Bradley J Stevenson, Andy Pranata, Malcolm D McLeod
Steroid sulfate esters are important metabolites for anti-doping efforts in sports, pathology and research. Analysis of these metabolites is facilitated by hydrolysis using either acid or enzymatic catalysis. Although enzymatic hydrolysis is preferred for operating at neutral pH, no known enzyme is capable of hydrolyzing all steroid sulfate metabolites. Pseudomonas aeruginosa arylsulfatase (PaS) is ideal for the hydrolysis of β-configured steroid sulfates but like other known class I sulfatases it is inefficient at hydrolyzing α-configured steroid sulfates. We have used directed evolution with liquid chromatography mass spectrometry screening to find variants capable of hydrolyzing a α-configured steroid sulfate: etiocholanolone sulfate (ECS). After targeting two regions of PaS, four residues were identified and optimized to yield a final variant with a total of seven mutations (DRN-PaS) capable of hydrolyzing ECS ~80 times faster than the best PaS variant previously available. This DRN-PaS also shows improved activity for other α-configured steroid sulfates. Simultaneous mutagenesis was essential to obtain DRN-PaS due to complementarity between targeted residues.
{"title":"Engineering Pseudomonas aeruginosa arylsulfatase for hydrolysis of α-configured steroid sulfates.","authors":"Bradley J Stevenson, Andy Pranata, Malcolm D McLeod","doi":"10.1093/protein/gzac007","DOIUrl":"https://doi.org/10.1093/protein/gzac007","url":null,"abstract":"<p><p>Steroid sulfate esters are important metabolites for anti-doping efforts in sports, pathology and research. Analysis of these metabolites is facilitated by hydrolysis using either acid or enzymatic catalysis. Although enzymatic hydrolysis is preferred for operating at neutral pH, no known enzyme is capable of hydrolyzing all steroid sulfate metabolites. Pseudomonas aeruginosa arylsulfatase (PaS) is ideal for the hydrolysis of β-configured steroid sulfates but like other known class I sulfatases it is inefficient at hydrolyzing α-configured steroid sulfates. We have used directed evolution with liquid chromatography mass spectrometry screening to find variants capable of hydrolyzing a α-configured steroid sulfate: etiocholanolone sulfate (ECS). After targeting two regions of PaS, four residues were identified and optimized to yield a final variant with a total of seven mutations (DRN-PaS) capable of hydrolyzing ECS ~80 times faster than the best PaS variant previously available. This DRN-PaS also shows improved activity for other α-configured steroid sulfates. Simultaneous mutagenesis was essential to obtain DRN-PaS due to complementarity between targeted residues.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10373470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie Ubiparipovic, Daniel Christ, Romain Rouet
The CRISPR genome editing technology holds great clinical potential for the treatment of monogenetic disorders such as sickle cell disease. The therapeutic in vivo application of the technology relies on targeted delivery methods of the Cas9 and gRNA complex to specific cells or tissues. However, such methods are currently limited to direct organ delivery, preventing clinical application. Here, we show that monoclonal antibodies can be employed to deliver the Cas9/gRNA complex directly into human cells via cell-surface receptors. Using the SpyCatcher/SpyTag system, we conjugated the Fab fragment of the therapeutic antibodies Trastuzumab and Pertuzumab directly to the Cas9 enzyme and observed HER2-specific uptake of the ribonucleoprotein in a human HER2 expressing cell line. Following cellular uptake in the presence of an endosomolytic peptide, modest gene editing was also observed. This finding provides a blueprint for the targeted delivery of the CRISPR technology into specific cells using monoclonal antibodies.
{"title":"Antibody-mediated delivery of CRISPR-Cas9 ribonucleoproteins in human cells.","authors":"Stephanie Ubiparipovic, Daniel Christ, Romain Rouet","doi":"10.1093/protein/gzac011","DOIUrl":"10.1093/protein/gzac011","url":null,"abstract":"<p><p>The CRISPR genome editing technology holds great clinical potential for the treatment of monogenetic disorders such as sickle cell disease. The therapeutic in vivo application of the technology relies on targeted delivery methods of the Cas9 and gRNA complex to specific cells or tissues. However, such methods are currently limited to direct organ delivery, preventing clinical application. Here, we show that monoclonal antibodies can be employed to deliver the Cas9/gRNA complex directly into human cells via cell-surface receptors. Using the SpyCatcher/SpyTag system, we conjugated the Fab fragment of the therapeutic antibodies Trastuzumab and Pertuzumab directly to the Cas9 enzyme and observed HER2-specific uptake of the ribonucleoprotein in a human HER2 expressing cell line. Following cellular uptake in the presence of an endosomolytic peptide, modest gene editing was also observed. This finding provides a blueprint for the targeted delivery of the CRISPR technology into specific cells using monoclonal antibodies.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10385168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed S Fahad, Cheng-Yu Chung, Sheila N Lopez Acevedo, Nicoleen Boyle, Bharat Madan, Matias F Gutiérrez-González, Rodrigo Matus-Nicodemos, Amy D Laflin, Rukmini R Ladi, John Zhou, Jacy Wolfe, Sian Llewellyn-Lacey, Richard A Koup, Daniel C Douek, Henry H Balfour, David A Price, Brandon J DeKosky
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
{"title":"Immortalization and functional screening of natively paired human T cell receptor repertoires.","authors":"Ahmed S Fahad, Cheng-Yu Chung, Sheila N Lopez Acevedo, Nicoleen Boyle, Bharat Madan, Matias F Gutiérrez-González, Rodrigo Matus-Nicodemos, Amy D Laflin, Rukmini R Ladi, John Zhou, Jacy Wolfe, Sian Llewellyn-Lacey, Richard A Koup, Daniel C Douek, Henry H Balfour, David A Price, Brandon J DeKosky","doi":"10.1093/protein/gzab034","DOIUrl":"10.1093/protein/gzab034","url":null,"abstract":"<p><p>Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005053/pdf/gzab034.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9162629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahel Frick, Lene S Høydahl, Ina Hodnebrug, Erik S Vik, Bjørn Dalhus, Ludvig M Sollid, Jeffrey J Gray, Inger Sandlie, Geir Åge Løset
TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.
