High-intensity interval training (HIIT) interventions are typically prescribed according to several laboratory-based parameters and fixed reference intensities to accurately calibrate exercise intensity. Repeated all-out printing efforts, or sprint interval training, is another form of HIIT that is prescribed without individual reference intensity as it is performed in maximal intensities. No previous study has performed a systematic review and meta-analysis to investigate the effect of HIIT and SIT on cardiometabolic health markers in children and adolescents. Moreover, previous studies have focused on single risk factors and exercise modalities, which may restrict their ability to capture a complete picture of the factors that could be affected by different interval interventions. The present study aimed to conduct a novel meta-analysis on the effects of HIIT and SIT on multiple cardiometabolic health markers in children and adolescents. An electronic search was conducted in three main online databases including PubMed, Web of Science, and Scopus were searched from inception to July 2024 to identify randomized and non-randomized control trials comparing HIIT and SIT versus the non-exercise control group in children and adolescents with mean age ranges from 6 to 18 years old on cardiometabolic health markers including fasting glucose and insulin, insulin resistance, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), systolic blood (SBP) and diastolic blood (DBP) pressures. Standardized mean differences (SMD), weighted mean differences (WMD), and confidence were calculated using a random effect model. HIIT decreased insulin, insulin resistance, TG, TC, LDL, and SBP and increased HDL but did not decrease glucose and DBP. Furthermore, subgroup analyses show that insulin and insulin resistance were decreased by sprint interval training (SIT) and in those with obesity. Lipid profile mainly is improved by SIT and in those with obesity. Also, SBP was decreased by SIT and in those with obesity. Our results prove that HIIT is an effective intervention for improving cardiometabolic health in children and adolescents, mainly those with obesity. Specifically, SIT is an effective interval training mode in children and adolescents.
高强度间歇训练(HIIT)干预通常是根据几个基于实验室的参数和固定的参考强度来精确校准运动强度。重复的全力以赴训练,或冲刺间歇训练,是HIIT的另一种形式,没有个人参考强度的规定,因为它是在最大强度下进行的。此前没有研究对HIIT和SIT对儿童和青少年心脏代谢健康指标的影响进行系统回顾和荟萃分析。此外,以前的研究集中在单一的风险因素和运动方式上,这可能会限制他们捕捉到不同间隔干预可能影响的因素的完整图景的能力。本研究旨在对儿童和青少年HIIT和SIT对多种心脏代谢健康指标的影响进行一项新的荟萃分析。在PubMed, Web of Science和Scopus三个主要在线数据库中进行了电子检索,检索了从成立到2024年7月的三个主要在线数据库,以确定随机和非随机对照试验,比较HIIT和SIT与非运动对照组在平均年龄为6至18岁的儿童和青少年中的心脏代谢健康指标,包括空腹血糖和胰岛素,胰岛素抵抗,甘油三酯(TG),总胆固醇(TC),低密度脂蛋白胆固醇(LDL)、高密度脂蛋白胆固醇(HDL)、收缩压(SBP)和舒张压(DBP)。采用随机效应模型计算标准化平均差(SMD)、加权平均差(WMD)和置信度。HIIT降低了胰岛素、胰岛素抵抗、TG、TC、LDL和收缩压,升高了HDL,但没有降低血糖和舒张压。此外,亚组分析表明,冲刺间歇训练(SIT)和肥胖患者的胰岛素和胰岛素抵抗降低。脂质谱主要由SIT和肥胖患者改善。此外,SIT和肥胖患者的收缩压降低。我们的研究结果证明HIIT是改善儿童和青少年(主要是肥胖儿童和青少年)心脏代谢健康的有效干预措施。具体来说,SIT是一种有效的儿童和青少年间歇训练模式。
{"title":"The Effects of High-Intensity Interval Training on Cardiometabolic Health in Children and Adolescents: A Systematic Review and Meta-Analysis.","authors":"Yuan Song, Huihui Lan","doi":"10.52082/jssm.2024.690","DOIUrl":"10.52082/jssm.2024.690","url":null,"abstract":"<p><p>High-intensity interval training (HIIT) interventions are typically prescribed according to several laboratory-based parameters and fixed reference intensities to accurately calibrate exercise intensity. Repeated <i>all-out</i> printing efforts, or sprint interval training, is another form of HIIT that is prescribed without individual reference intensity as it is performed in maximal intensities. No previous study has performed a systematic review and meta-analysis to investigate the effect of HIIT and SIT on cardiometabolic health markers in children and adolescents. Moreover, previous studies have focused on single risk factors and exercise modalities, which may restrict their ability to capture a complete picture of the factors that could be affected by different interval interventions. The present study aimed to conduct a novel meta-analysis on the effects of HIIT and SIT on multiple cardiometabolic health markers in children and adolescents. An electronic search was conducted in three main online databases including PubMed, Web of Science, and Scopus were searched from inception to July 2024 to identify randomized and