首页 > 最新文献

Korean Journal of Physiology & Pharmacology最新文献

英文 中文
Functional interplay between non-canonical inflammasomes and autophagy in inflammatory responses and diseases. 非典型炎症小体与自噬在炎症反应和疾病中的功能相互作用
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-14 DOI: 10.4196/kjpp.24.240
Young-Su Yi

The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.

炎性体是一个细胞膜多蛋白平台,在炎症反应中发挥着关键作用,炎症反应是一种重要的先天性免疫反应,可保护机体免受病原体和细胞危险信号的侵害。自噬是一种基本的细胞机制,它通过消除和回收功能失调的分子和亚细胞元素来维持细胞的平衡。以前的许多研究都表明,在炎症反应和疾病中,早先发现的典型炎症小体与自噬之间存在着功能上的相互作用。鉴于越来越多的证据表明非典型炎症小体是炎症反应中独特而关键的因素,非典型炎症小体与自噬之间的功能性相互作用值得注意。最近的研究表明,非经典炎性体和自噬在功能上与炎症反应和疾病相关。这篇综述全面讨论了最近研究非典型炎症小体(如小鼠 caspase-11 和人类 caspase-4)与自噬及自噬相关蛋白在炎症反应和疾病中的功能性相互作用,并为通过调节非典型炎症小体和自噬之间的功能性相互作用开发新型抗炎疗法提供了见解。
{"title":"Functional interplay between non-canonical inflammasomes and autophagy in inflammatory responses and diseases.","authors":"Young-Su Yi","doi":"10.4196/kjpp.24.240","DOIUrl":"10.4196/kjpp.24.240","url":null,"abstract":"<p><p>The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"129-138"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of CYP2D6 on donepezil concentration and its lack of effect on the treatment response and adverse effect in Korean patients with Alzheimer's disease. 韩国阿尔茨海默病患者 CYP2D6 对多奈哌齐浓度的影响及其对治疗反应和不良反应的影响。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-14 DOI: 10.4196/kjpp.24.239
Tae-Eun Kim, Jung-Woo Bae, Seongkuk Hong, Hong Jun Jeon, Yeonsil Moon

Donepezil, an acetylcholinesterase inhibitor, is widely used for managing the symptoms of Alzheimer's disease (AD), yet its clinical response varies widely among individuals. This study aims to investigate the influence of CYP2D6 genetic variants on donepezil concentration, treatment response, and adverse effects in Korean patients with AD dementia. We conducted a longitudinal study involving 76 patients receiving either 5 mg or 10 mg of donepezil. Genetic testing identified 9 CYP2D6 alleles, categorizing patients by metabolizing abilities. Blood sampling for plasma concentrations of donepezil were performed at steady-state. Mini-Mental State Examination (MMSE) were conducted at 12, 24 and 36 months after the initiation of treatment. Adverse events were collected throughout the study period. Donepezil plasma concentrations differed significantly among metabolizer statuses (mean 56.8 ± 27.1 ng/ml in normal metabolizers vs. 69.6 ± 30.1 ng/ml in intermediate metabolizers, p = 0.042), but these differences did not affect cognitive function over three years as assessed by MMSE. Additionally, there was no significant correlation between donepezil plasma concentration and adverse events. Our study is the first to elucidate the associations between CYP2D6 genotype and the concentration, clinical response or adverse events of donepezil in Korean patients with AD dementia. Larger studies are necessary to fully understand the impact of CYP2D6 genetic variants on therapeutic outcomes with donepezil.

