Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.427
Ju Hwan Kim, Rajnikant Patel
Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.
{"title":"Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage.","authors":"Ju Hwan Kim, Rajnikant Patel","doi":"10.4196/kjpp.2023.27.5.427","DOIUrl":"10.4196/kjpp.2023.27.5.427","url":null,"abstract":"<p><p>Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"427-436"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/65/kjpp-27-5-427.PMC10466067.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.457
Yi Cai, Qianyue Lai, Xuan Zhang, Yu Zhang, Man Zhang, Shaoju Gu, Yuan Qin, Jingshen Hou, Li Zhao
The aim of this study was to investigate the role of kinesin superfamily member 15 (KIF15) in nasopharyngeal carcinogenesis (NPC) and explore its underlying mechanisms. We employed various assays, including the CCK-8 assay, flow cytometry, the Transwell and scratch assay, Western blotting, and nude mice transplantation tumor, to investigate the impact of KIF15 on NPC. Our findings demonstrate that KIF15 plays a critical role in the proliferation, apoptosis, migration, and invasion of NPC cells. Furthermore, we discovered that silencing KIF15 inhibits cell proliferation, migration, and invasion while promoting apoptosis, and that KIF15's effect on NPC cell growth is mediated through the PI3K/AKT and P53 signaling pathways. Additionally, we showed that KIF15 promotes nasopharyngeal cancer cell growth in vivo. Our study sheds light on the significance of KIF15 in NPC by revealing that KIF15 knockdown inhibits NPC cell growth through the regulation of AKT-related signaling pathways. These findings suggest that KIF15 represents a promising therapeutic target for the prevention and treatment of NPC.
{"title":"Kinesin superfamily member 15 knockdown inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma.","authors":"Yi Cai, Qianyue Lai, Xuan Zhang, Yu Zhang, Man Zhang, Shaoju Gu, Yuan Qin, Jingshen Hou, Li Zhao","doi":"10.4196/kjpp.2023.27.5.457","DOIUrl":"10.4196/kjpp.2023.27.5.457","url":null,"abstract":"<p><p>The aim of this study was to investigate the role of kinesin superfamily member 15 (KIF15) in nasopharyngeal carcinogenesis (NPC) and explore its underlying mechanisms. We employed various assays, including the CCK-8 assay, flow cytometry, the Transwell and scratch assay, Western blotting, and nude mice transplantation tumor, to investigate the impact of KIF15 on NPC. Our findings demonstrate that KIF15 plays a critical role in the proliferation, apoptosis, migration, and invasion of NPC cells. Furthermore, we discovered that silencing KIF15 inhibits cell proliferation, migration, and invasion while promoting apoptosis, and that KIF15's effect on NPC cell growth is mediated through the PI3K/AKT and P53 signaling pathways. Additionally, we showed that KIF15 promotes nasopharyngeal cancer cell growth <i>in vivo</i>. Our study sheds light on the significance of KIF15 in NPC by revealing that KIF15 knockdown inhibits NPC cell growth through the regulation of AKT-related signaling pathways. These findings suggest that KIF15 represents a promising therapeutic target for the prevention and treatment of NPC.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"457-470"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/0f/kjpp-27-5-457.PMC10466069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.493
Ruo Yu Meng, Cong Shan Li, Dan Hu, Soon-Gu Kwon, Hua Jin, Ok Hee Chai, Ju-Seog Lee, Soo Mi Kim
Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.
