Purpose
Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea.
Methods
LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (n = 151) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months.
Results
Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8+, K13+, K15+ and MUC5AC+ conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12+ epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487).
Conclusions
We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.