多奈哌齐是一种乙酰胆碱酯酶抑制剂,被广泛用于控制阿尔茨海默病(AD)的症状,但其临床反应却因人而异。本研究旨在调查韩国 AD 痴呆症患者中 CYP2D6 基因变异对多奈哌齐浓度、治疗反应和不良反应的影响。我们进行了一项纵向研究,涉及 76 名接受 5 毫克或 10 毫克多奈哌齐治疗的患者。基因检测确定了 9 个 CYP2D6 等位基因,根据代谢能力对患者进行了分类。多奈哌齐的血浆浓度在稳定状态下进行抽血检测。在开始治疗后的 12 个月、24 个月和 36 个月进行了迷你精神状态检查(MMSE)。在整个研究期间收集不良事件。不同代谢状态的多奈哌齐血浆浓度有显著差异(正常代谢者的平均浓度为 56.8 ± 27.1 纳克/毫升,中间代谢者的平均浓度为 69.6 ± 30.1 纳克/毫升,P = 0.042),但这些差异不会影响 MMSE 评估的三年认知功能。此外,多奈哌齐血浆浓度与不良事件之间没有明显的相关性。我们的研究首次阐明了韩国 AD 痴呆症患者的 CYP2D6 基因型与多奈哌齐的浓度、临床反应或不良反应之间的关系。要全面了解 CYP2D6 基因变异对多奈哌齐治疗效果的影响,还需要进行更大规模的研究。
{"title":"The impact of CYP2D6 on donepezil concentration and its lack of effect on the treatment response and adverse effect in Korean patients with Alzheimer's disease.","authors":"Tae-Eun Kim, Jung-Woo Bae, Seongkuk Hong, Hong Jun Jeon, Yeonsil Moon","doi":"10.4196/kjpp.24.239","DOIUrl":"10.4196/kjpp.24.239","url":null,"abstract":"<p><p>Donepezil, an acetylcholinesterase inhibitor, is widely used for managing the symptoms of Alzheimer's disease (AD), yet its clinical response varies widely among individuals. This study aims to investigate the influence of CYP2D6 genetic variants on donepezil concentration, treatment response, and adverse effects in Korean patients with AD dementia. We conducted a longitudinal study involving 76 patients receiving either 5 mg or 10 mg of donepezil. Genetic testing identified 9 CYP2D6 alleles, categorizing patients by metabolizing abilities. Blood sampling for plasma concentrations of donepezil were performed at steady-state. Mini-Mental State Examination (MMSE) were conducted at 12, 24 and 36 months after the initiation of treatment. Adverse events were collected throughout the study period. Donepezil plasma concentrations differed significantly among metabolizer statuses (mean 56.8 ± 27.1 ng/ml in normal metabolizers vs. 69.6 ± 30.1 ng/ml in intermediate metabolizers, p = 0.042), but these differences did not affect cognitive function over three years as assessed by MMSE. Additionally, there was no significant correlation between donepezil plasma concentration and adverse events. Our study is the first to elucidate the associations between CYP2D6 genotype and the concentration, clinical response or adverse events of donepezil in Korean patients with AD dementia. Larger studies are necessary to fully understand the impact of CYP2D6 genetic variants on therapeutic outcomes with donepezil.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"227-233"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway. 塔斯奎尼莫德通过下调 HDAC4/p21 通路促进卵巢癌细胞对顺铂的敏感性。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-14 DOI: 10.4196/kjpp.24.132
Zhao Li, Ya-Hong Wu, Ye-Qing Guo, Xiao-Jia Min, Ying Lin

To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.

为了研究塔斯奎尼莫德是否能通过调节组蛋白去乙酰化酶4(HDAC4)或p21来影响耐药卵巢癌(OC)细胞系的顺铂耐药性,我们探讨了它对细胞周期的影响及其相关机制。我们利用RT-PCR和Western印迹分析、流式细胞术、CCK8检测和免疫荧光技术研究了Tasquinimod对OC细胞基因表达、细胞周期、细胞凋亡、存活率和蛋白水平的影响。结果表明,与单用DDP相比,Tasquinimod能更有效地抑制SKOV3/DDP(顺铂)和A2780/DDP细胞的活力并促进其凋亡。与顺铂联合使用时,塔斯奎尼莫德可进一步增强这些细胞株的细胞凋亡并降低细胞活力,HDAC4过表达后可逆转这种效应。在 SKOV3/DDP 和 A2780/ DDP 细胞中,塔斯奎尼莫德处理可下调 HDAC4、Bcl-2、细胞周期蛋白 D1 和 CDK4 的表达,上调裂解-Caspase-3 和 p21 的表达。此外,塔斯奎尼莫德还能抑制 OC/DDP 细胞的 DDP 抗性。在用 Tasquinimod 治疗的 OC 小鼠模型中也观察到了类似的效果。总之,Tasquinimod可通过下调HDAC4/p21轴改善OC细胞对DDP的敏感性,为克服OC的顺铂耐药性提供了潜在策略。
{"title":"Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway.","authors":"Zhao Li, Ya-Hong Wu, Ye-Qing Guo, Xiao-Jia Min, Ying Lin","doi":"10.4196/kjpp.24.132","DOIUrl":"10.4196/kjpp.24.132","url":null,"abstract":"<p><p>To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"191-204"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells. 单肌蛋白通过减少炎症、氧化应激和血管平滑肌细胞的异常增殖和迁移来抵抗动脉粥样硬化。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 DOI: 10.4196/kjpp.24.352
Hongliang Li, Bingqian Ye, Jiping Tian, Bofan Wang, Yiwen Zha, Shuying Zheng, Tan Ma, Wenwen Zhuang, Won Sun Park, Jingyan Liang

Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR-/- mice given high-fat diet to investigate the effects of monotropein on atherosclerosis. Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.

单tropein是一种环烯醚萜类化合物,存在于草本植物森科。它具有抗炎、抗氧化和抗骨关节炎的活性。先前的研究表明,单肌蛋白可能具有对抗心血管疾病的潜力,尽管相关机制尚不清楚。本研究采用氧化低密度脂蛋白诱导血管平滑肌细胞和给予高脂饮食的LDLR-/-小鼠构建动脉粥样硬化模型,探讨单肌蛋白对动脉粥样硬化的影响。我们的研究结果表明,单肌蛋白治疗可以显著减少小鼠动脉粥样硬化斑块和坏死核心的面积,抑制血管平滑肌细胞的增殖和迁移,减少炎症反应和氧化应激,从而减轻动脉粥样硬化。此外,我们发现单肌蛋白降低了P-NF-κB和P-AP-1的表达水平。综上所述,我们的数据表明,单肌蛋白通过介导NF-κB、AP-1的活性,降低炎症和氧化应激水平,从而抑制血管平滑肌细胞的增殖和迁移,从而抵抗动脉粥样硬化的发展。这些发现证明了单肌蛋白对动脉粥样硬化的有效治疗作用,并阐明了其特异性靶点。
{"title":"Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells.","authors":"Hongliang Li, Bingqian Ye, Jiping Tian, Bofan Wang, Yiwen Zha, Shuying Zheng, Tan Ma, Wenwen Zhuang, Won Sun Park, Jingyan Liang","doi":"10.4196/kjpp.24.352","DOIUrl":"10.4196/kjpp.24.352","url":null,"abstract":"<p><p>Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR<sup>-/-</sup> mice given high-fat diet to investigate the effects of monotropein on atherosclerosis. Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of <i>P-NF-κB</i> and <i>P-AP-1</i>. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of <i>NF-κB, AP-1</i>, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"29 2","pages":"245-255"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial galectin-3 increases with aging in the mouse hippocampus. 小鼠海马小胶质半凝集素-3随着年龄的增长而增加。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-01-14 DOI: 10.4196/kjpp.24.196
Hyun Joo Shin, So Jeong Lee, Hyeong Seok An, Ha Nyeoung Choi, Eun Ae Jeong, Jaewoong Lee, Kyung Eun Kim, Bong-Hoi Choi, Seung Pil Yun, Dawon Kang, Sang Soo Kang, Gu Seob Roh

Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.

