enzyme design, especially if combined with other tools to identify the preferred substitution at the identified position, but also to rationalizing allosteric regulation, and even cryptic pocket identification for drug discovery. The simple user interface and setup make the SPM tool accessible to the whole scientific community. SPMweb is freely available for academia at http://spmosuna.com/.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. 修正:设计酶工具箱来定制小分子天然产物和蛋白质生物制剂中的糖基化。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad010
{"title":"Correction to: Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics.","authors":"","doi":"10.1093/protein/gzad010","DOIUrl":"https://doi.org/10.1093/protein/gzad010","url":null,"abstract":"","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10235556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme design pioneer Steve Mayo: I was trying to capture the fundamental physics of the problem as a way to elucidate mechanisms. 酶设计先驱史蒂夫·梅奥:我试图抓住这个问题的基本物理原理,作为一种阐明机制的方法。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad004
Roberto A Chica, Brett M Garabedian
{"title":"Enzyme design pioneer Steve Mayo: I was trying to capture the fundamental physics of the problem as a way to elucidate mechanisms.","authors":"Roberto A Chica,&nbsp;Brett M Garabedian","doi":"10.1093/protein/gzad004","DOIUrl":"https://doi.org/10.1093/protein/gzad004","url":null,"abstract":"","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9806505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking TriadAb using targets from the second antibody modeling assessment. 使用来自第二抗体建模评估的靶标对TriadAb进行基准测试。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad013
Frederick S Lee, Amos G Anderson, Barry D Olafson

Computational modeling and design of antibodies has become an integral part of today's research and development in antibody therapeutics. Here we describe the Triad Antibody Homology Modeling (TriadAb) package, a functionality of the Triad protein design platform that predicts the structure of any heavy and light chain sequences of an antibody Fv domain using template-based modeling. To gauge the performance of TriadAb, we benchmarked against the results of the Second Antibody Modeling Assessment (AMA-II). On average, TriadAb produced main-chain carbonyl root-mean-square deviations between models and experimentally determined structures at 1.10 Å, 1.45 Å, 1.41 Å, 3.04 Å, 1.47 Å, 1.27 Å, 1.63 Å in the framework and the six complementarity-determining regions (H1, H2, H3, L1, L2, L3), respectively. The inaugural results are comparable to those reported in AMA-II, corroborating with our internal bench-based experiences that models generated using TriadAb are sufficiently accurate and useful for antibody engineering using the sequence design capabilities provided by Triad.

抗体的计算建模和设计已成为当今抗体治疗研究和开发的一个组成部分。在这里,我们描述了Triad抗体同源性建模(TriadAb)包,这是Triad蛋白质设计平台的一种功能,它使用基于模板的建模来预测抗体Fv结构域的任何重链和轻链序列的结构。为了评估TriadAb的性能,我们以第二次抗体建模评估(AMA-II)的结果为基准。平均而言,在框架和六个互补决定区(H1、H2、H3、L1、L2、L3)中,TriadAb在模型和实验确定的结构之间产生的主链羰基均方根偏差分别为1.10Å、1.45Å、1.41Å、3.04Å、1.4 7Å、1.27Å和1.63Å。最初的结果与AMA-II中报道的结果相当,与我们基于内部试验台的经验相证实,使用TriadAb生成的模型足够准确,可用于使用Triad提供的序列设计能力的抗体工程。
{"title":"Benchmarking TriadAb using targets from the second antibody modeling assessment.","authors":"Frederick S Lee,&nbsp;Amos G Anderson,&nbsp;Barry D Olafson","doi":"10.1093/protein/gzad013","DOIUrl":"10.1093/protein/gzad013","url":null,"abstract":"<p><p>Computational modeling and design of antibodies has become an integral part of today's research and development in antibody therapeutics. Here we describe the Triad Antibody Homology Modeling (TriadAb) package, a functionality of the Triad protein design platform that predicts the structure of any heavy and light chain sequences of an antibody Fv domain using template-based modeling. To gauge the performance of TriadAb, we benchmarked against the results of the Second Antibody Modeling Assessment (AMA-II). On average, TriadAb produced main-chain carbonyl root-mean-square deviations between models and experimentally determined structures at 1.10 Å, 1.45 Å, 1.41 Å, 3.04 Å, 1.47 Å, 1.27 Å, 1.63 Å in the framework and the six complementarity-determining regions (H1, H2, H3, L1, L2, L3), respectively. The inaugural results are comparable to those reported in AMA-II, corroborating with our internal bench-based experiences that models generated using TriadAb are sufficiently accurate and useful for antibody engineering using the sequence design capabilities provided by Triad.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. 设计酶工具箱,以定制小分子天然产物和蛋白质生物制品的糖基化。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzac010
Sara Ouadhi, Dulce María Valdez López, F Ifthiha Mohideen, David H Kwan

Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).