{"title":"Affinity maturation of TCR-like antibodies using phage display guided by structural modeling.","authors":"Rahel Frick, Lene S Høydahl, Ina Hodnebrug, Erik S Vik, Bjørn Dalhus, Ludvig M Sollid, Jeffrey J Gray, Inger Sandlie, Geir Åge Løset","doi":"10.1093/protein/gzac005","DOIUrl":"10.1093/protein/gzac005","url":null,"abstract":"<p><p>TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10384397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53-451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.
低密度脂蛋白受体(LDLR)介导的LDL-C进入肝细胞的摄取被LDLR的溶酶体降解所破坏,这种降解是由蛋白转化酶subtilisin/ keexin type 9 (PCSK9)促进的。PCSK9与LDLR的细胞表面结合产生一种复合体,该复合体易位到内体,酸性pH值增强PCSK9与LDLR的结合亲和力,阻止LDLR再循环到细胞膜。我们提出了一种抑制PCSK9介导的LDLR降解的新方法,即用PCSK9拮抗剂Flag-PCSK9PH靶向PCSK9/LDLR界面,阻止WT PCSK9接近LDLR。在HepG2细胞中,人WT PCSK9的截断版本(残基53-451)Flag-PCSK9PH在细胞表面的中性pH下与LDLR强结合,但在内体(酸性pH)中与LDLR分离,使LDLR完整地离开溶酶体并再循环到细胞膜。因此,Flag-PCSK9PH显著提高了细胞表面LDLR水平和LDLR吸收细胞外LDL-C的能力。
{"title":"Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C).","authors":"Lital Ben-Naim, Isam Khalaila, Niv Papo","doi":"10.1093/protein/gzab032","DOIUrl":"https://doi.org/10.1093/protein/gzab032","url":null,"abstract":"<p><p>LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53-451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39638977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malate dehydrogenase (MDH) catalyzes the reduction of oxaloacetate to L-malate. Geobacillus stearothermophilus MDH (gs-MDH) is used as a diagnostic reagent; however, gs-MDH is robustly inhibited at high substrate concentrations, which limits its reaction rate. Here, we reduced substrate inhibition of gs-MDH by deleting its C-terminal residues. Computational analysis showed that C-terminal residues regulate the position of the active site loop. C-terminal deletions of gs-MDH successfully increased Ki values by 5- to 8-fold with maintained thermal stability (>90% of the wild-type enzyme), although kcat/Km values were decreased by <2-fold. The structure of the mutant showed a shift in the location of the active site loop and a decrease in its volume, suggesting that substrate inhibition was reduced by eliminating the putative substrate binding site causing inhibition. Our results provide an effective method to reduce substrate inhibition of the enzyme without loss of other parameters, including binding and stability constants.