衰老过程中的小胶质细胞激活与神经炎症和认知障碍有关。半乳糖凝集素-3在小胶质细胞活化和吞噬中起着至关重要的作用。然而,半乳糖凝集素-3在老年大脑中的作用尚不完全清楚。在本研究中,我们以6、12和24月龄的雌性C57BL/6小鼠为研究对象,研究了衰老相关机制和小鼠海马小胶质半乳糖凝集素-3的表达。Western blot分析显示,与6个月和12个月大的小鼠相比,24个月大的小鼠神经变性、血脑屏障渗漏和神经炎症相关蛋白水平升高。免疫组织化学显示,与6月和12月大的小鼠相比,24个月大的小鼠海马中活化的小胶质细胞增加。此外,我们发现24月龄的小鼠与6月龄和12月龄的小鼠相比,髓样细胞-2阳性小胶质细胞上表达了更多的半凝集素-3和触发受体。在小鼠原代小胶质细胞中,脂多糖处理也增加了凝集素-3。这些发现表明半乳糖凝集素-3可能在脑衰老过程中小胶质细胞激活和神经炎症中起重要作用。
{"title":"Microglial galectin-3 increases with aging in the mouse hippocampus.","authors":"Hyun Joo Shin, So Jeong Lee, Hyeong Seok An, Ha Nyeoung Choi, Eun Ae Jeong, Jaewoong Lee, Kyung Eun Kim, Bong-Hoi Choi, Seung Pil Yun, Dawon Kang, Sang Soo Kang, Gu Seob Roh","doi":"10.4196/kjpp.24.196","DOIUrl":"10.4196/kjpp.24.196","url":null,"abstract":"<p><p>Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"215-225"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity and efficacy study of a combination of two retinoic acids in an ApoE knockout mouse model of atherosclerosis. 两种维甲酸复方制剂在载脂蛋白E基因敲除小鼠动脉粥样硬化模型中的毒性和疗效研究。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-14 DOI: 10.4196/kjpp.24.165
Da Som Jeong, Ji-Young Lee, Hyo-Jeong Han, Soo Min Ko, Dong Hyun Lee, Yerin Lee, Young-Sik Park, Byong-Cheol Shin, Woo-Chan Son

Atherosclerosis is a major contributor to cardiovascular disease, characterized by inflammation and lipid accumulation in arterial walls, leading to plaque formation. Elevated low-density lipoprotein cholesterol is a primary risk factor for atherosclerosis. All-trans retinoic acid (ATRA), a metabolite of vitamin A, has demonstrated anti-inflammatory effects and potential in regulating vascular injury. 9-cisretinoic acid (9cRA) is an active metabolite of vitamin A and activates the retinoid X receptor. This study investigates whether potassium retinoate (PA9RA), a synthetic combination of ATRA and 9cRA, offers superior efficacy in treating atherosclerosis compared to established treatments such as clopidogrel and atorvastatin. Male ApoE-/- mice were fed a Western-type diet and treated with PA9RA, clopidogrel, or atorvastatin for 10 weeks. The body weight, organ weight, serum biochemistry, and histopathology, including atherosclerotic lesion area and liver steatosis were assessed. PA9RA treatment led to a significant reduction in body weight and inguinal fat, with the 45 mg/kg/day dose showing marked efficacy in decreasing atherosclerotic lesion size and ameliorating liver steatosis. Histopathological evaluation revealed decreased foam cell formation and improved liver histology in PA9RA-treated groups compared to controls. Notable side effects included epidermal hyperplasia and gastric hyperplasia at high doses of PA9RA. PA9RA exhibits superior efficacy over clopidogrel and atorvastatin in ameliorating atherosclerosis and fatty liver in ApoE-/- mice. This study highlights PA9RA's potential as a promising therapeutic agent for atherosclerosis. Further research is needed to elucidate its mechanisms of action and assess long-term safety and efficacy.

