AbstractThe South American rattlesnake, Crotalus durissus, has been successfully used as an experimental model to study control of the cardiovascular system in squamate reptiles. Recent technical advances, including equipment miniaturization, have lessened the impact of instrumentation on in vivo recordings, and an increased range of anesthetic drugs has improved recording conditions for in situ preparations. Nevertheless, any animal-based experimental approach has to manage limitations regarding the avoidance of pain and stress the stability of the preparation and duration of experiments and the potentially overriding effects of anesthesia. To address such aspects, we tested a new experimental preparation, the decerebrate rattlesnake, in a study of the autonomic control of cardiovascular responses following the removal of general anesthesia. The preparation exhibited complex cardiovascular adjustments to deal with acute increases in venous return (caused by tail lifting), to compensate for blood flow reduction in the cephalic region (caused by head lifting), for body temperature control (triggered by an external heating source), and in response to stimulation of chemoreceptors (triggered by intravenous injection of NaCN). The decerebrate preparation retained extensive functional integrity of autonomic centers, and it was suitable for monitoring diverse cardiac and vascular variables. Furthermore, reanesthetizing the preparation markedly blunted cardiovascular performance. Isoflurane limited the maintenance of recovered cardiovascular variables in the prepared animal and reduced or abolished the observed cardiovascular reflexes. This preparation enables the recording of multiple concomitant cardiovascular variables for the study of mechanistic questions regarding the central integration of autonomic reflex responses in the absence of anesthesia.