Hippo/YAP 信号阻碍癌症进展。该通路失活会激活 Akt,从而导致食管癌的发生。然而,Akt 和 Hippo/YAP 通路在食管癌进展中可能存在的相互作用尚不清楚。在这项研究中,我们发现熊果酸(UA)加3'3-二吲哚甲烷(DIM)能有效抑制食管癌细胞中的致癌Akt/Gsk-3β信号通路,同时激活Hippo肿瘤抑制通路。此外,添加 Akt 抑制剂 LY294002 和 PI3K 抑制剂 3-甲基腺嘌呤可增强 UA 加 DIM 对 Akt 通路激活的抑制作用,并进一步刺激 Hippo 通路,包括抑制食管癌细胞中的 YAP 核易位。在 UA 加 DIM 的条件下沉默 YAP 会显著增加食管癌细胞中肿瘤抑制因子 PTEN 的活化,同时降低 p-Akt 的活化,这表明通过靶向 PTEN 可以下调食管癌细胞的 Akt 信号通路。此外,在异种移植裸鼠模型中,UA 加 DIM 治疗通过使 Akt 通路失活和刺激 Hippo 信号通路,有效地减少了食管肿瘤。因此,我们的研究强调了食管癌细胞中PI3K/Akt和Hippo信号通路之间的反馈回路,这意味着低剂量UA加DIM可作为一种治疗食管癌的有前途的化疗组合策略。
{"title":"Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis.","authors":"Ruo Yu Meng, Cong Shan Li, Dan Hu, Soon-Gu Kwon, Hua Jin, Ok Hee Chai, Ju-Seog Lee, Soo Mi Kim","doi":"10.4196/kjpp.2023.27.5.493","DOIUrl":"10.4196/kjpp.2023.27.5.493","url":null,"abstract":"<p><p>Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"493-511"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/cf/kjpp-27-5-493.PMC10466072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.471
Haebeen Jung, Hong-Gu Joo
Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.
{"title":"Dendritic cells resist to disulfiram-induced cytotoxicity, but reduced interleukin-12/23(p40) production.","authors":"Haebeen Jung, Hong-Gu Joo","doi":"10.4196/kjpp.2023.27.5.471","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.5.471","url":null,"abstract":"<p><p>Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"471-479"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/67/kjpp-27-5-471.PMC10466071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.481
Hyung Kyu Kim, Jiyeon Jun, Tae Wan Kim, Dong-Ho Youn
The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.
{"title":"Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats.","authors":"Hyung Kyu Kim, Jiyeon Jun, Tae Wan Kim, Dong-Ho Youn","doi":"10.4196/kjpp.2023.27.5.481","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.5.481","url":null,"abstract":"<p><p>The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca<sup>2+</sup> current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)<sub>K357R</sub>-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)<sub>K357R</sub> (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)<sub>K357R</sub> peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"481-491"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/8c/kjpp-27-5-481.PMC10466068.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. In vitro, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.
{"title":"Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats.","authors":"Zuyang Zhang, Tianhua Chen, Wei Liu, Jiepeng Xiong, Liangdong Jiang, Mingjiang Liu","doi":"10.4196/kjpp.2023.27.5.437","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.5.437","url":null,"abstract":"<p><p>Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. <i>In vitro</i>, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"437-448"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/87/46/kjpp-27-5-437.PMC10466073.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.4196/kjpp.2023.27.5.449
Jae Rim Lee, Kwang Won Jeong
N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove Nretinylidene- N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.
n -甲基- d -天冬氨酸(NMDA)受体是离子谷氨酰胺受体,参与大脑发育和学习记忆形成等功能。NMDA受体抑制与自噬激活有关。在这项研究中,我们研究了NMDA受体拮抗剂美金刚和伊芬prodil是否诱导人视网膜色素上皮细胞(ARPE-19)自噬以去除细胞内脂褐素成分Nretinylidene- n -视黄醇胺(A2E)。使用标记A2E (A2E- bdp)的荧光分析和共聚焦显微镜检查显示,低浓度的NMDA受体拮抗剂(不诱导细胞毒性)显著减少了A2E在ARPE-19细胞中的积累。此外,通过微管相关蛋白1A/ 1b -轻链3- ii形成和磷酸化p62蛋白水平测量,美金刚和伊芬丙地尔激活了ARPE-19细胞的自噬。此外,为了了解美金刚和伊芬丙地尔介导的A2E降解与自噬之间的关系,使用RNA干扰减少了自噬相关5 (autophagy-related 5, ATG5)。美金刚和伊芬普罗地尔在缺乏ATG5的ARPE-19细胞中不能降解A2E。综上所述,我们的研究表明,NMDA受体拮抗剂美金刚和伊芬普罗地尔可以通过激活ARPE-19细胞的自噬来清除细胞内积累的A2E。
{"title":"<i>N</i>-retinylidene-<i>N</i>-retinylethanolamine degradation in human retinal pigment epithelial cells via memantine- and ifenprodil-mediated autophagy.","authors":"Jae Rim Lee, Kwang Won Jeong","doi":"10.4196/kjpp.2023.27.5.449","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.5.449","url":null,"abstract":"<p><p><i>N</i>-methyl-<i>D</i>-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove Nretinylidene- <i>N</i>-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 5","pages":"449-456"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/e4/kjpp-27-5-449.PMC10466070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.4196/kjpp.2023.27.4.357
Wenjing Guo, Xin Wang, Chao Sun, Jian Wang, Tao Wang