动脉粥样硬化是心血管疾病的主要诱因,其特点是炎症和脂质在动脉壁上积聚,导致斑块形成。低密度脂蛋白胆固醇升高是动脉粥样硬化的主要风险因素。全反式维甲酸(ATRA)是维生素 A 的代谢产物,具有抗炎作用和调节血管损伤的潜力。9-顺维甲酸(9cRA)是维生素 A 的一种活性代谢产物,能激活视黄醇 X 受体。本研究探讨了视黄酸钾(PA9RA)作为 ATRA 和 9cRA 的合成复方制剂,在治疗动脉粥样硬化方面是否比氯吡格雷和阿托伐他汀等既有疗法更具疗效。雄性载脂蛋白E-/-小鼠以西式饮食喂养,并接受 PA9RA、氯吡格雷或阿托伐他汀治疗 10 周。对小鼠的体重、器官重量、血清生化和组织病理学(包括动脉粥样硬化病变面积和肝脏脂肪变性)进行了评估。PA9RA治疗显著降低了体重和腹股沟脂肪,45毫克/千克/天的剂量对减少动脉粥样硬化病变面积和改善肝脏脂肪变性有明显疗效。组织病理学评估显示,与对照组相比,PA9RA 治疗组的泡沫细胞形成减少,肝脏组织学得到改善。显著的副作用包括高剂量 PA9RA 的表皮增生和胃增生。在改善载脂蛋白E-/-小鼠的动脉粥样硬化和脂肪肝方面,PA9RA的疗效优于氯吡格雷和阿托伐他汀。这项研究凸显了 PA9RA 作为动脉粥样硬化治疗药物的潜力。要阐明其作用机制并评估其长期安全性和有效性,还需要进一步的研究。
{"title":"Toxicity and efficacy study of a combination of two retinoic acids in an ApoE knockout mouse model of atherosclerosis.","authors":"Da Som Jeong, Ji-Young Lee, Hyo-Jeong Han, Soo Min Ko, Dong Hyun Lee, Yerin Lee, Young-Sik Park, Byong-Cheol Shin, Woo-Chan Son","doi":"10.4196/kjpp.24.165","DOIUrl":"10.4196/kjpp.24.165","url":null,"abstract":"<p><p>Atherosclerosis is a major contributor to cardiovascular disease, characterized by inflammation and lipid accumulation in arterial walls, leading to plaque formation. Elevated low-density lipoprotein cholesterol is a primary risk factor for atherosclerosis. All-trans retinoic acid (ATRA), a metabolite of vitamin A, has demonstrated anti-inflammatory effects and potential in regulating vascular injury. 9-cisretinoic acid (9cRA) is an active metabolite of vitamin A and activates the retinoid X receptor. This study investigates whether potassium retinoate (PA9RA), a synthetic combination of ATRA and 9cRA, offers superior efficacy in treating atherosclerosis compared to established treatments such as clopidogrel and atorvastatin. Male ApoE<sup>-/-</sup> mice were fed a Western-type diet and treated with PA9RA, clopidogrel, or atorvastatin for 10 weeks. The body weight, organ weight, serum biochemistry, and histopathology, including atherosclerotic lesion area and liver steatosis were assessed. PA9RA treatment led to a significant reduction in body weight and inguinal fat, with the 45 mg/kg/day dose showing marked efficacy in decreasing atherosclerotic lesion size and ameliorating liver steatosis. Histopathological evaluation revealed decreased foam cell formation and improved liver histology in PA9RA-treated groups compared to controls. Notable side effects included epidermal hyperplasia and gastric hyperplasia at high doses of PA9RA. PA9RA exhibits superior efficacy over clopidogrel and atorvastatin in ameliorating atherosclerosis and fatty liver in ApoE<sup>-/-</sup> mice. This study highlights PA9RA's potential as a promising therapeutic agent for atherosclerosis. Further research is needed to elucidate its mechanisms of action and assess long-term safety and efficacy.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"179-189"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis. 用于心脏毒性评估的人诱导多能干细胞-心肌细胞:心律失常诱导药物与多电极阵列分析的比较研究。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 DOI: 10.4196/kjpp.24.413
Na Kyeong Park, Yun-Gwi Park, Ji-Hee Choi, Hyung Kyu Choi, Sung-Hwan Moon, Soon-Jung Park, Seong Woo Choi

Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs-E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine-on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses. Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.

用于评估药物引起的心脏毒性的可靠临床前模型对于降低药物开发期间的高停药率至关重要。人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)由于其表达心脏特异性离子通道和电生理特性而成为一种有前景的评估平台。在这项研究中,我们使用多电极阵列系统研究了8种致心律失常药物——e4031、硝苯地平、美西汀、JNJ303、氟卡奈、莫西沙星、奎尼丁和诺拉嗪对健康个体和长QT综合征(LQTS)患者的hiPSC-CMs的影响。结果显示,场电位持续时间和心律失常风险呈剂量依赖性变化,lqts衍生的hiPSC-CMs对hERG通道阻滞剂(如E4031)的敏感性增加。此外,该研究强调了hiPSC-CMs在模拟疾病特异性心脏反应方面的潜力,为遗传易感性和个性化药物反应提供了见解。尽管hiPSC-CMs存在不成熟的挑战,但它们概括人类心脏电生理的能力使其成为临床前心脏毒性评估的宝贵工具。本研究强调了将患者源性hiPSC-CMs与先进的分析平台(如多电极阵列系统)相结合的效用,以评估药物引起的电生理变化。这些发现加强了hiPSC-CMs在药物开发中的作用,促进了更安全、更有效的筛选方法,同时支持了精准医学的应用。
{"title":"Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis.","authors":"Na Kyeong Park, Yun-Gwi Park, Ji-Hee Choi, Hyung Kyu Choi, Sung-Hwan Moon, Soon-Jung Park, Seong Woo Choi","doi":"10.4196/kjpp.24.413","DOIUrl":"10.4196/kjpp.24.413","url":null,"abstract":"<p><p>Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs-E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine-on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses. Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"29 2","pages":"257-269"},"PeriodicalIF":1.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential expression of ORAI channels and STIM proteins in renal cell carcinoma subtypes: implications for metastasis and therapeutic targeting. 肾细胞癌亚型中 ORAI 通道和 STIM 蛋白的差异表达:对转移和靶向治疗的影响。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI: 10.4196/kjpp.24.126
Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha

Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca2+ entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation via regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.

肾细胞癌(RCC)给临床带来了巨大挑战,这凸显了了解其分子机制的重要性。众所周知,贮存操作的 Ca2+ 进入(SOCE)在肿瘤发生和转移中起着至关重要的作用,但它对各种 RCC 亚型的具体影响仍未得到充分探索。本研究分析了癌症基因组图谱(TCGA)数据库中KIRC和KIRP项目中与SOCE相关的mRNA图谱,重点关注差异基因表达和总体生存结果。在透明细胞RCC(Caki-1)和乳头状RCC细胞系(pRCC,Caki-2)中进行的功能研究显示,Orai1和Orai3以及STIM1在这两种亚型中的表达均有所增加,而在pRCC中STIM2表达减少,Orai2表达增加。值得注意的是,Orai3的表达对生存有性别特异性的影响,尤其是在女性pRCC患者中,它与STIM2的表达成反比。有趣的是,2-APB抑制了Caki-1中的SOCE,但增强了Caki-2中的SOCE,这表明Orai3是pRCC中主要的SOCE通道。在这两种细胞系中,敲除 Orai1 和 Orai3 可通过调节病灶粘附激酶(FAK)和细胞周期蛋白 D1 减少细胞迁移和增殖。这些发现突显了Orai1和Orai3在RCC转移中的关键作用,Orai3与女性pRCC患者较差的预后有关。这项研究为 RCC 诊断以及针对 ORAI 通道和 STIM 蛋白的潜在治疗策略提供了宝贵的见解。
{"title":"Differential expression of ORAI channels and STIM proteins in renal cell carcinoma subtypes: implications for metastasis and therapeutic targeting.","authors":"Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha","doi":"10.4196/kjpp.24.126","DOIUrl":"10.4196/kjpp.24.126","url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca<sup>2+</sup> entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation <i>via</i> regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"33-43"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine particulate matter induces osteoclast-mediated bone loss in mice. 细颗粒物会诱发小鼠破骨细胞介导的骨质流失。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI: 10.4196/kjpp.24.115
Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang

Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.

细颗粒物(FPM)是空气污染的主要成分,由于其对健康的不利影响,已成为全球关注的重要健康问题。以往的研究通过队列或回顾性研究调查了骨骼健康与 FPM 之间的相关性。然而,人们对暴露于 FPM 对骨骼健康的影响知之甚少。本研究旨在调查 FPM 对骨骼健康的影响,并利用小鼠在体外和体内阐明这些影响。体内显微 CT 分析显示,暴露于 FPM 会降低小鼠股骨中的骨矿物质密度、骨小梁体积/总体积比和骨小梁数量,同时增加骨小梁分离度。组织学分析表明,FPM 处理组的骨小梁面积减少,骨组织中破骨细胞的数量增加。此外,体外研究显示,低浓度的 FPM 能显著促进破骨细胞的分化。这些发现进一步支持了短期接触 FPM 会对骨骼健康产生负面影响的观点,为进一步研究这一课题奠定了基础。
{"title":"Fine particulate matter induces osteoclast-mediated bone loss in mice.","authors":"Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang","doi":"10.4196/kjpp.24.115","DOIUrl":"10.4196/kjpp.24.115","url":null,"abstract":"<p><p>Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects <i>in vitro</i> and <i>in vivo</i> using mice. Micro-CT analysis <i>in vivo</i> revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, <i>in vitro</i> studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"9-19"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats. 黄芪多糖通过抑制链脲佐菌素诱导的2型糖尿病大鼠的SHH-Gli1-AQP1信号通路改善糖尿病视网膜病变
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-11-14 DOI: 10.4196/kjpp.23.251
Jingrong Qu, Bo Wang, Yulong Wang, Hao Li, Xiaomei An