{"title":"Reducing substrate inhibition of malate dehydrogenase from Geobacillus stearothermophilus by C-terminal truncation.","authors":"Yuya Shimozawa, Hinano Matsuhisa, Tsutomu Nakamura, Tomoki Himiyama, Yoshiaki Nishiya","doi":"10.1093/protein/gzac008","DOIUrl":"https://doi.org/10.1093/protein/gzac008","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) catalyzes the reduction of oxaloacetate to L-malate. Geobacillus stearothermophilus MDH (gs-MDH) is used as a diagnostic reagent; however, gs-MDH is robustly inhibited at high substrate concentrations, which limits its reaction rate. Here, we reduced substrate inhibition of gs-MDH by deleting its C-terminal residues. Computational analysis showed that C-terminal residues regulate the position of the active site loop. C-terminal deletions of gs-MDH successfully increased Ki values by 5- to 8-fold with maintained thermal stability (>90% of the wild-type enzyme), although kcat/Km values were decreased by <2-fold. The structure of the mutant showed a shift in the location of the active site loop and a decrease in its volume, suggesting that substrate inhibition was reduced by eliminating the putative substrate binding site causing inhibition. Our results provide an effective method to reduce substrate inhibition of the enzyme without loss of other parameters, including binding and stability constants.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10384924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Albert Galera-Prat, Juho Alaviuhkola, Heli I Alanen, Lari Lehtiö
Human mono-ADP-ribosylating PARP enzymes have been linked to several clinically relevant processes and many of these PARPs have been suggested as potential drug targets. Despite recent advances in the field, efforts to discover inhibitors have been hindered by the lack of tools to rapidly screen for high potency compounds and profile them against the different enzymes. We engineered mono-ART catalytic fragments to be incorporated into a cellulosome-based octavalent scaffold. Compared to the free enzymes, the scaffold-based system results in an improved activity for the tested PARPs due to improved solubility, stability and the proximity of the catalytic domains, altogether boosting their activity beyond 10-fold in the case of PARP12. This allows us to measure their activity using a homogeneous NAD+ conversion assay, facilitating its automation to lower the assay volume and costs. The approach will enable the discovery of more potent compounds due to increased assay sensitivity.
{"title":"Protein engineering approach to enhance activity assays of mono-ADP-ribosyltransferases through proximity.","authors":"Albert Galera-Prat, Juho Alaviuhkola, Heli I Alanen, Lari Lehtiö","doi":"10.1093/protein/gzac006","DOIUrl":"10.1093/protein/gzac006","url":null,"abstract":"<p><p>Human mono-ADP-ribosylating PARP enzymes have been linked to several clinically relevant processes and many of these PARPs have been suggested as potential drug targets. Despite recent advances in the field, efforts to discover inhibitors have been hindered by the lack of tools to rapidly screen for high potency compounds and profile them against the different enzymes. We engineered mono-ART catalytic fragments to be incorporated into a cellulosome-based octavalent scaffold. Compared to the free enzymes, the scaffold-based system results in an improved activity for the tested PARPs due to improved solubility, stability and the proximity of the catalytic domains, altogether boosting their activity beyond 10-fold in the case of PARP12. This allows us to measure their activity using a homogeneous NAD+ conversion assay, facilitating its automation to lower the assay volume and costs. The approach will enable the discovery of more potent compounds due to increased assay sensitivity.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10732628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nancy D Pomarici, Monica L Fernández-Quintero, Patrick K Quoika, Franz Waibl, Alexander Bujotzek, Guy Georges, Klaus R Liedl
A new format of therapeutic proteins is bispecific antibodies, in which two different heavy chains heterodimerize to obtain two different binding sites. Therefore, it is crucial to understand and optimize the third constant domain (CH3-CH3) interface to favor heterodimerization over homodimerization, and to preserve the physicochemical properties, as thermal stability. Here, we use molecular dynamics simulations to investigate the dissociation process of 19 CH3-CH3 crystal structures that differ from each other in few point mutations. We describe the dissociation of the dimeric interface as a two-steps mechanism. As confirmed by a Markov state model, apart from the bound and the dissociated state, we observe an additional intermediate state, which corresponds to an encounter complex. The analysis of the interdomain contacts reveals key residues that stabilize the interface. We expect that our results will improve the understanding of the CH3-CH3 interface interactions and thus advance the developability and design of new antibodies formats.
{"title":"Bispecific antibodies-effects of point mutations on CH3-CH3 interface stability.","authors":"Nancy D Pomarici, Monica L Fernández-Quintero, Patrick K Quoika, Franz Waibl, Alexander Bujotzek, Guy Georges, Klaus R Liedl","doi":"10.1093/protein/gzac012","DOIUrl":"10.1093/protein/gzac012","url":null,"abstract":"<p><p>A new format of therapeutic proteins is bispecific antibodies, in which two different heavy chains heterodimerize to obtain two different binding sites. Therefore, it is crucial to understand and optimize the third constant domain (CH3-CH3) interface to favor heterodimerization over homodimerization, and to preserve the physicochemical properties, as thermal stability. Here, we use molecular dynamics simulations to investigate the dissociation process of 19 CH3-CH3 crystal structures that differ from each other in few point mutations. We describe the dissociation of the dimeric interface as a two-steps mechanism. As confirmed by a Markov state model, apart from the bound and the dissociated state, we observe an additional intermediate state, which corresponds to an encounter complex. The analysis of the interdomain contacts reveals key residues that stabilize the interface. We expect that our results will improve the understanding of the CH3-CH3 interface interactions and thus advance the developability and design of new antibodies formats.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10353046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead
Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.
{"title":"Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning.","authors":"Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead","doi":"10.1093/protein/gzac002","DOIUrl":"10.1093/protein/gzac002","url":null,"abstract":"<p><p>Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077414/pdf/gzac002.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}