Sjögren syndrome (SS) is a systemic inflammatory autoimmune disease that involves exocrine glands. Shikonin is extracted from comfrey, which is conventionally used as an anti-tumor, antibacterial, and antiviral drug in China. However, the application of Shikonin in SS remains unreported. This study aimed to verify the potential functions of Shikonin in SS progression. Firstly, non-obese diabetic mice were used as the SS mouse model, with C57BL/6 mice serving as the healthy control. It was demonstrated that the salivary gland damage and inflammation were aggravated in the SS mouse model. Shikonin improved salivary gland function decline and injury in the SS mouse model. Moreover, Shikonin reduced inflammatory cytokines and immune infiltration in the SS mouse model. Further experiments discovered that Shikonin attenuated the MAPK signaling pathway in the SS mouse model. Lastly, inhibition of the MAPK signaling pathway combined with Shikonin treatment further alleviated the symptoms of SS. In conclusion, Shikonin ameliorated salivary gland damage and inflammation in a mouse model of SS by modulating the MAPK signaling pathway. Our findings indicate that Shikonin may be a useful drug for SS treatment.
{"title":"Shikonin ameliorates salivary gland damage and inflammation in a mouse model of Sjögren's syndrome by modulating MAPK signaling pathway.","authors":"Wenjing Guo, Xin Wang, Chao Sun, Jian Wang, Tao Wang","doi":"10.4196/kjpp.2023.27.4.357","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.4.357","url":null,"abstract":"<p><p>Sjögren syndrome (SS) is a systemic inflammatory autoimmune disease that involves exocrine glands. Shikonin is extracted from comfrey, which is conventionally used as an anti-tumor, antibacterial, and antiviral drug in China. However, the application of Shikonin in SS remains unreported. This study aimed to verify the potential functions of Shikonin in SS progression. Firstly, non-obese diabetic mice were used as the SS mouse model, with C57BL/6 mice serving as the healthy control. It was demonstrated that the salivary gland damage and inflammation were aggravated in the SS mouse model. Shikonin improved salivary gland function decline and injury in the SS mouse model. Moreover, Shikonin reduced inflammatory cytokines and immune infiltration in the SS mouse model. Further experiments discovered that Shikonin attenuated the MAPK signaling pathway in the SS mouse model. Lastly, inhibition of the MAPK signaling pathway combined with Shikonin treatment further alleviated the symptoms of SS. In conclusion, Shikonin ameliorated salivary gland damage and inflammation in a mouse model of SS by modulating the MAPK signaling pathway. Our findings indicate that Shikonin may be a useful drug for SS treatment.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 4","pages":"357-364"},"PeriodicalIF":2.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/e7/kjpp-27-4-357.PMC10316193.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9747885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.4196/kjpp.2023.27.4.325
Hadeel A Alsufyani, James R Docherty
α1-adrenoceptors link via the G-protein Gq/G11 to both Ca2+ entry and release from stores, but may also activate Rho kinase, which causes calcium sensitization. This study aimed to identify the subtype(s) of α1-adrenoceptor involved in Rho kinase-mediated responses in both rat aorta and mouse spleen, tissues in which contractions involve multiple subtypes of α1-adrenoceptor. Tissues were contracted with cumulative concentrations of noradrenaline (NA) in 0.5 log unit increments, before and in the presence of an antagonist or vehicle. Contractions produced by NA in rat aorta are entirely α1-adrenoceptor mediated as they are competitively blocked by prazosin. The α1A-adrenoceptor antagonist RS100329 had low potency in rat aorta. The α1D-adrenoceptor antagonist BMY7378 antagonized contractions in rat aorta in a biphasic manner: low concentrations blocking α1D-adrenoceptors and high concentrations blocking α1B-adrenoceptors. The Rho kinase inhibitor fasudil (10 μM) significantly reduced aortic contractions in terms of maximum response, suggesting inhibition of α1B-adrenoceptor mediated responses. In the mouse spleen, a tissue in which all 3 subtypes of α1-adrenoceptor are involved in contractions to NA, fasudil (3 μM) significantly reduced both early and late components to the NA contraction, the early component involving α1B- and α1D-adrenoceptors, and the late component involving α1B- and α1A-adrenoceptors. This suggests that fasudil inhibits α1B-adrenoceptor mediated responses. It is concluded that α1D- and α1B-adrenoceptors interact in rat aorta and α1D-, α1A- and α1B-adrenoceptors interact in the mouse spleen to produce contractions and these interactions suggest that one of the receptors preferentially activates Rho kinase, most likely the α1B-adrenoceptor.