许多糖基化小分子天然产物和糖蛋白生物制剂在广泛的治疗和工业应用中具有重要意义。修饰这些化合物的糖部分通常对其生物学功能有深远的影响,因此控制其糖基化的生物催化方法是有价值的。来自自然界的酶是定制生物产物糖基化的有用工具,但这些酶有时在催化效率、底物特异性、区域特异性、立体特异性或稳定性方面存在局限性。酶工程策略,如定向进化或半理性和理性设计已经解决了这些限制所带来的一些挑战。在这篇综述中,我们重点介绍了一些工程酶的最新研究,以定制小分子天然产物(包括生物碱、萜类、聚酮和肽)的糖基化,以及蛋白质生物制剂(包括激素、酶替代疗法、酶抑制剂、疫苗和抗体)的糖基化。
{"title":"Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics.","authors":"Sara Ouadhi,&nbsp;Dulce María Valdez López,&nbsp;F Ifthiha Mohideen,&nbsp;David H Kwan","doi":"10.1093/protein/gzac010","DOIUrl":"https://doi.org/10.1093/protein/gzac010","url":null,"abstract":"<p><p>Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhancing the activity of a monomeric alcohol dehydrogenase for site-specific applications by site-directed mutagenesis. 通过位点定向诱变提高单体醇脱氢酶的活性,用于位点特异性应用。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad006
Arabella Essert, Kathrin Castiglione
Gene fusion or co-immobilization are key tools to optimize enzymatic reaction cascades by modulating catalytic features, stability and applicability. Achieving a defined spatial organization between biocatalysts by site-specific applications is complicated by the involvement of oligomeric enzymes. It can lead to activity losses due to disturbances of the quaternary structures and difficulties in stoichiometric control. Thus, a toolkit of active and robust monomeric enzymes is desirable for such applications. In this study, we engineered one of the rare examples of monomeric alcohol dehydrogenases for improved catalytic characteristics by site-directed mutagenesis. The enzyme from the hyperthermophilic archaeon Thermococcus kodakarensis naturally exhibits high thermostability and a broad substrate spectrum, but only low activity at moderate temperatures. The best enzyme variants showed an approximately 5-fold (2-heptanol) and 9-fold (3-heptanol) higher activity while preserving enantioselectivity and good thermodynamic stability. These variants also exhibited modified kinetic characteristics regarding regioselectivity, pH dependence and activation by NaCl.
基因融合或共固定是通过调节催化特性、稳定性和适用性来优化酶催化级联反应的关键工具。通过位点特异性应用实现生物催化剂之间确定的空间组织是复杂的低聚酶的参与。由于四元结构的干扰和化学计量控制的困难,会导致活性损失。因此,这种应用需要一个活性和健壮的单体酶工具包。在这项研究中,我们设计了一个罕见的单体醇脱氢酶的例子,通过位点定向诱变来改善催化特性。来自超嗜热古细菌柯达菌热球菌的酶天然表现出高热稳定性和广泛的底物光谱,但在中等温度下仅具有低活性。最佳的酶变体在保持对映选择性和良好的热力学稳定性的同时,表现出了约5倍(2-庚醇)和9倍(3-庚醇)的活性提高。这些变异体在区域选择性、pH依赖性和NaCl活化方面也表现出改进的动力学特性。
{"title":"Enhancing the activity of a monomeric alcohol dehydrogenase for site-specific applications by site-directed mutagenesis.","authors":"Arabella Essert,&nbsp;Kathrin Castiglione","doi":"10.1093/protein/gzad006","DOIUrl":"https://doi.org/10.1093/protein/gzad006","url":null,"abstract":"Gene fusion or co-immobilization are key tools to optimize enzymatic reaction cascades by modulating catalytic features, stability and applicability. Achieving a defined spatial organization between biocatalysts by site-specific applications is complicated by the involvement of oligomeric enzymes. It can lead to activity losses due to disturbances of the quaternary structures and difficulties in stoichiometric control. Thus, a toolkit of active and robust monomeric enzymes is desirable for such applications. In this study, we engineered one of the rare examples of monomeric alcohol dehydrogenases for improved catalytic characteristics by site-directed mutagenesis. The enzyme from the hyperthermophilic archaeon Thermococcus kodakarensis naturally exhibits high thermostability and a broad substrate spectrum, but only low activity at moderate temperatures. The best enzyme variants showed an approximately 5-fold (2-heptanol) and 9-fold (3-heptanol) higher activity while preserving enantioselectivity and good thermodynamic stability. These variants also exhibited modified kinetic characteristics regarding regioselectivity, pH dependence and activation by NaCl.","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10126899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast biopanning against site-specific phosphorylations in tau. 针对 tau 中特异位点磷酸化的酵母生物扫描。
IF 2.6 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad005
Monika Arbaciauskaite, Azady Pirhanov, Erik Ammermann, Yu Lei, Yong Ku Cho