This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses. Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An in vivo T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1- AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZ-induced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.

本研究旨在探讨黄芪多糖(APS)通过SHH-Gli1-AQP1通路对糖尿病视网膜病变的影响。通过对药物和疾病相关数据库的全面检索,确定了黄芪多糖抗2型糖尿病(T2DM)的靶点。随后构建了蛋白质-蛋白质相互作用网络,并进行了GO和KEGG富集分析。通过分子对接模拟评估了 APS 和二甲双胍与 Gli1 和 AQP1 的相互作用。通过注射链脲佐菌素(STZ)建立了体内 T2DM 大鼠模型,并用二甲双胍和不同剂量的 APS 治疗 12 周。用 H&E 和 PAS 染色法评估视网膜细胞的组织学变化。视网膜中 AQP1、Gli1 和 SHH 的表达水平通过免疫组化、Western 印迹、免疫荧光和 ELISA 进行了检测。此外,还通过 RT-qPCR 对 AQP1、Gli1 和 SHH 的 mRNA 表达进行了量化。生物信息学分析表明,SHH-Gli1-AQP1 信号通路的关键成分 Gli1 和 AQP1 可能与 T2DM 有关。随后的实验表明,STZ 诱导的 T2DM 大鼠表现出明显的视网膜损伤,而 APS 和二甲双胍都能明显减轻这种损伤。此外,还发现 STZ 诱导的 T2DM 大鼠的 SHH-Gli1-AQP1 信号通路被过度激活。APS 和二甲双胍能显著降低 SHH、Gli1 和 AQP1 的表达水平。APS通过抑制SHH-Gli1-AQP1信号通路,有效抑制了STZ诱导的T2DM大鼠视网膜损伤。
{"title":"Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.","authors":"Jingrong Qu, Bo Wang, Yulong Wang, Hao Li, Xiaomei An","doi":"10.4196/kjpp.23.251","DOIUrl":"10.4196/kjpp.23.251","url":null,"abstract":"<p><p>This study aims to investigate the effects of astragalus polysaccharide (APS) on diabetic retinopathy through the SHH-Gli1-AQP1 pathway. The anti-type 2 diabetes mellitus (T2DM) targets of APS were identified through comprehensive searches of drug and disease-related databases. A protein-protein interaction network was then constructed, followed by GO and KEGG enrichment analyses. Molecular docking simulations were performed to evaluate the interactions of APS and metformin with Gli1 and AQP1. An <i>in vivo</i> T2DM rat model was established via streptozotocin (STZ) injection and treated with metformin and varying doses of APS for 12 weeks. Histological changes in retinal cells were assessed using H&E and PAS staining. The expression levels of AQP1, Gli1, and SHH in the retina were measured using immunohistochemistry, Western blotting, immunofluorescence, and ELISA. Additionally, mRNA expression of AQP1, Gli1, and SHH was quantified by RT-qPCR. Bioinformatic analyses indicated that Gli1 and AQP1, key components of the SHH-Gli1- AQP1 signaling pathway, may be associated with T2DM. Subsequent experiments demonstrated that the STZ-induced T2DM rats exhibited significant retinal damage, which was notably mitigated by both APS and metformin treatments. Furthermore, the SHH-Gli1-AQP1 signaling pathway was found to be overactivated in STZ-induced T2DM rats. Treatment with APS and metformin significantly reduced the elevated expression levels of SHH, Gli1, and AQP1. APS effectively inhibits retinal damage of STZ-induced T2DM rats by restraining the SHH-Gli1-AQP1 signaling pathway.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"21-32"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Korean Journal of Physiology & Pharmacology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1