{"title":"Involvement of α<sub>1B</sub>-adrenoceptors and Rho kinase in contractions of rat aorta and mouse spleen.","authors":"Hadeel A Alsufyani, James R Docherty","doi":"10.4196/kjpp.2023.27.4.325","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.4.325","url":null,"abstract":"<p><p>α<sub>1</sub>-adrenoceptors link via the G-protein Gq/G<sub>11</sub> to both Ca<sup>2+</sup> entry and release from stores, but may also activate Rho kinase, which causes calcium sensitization. This study aimed to identify the subtype(s) of α<sub>1</sub>-adrenoceptor involved in Rho kinase-mediated responses in both rat aorta and mouse spleen, tissues in which contractions involve multiple subtypes of α<sub>1</sub>-adrenoceptor. Tissues were contracted with cumulative concentrations of noradrenaline (NA) in 0.5 log unit increments, before and in the presence of an antagonist or vehicle. Contractions produced by NA in rat aorta are entirely α<sub>1</sub>-adrenoceptor mediated as they are competitively blocked by prazosin. The α<sub>1A</sub>-adrenoceptor antagonist RS100329 had low potency in rat aorta. The α<sub>1D</sub>-adrenoceptor antagonist BMY7378 antagonized contractions in rat aorta in a biphasic manner: low concentrations blocking α<sub>1D</sub>-adrenoceptors and high concentrations blocking α<sub>1B</sub>-adrenoceptors. The Rho kinase inhibitor fasudil (10 μM) significantly reduced aortic contractions in terms of maximum response, suggesting inhibition of α<sub>1B</sub>-adrenoceptor mediated responses. In the mouse spleen, a tissue in which all 3 subtypes of α<sub>1</sub>-adrenoceptor are involved in contractions to NA, fasudil (3 μM) significantly reduced both early and late components to the NA contraction, the early component involving α<sub>1B</sub>- and α<sub>1D</sub>-adrenoceptors, and the late component involving α<sub>1B</sub>- and α<sub>1A</sub>-adrenoceptors. This suggests that fasudil inhibits α<sub>1B</sub>-adrenoceptor mediated responses. It is concluded that α<sub>1D</sub>- and α<sub>1B</sub>-adrenoceptors interact in rat aorta and α<sub>1D</sub>-, α<sub>1A</sub>- and α<sub>1B</sub>-adrenoceptors interact in the mouse spleen to produce contractions and these interactions suggest that one of the receptors preferentially activates Rho kinase, most likely the α<sub>1B</sub>-adrenoceptor.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 4","pages":"325-331"},"PeriodicalIF":2.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/24/kjpp-27-4-325.PMC10316198.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9753148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.4196/kjpp.2023.27.4.383
Kok-Tong Tan, Yu-Hung Shih, Jiny Yin Gong, Xiang Zhang, Chiung-Yao Huang, Jui-Hsin Su, Jyh-Horng Sheu, Chi-Chen Lin
Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.
{"title":"Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway.","authors":"Kok-Tong Tan, Yu-Hung Shih, Jiny Yin Gong, Xiang Zhang, Chiung-Yao Huang, Jui-Hsin Su, Jyh-Horng Sheu, Chi-Chen Lin","doi":"10.4196/kjpp.2023.27.4.383","DOIUrl":"https://doi.org/10.4196/kjpp.2023.27.4.383","url":null,"abstract":"<p><p>Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species <i>Cladiella australis</i>, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"27 4","pages":"383-398"},"PeriodicalIF":2.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/45/62/kjpp-27-4-383.PMC10316192.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9753152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}