The detection of site-specific phosphorylation in the microtubule-associated protein tau is emerging as a means to diagnose and monitor the progression of Alzheimer's Disease and other neurodegenerative diseases. However, there is a lack of phospho-specific monoclonal antibodies and limited validation of their binding specificity. Here, we report a novel approach using yeast biopanning against synthetic peptides containing site-specific phosphorylations. Using yeast cells displaying a previously validated phospho-tau (p-tau) single-chain variable region fragment (scFv), we show selective yeast cell binding based on single amino acid phosphorylation on the antigen. We identify conditions that allow phospho-specific biopanning using scFvs with a wide range of affinities (KD = 0.2 to 60 nM). Finally, we demonstrate the capability of screening large libraries by performing biopanning in 6-well plates. These results show that biopanning can effectively select yeast cells based on phospho-site specific antibody binding, opening doors for the facile identification of high-quality monoclonal antibodies.

检测微管相关蛋白 tau 的特异位点磷酸化正在成为诊断和监测阿尔茨海默病和其他神经退行性疾病进展的一种手段。然而,目前缺乏磷酸化特异性单克隆抗体,对其结合特异性的验证也很有限。在这里,我们报告了一种利用酵母生物平移来检测含有特异性磷酸化位点的合成肽的新方法。利用酵母细胞显示先前验证过的磷酸化头(p-tau)单链可变区片段(scFv),我们展示了基于抗原上单个氨基酸磷酸化的酵母细胞选择性结合。我们确定了使用具有广泛亲和力(KD = 0.2 至 60 nM)的 scFv 进行磷酸化特异性生物扫描的条件。最后,我们展示了在 6 孔板中进行生物扫描筛选大型文库的能力。这些结果表明,生物扫描能根据磷酸化位点特异性抗体结合情况有效筛选酵母细胞,为快速鉴定高质量单克隆抗体打开了大门。
{"title":"Yeast biopanning against site-specific phosphorylations in tau.","authors":"Monika Arbaciauskaite, Azady Pirhanov, Erik Ammermann, Yu Lei, Yong Ku Cho","doi":"10.1093/protein/gzad005","DOIUrl":"10.1093/protein/gzad005","url":null,"abstract":"<p><p>The detection of site-specific phosphorylation in the microtubule-associated protein tau is emerging as a means to diagnose and monitor the progression of Alzheimer's Disease and other neurodegenerative diseases. However, there is a lack of phospho-specific monoclonal antibodies and limited validation of their binding specificity. Here, we report a novel approach using yeast biopanning against synthetic peptides containing site-specific phosphorylations. Using yeast cells displaying a previously validated phospho-tau (p-tau) single-chain variable region fragment (scFv), we show selective yeast cell binding based on single amino acid phosphorylation on the antigen. We identify conditions that allow phospho-specific biopanning using scFvs with a wide range of affinities (KD = 0.2 to 60 nM). Finally, we demonstrate the capability of screening large libraries by performing biopanning in 6-well plates. These results show that biopanning can effectively select yeast cells based on phospho-site specific antibody binding, opening doors for the facile identification of high-quality monoclonal antibodies.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9707844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of alanine versus serine at position 88 of human transthyretin mutants on the protein stability. 人转甲状腺素突变体88位丙氨酸和丝氨酸对蛋白质稳定性的影响。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzad001
Kyung-Hoon Lee, Krzysztof Kuczera

Human transthyretin (TTR) is a homo-tetrameric plasma protein associated with a high percentage of β-sheet forming amyloid fibrils. It accumulates in tissues or extracellular matrices to cause amyloid diseases. Free energy simulations with thermodynamic integration based on all-atom molecular dynamics simulations have been carried out to analyze the effects of the His88 → Ala and Ser mutations on the stability of human TTR. The calculated free energy change differences (ΔΔG) caused by the His88 → Ala and His88 → Ser mutations are -1.84 ± 0.86 and 7.56 ± 0.55 kcal/mol, respectively, which are in excellent agreement with prior reported experimental values. The simulation results show that the H88A mutant is more stable than the wild type, whereas the H88S mutant is less stable than the wild type. The free energy component analysis shows that the contribution to the free energy change difference (ΔΔG) for the His88 → Ala and His88 → Ser mutations mainly arise from electrostatic and van der Waals interactions, respectively. The electrostatic term stabilizes the H88A mutant more than the wild type, but the van der Waals interaction destabilizes the H88S mutant relative to the wild type. Individual residue contributions to the free energy change show neighboring residues exert stabilizing and destabilizing influence on the mutants. The implications of the simulation results for understanding the stabilizing and destabilizing effect and its contribution to protein stability are discussed.

人甲状腺转甲素(TTR)是一种同型四聚体血浆蛋白,与β-片淀粉样原纤维形成的高比例相关。它在组织或细胞外基质中积聚,引起淀粉样蛋白疾病。采用基于全原子分子动力学模拟的热力学积分自由能模拟方法,分析了His88→Ala和Ser突变对人体TTR稳定性的影响。计算得到的His88→Ala和His88→Ser突变引起的自由能变化差(ΔΔG)分别为-1.84±0.86和7.56±0.55 kcal/mol,与先前报道的实验值非常吻合。模拟结果表明,H88A突变体比野生型稳定,而H88S突变体比野生型稳定。自由能分量分析表明,His88→Ala和His88→Ser突变的自由能变化差(ΔΔG)主要来自静电和范德华相互作用。静电项对H88A突变体的稳定性优于野生型,而范德华相互作用对H88S突变体的稳定性优于野生型。个体残基对自由能变化的贡献表明邻近残基对突变体具有稳定和不稳定的影响。讨论了模拟结果对理解稳定和不稳定效应及其对蛋白质稳定性的贡献的意义。
{"title":"Effect of alanine versus serine at position 88 of human transthyretin mutants on the protein stability.","authors":"Kyung-Hoon Lee,&nbsp;Krzysztof Kuczera","doi":"10.1093/protein/gzad001","DOIUrl":"https://doi.org/10.1093/protein/gzad001","url":null,"abstract":"<p><p>Human transthyretin (TTR) is a homo-tetrameric plasma protein associated with a high percentage of β-sheet forming amyloid fibrils. It accumulates in tissues or extracellular matrices to cause amyloid diseases. Free energy simulations with thermodynamic integration based on all-atom molecular dynamics simulations have been carried out to analyze the effects of the His88 → Ala and Ser mutations on the stability of human TTR. The calculated free energy change differences (ΔΔG) caused by the His88 → Ala and His88 → Ser mutations are -1.84 ± 0.86 and 7.56 ± 0.55 kcal/mol, respectively, which are in excellent agreement with prior reported experimental values. The simulation results show that the H88A mutant is more stable than the wild type, whereas the H88S mutant is less stable than the wild type. The free energy component analysis shows that the contribution to the free energy change difference (ΔΔG) for the His88 → Ala and His88 → Ser mutations mainly arise from electrostatic and van der Waals interactions, respectively. The electrostatic term stabilizes the H88A mutant more than the wild type, but the van der Waals interaction destabilizes the H88S mutant relative to the wild type. Individual residue contributions to the free energy change show neighboring residues exert stabilizing and destabilizing influence on the mutants. The implications of the simulation results for understanding the stabilizing and destabilizing effect and its contribution to protein stability are discussed.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9125553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering enzyme activity using an expanded amino acid alphabet. 利用扩展的氨基酸字母表工程酶活性。
IF 2.4 4区 生物学 Q2 Medicine Pub Date : 2023-01-21 DOI: 10.1093/protein/gzac013
Zachary Birch-Price, Christopher J Taylor, Mary Ortmayer, Anthony P Green

Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.

酶的设计和工程策略通常受到自然基因字母表有限大小的限制,只有20个典型氨基酸组成。近年来,通过扩展的遗传密码,非规范氨基酸(ncAAs)的位点选择性结合已成为将新功能成分插入蛋白质的有力手段,目前已有数百种结构多样的ncAAs可用。在这里,我们强调如何氨基酸的扩大曲目的出现开辟了新的途径,酶的设计和工程。ncaa已被用于探测复杂的生物机制,增强酶的功能,最雄心勃勃的是,将新的催化机制嵌入到蛋白质活性位点,这在自然遗传密码的限制下是具有挑战性的。我们预测,随着遗传密码扩展技术的进一步发展,本文所回顾的研究将使ncAA结合在未来几年成为生物催化中越来越重要的工具。
{"title":"Engineering enzyme activity using an expanded amino acid alphabet.","authors":"Zachary Birch-Price,&nbsp;Christopher J Taylor,&nbsp;Mary Ortmayer,&nbsp;Anthony P Green","doi":"10.1093/protein/gzac013","DOIUrl":"https://doi.org/10.1093/protein/gzac013","url":null,"abstract":"<p><p>Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10576929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Protein Engineering Design & Selection
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1