non-randomized control trials comparing HIIT and SIT versus the non-exercise control group in children and adolescents with mean age ranges from 6 to 18 years old on cardiometabolic health markers including fasting glucose and insulin, insulin resistance, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), systolic blood (SBP) and diastolic blood (DBP) pressures. Standardized mean differences (SMD), weighted mean differences (WMD), and confidence were calculated using a random effect model. HIIT decreased insulin, insulin resistance, TG, TC, LDL, and SBP and increased HDL but did not decrease glucose and DBP. Furthermore, subgroup analyses show that insulin and insulin resistance were decreased by sprint interval training (SIT) and in those with obesity. Lipid profile mainly is improved by SIT and in those with obesity. Also, SBP was decreased by SIT and in those with obesity. Our results prove that HIIT is an effective intervention for improving cardiometabolic health in children and adolescents, mainly those with obesity. Specifically, SIT is an effective interval training mode in children and adolescents.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"690-706"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Sanchez-Sanchez, Filipe Manuel Clemente, Rodrigo Ramirez-Campillo, Alejandro Rodríguez-Fernández
The study aimed to assess the immediate effects of re-warm-up strategies using half-squats with elastic looped bands on the performance of youth soccer players. A cross-over study design with repeated measures was implemented in field youth male soccer players (n = 20, age 15.7 ± 0.8 years). Following the first 45-min of match play, players were subjected to one of four re-warm-up (Re-w) interventions of equal duration: no Re-w (PAS), half-squat without elastic looped bands (SQ), half-squat with bands placed on the thighs (SQT), and half-squat with bands placed on the lower legs (SQL). These interventions were compared against a control condition (CON). The Re-w protocols were initiated 10-min after half-time, and players' performance was evaluated through vertical and horizontal jump tests, 20-m linear sprint, and T-agility test. Statistical analysis using ANOVA revealed that the SQT and SQL interventions significantly improved (p < 0.001) several performance metrics compared to the PAS and SQ conditions. These improvements were observed in squat jumps, unilateral squat jumps (both dominant and non-dominant legs), countermovement jumps, horizontal jumps, triple horizontal jumps, the 20-m linear sprint, and T-agility performance. In conclusion, SQT and SQL are equally effective to enhance performance as Re-w strategies after the 1st-half of a soccer match. However, the lack of physiological data and 2nd-half assessments suggests the need for further research to confirm the persistence of these effects.
{"title":"Elastic Bands During Half-Squats as A Re-Warm-Up Strategy for Youth Soccer Players' Performance.","authors":"Javier Sanchez-Sanchez, Filipe Manuel Clemente, Rodrigo Ramirez-Campillo, Alejandro Rodríguez-Fernández","doi":"10.52082/jssm.2024.843","DOIUrl":"10.52082/jssm.2024.843","url":null,"abstract":"<p><p>The study aimed to assess the immediate effects of re-warm-up strategies using half-squats with elastic looped bands on the performance of youth soccer players. A cross-over study design with repeated measures was implemented in field youth male soccer players (n = 20, age 15.7 ± 0.8 years). Following the first 45-min of match play, players were subjected to one of four re-warm-up (Re-w) interventions of equal duration: no Re-w (PAS), half-squat without elastic looped bands (SQ), half-squat with bands placed on the thighs (SQT), and half-squat with bands placed on the lower legs (SQL). These interventions were compared against a control condition (CON). The Re-w protocols were initiated 10-min after half-time, and players' performance was evaluated through vertical and horizontal jump tests, 20-m linear sprint, and T-agility test. Statistical analysis using ANOVA revealed that the SQT and SQL interventions significantly improved (p < 0.001) several performance metrics compared to the PAS and SQ conditions. These improvements were observed in squat jumps, unilateral squat jumps (both dominant and non-dominant legs), countermovement jumps, horizontal jumps, triple horizontal jumps, the 20-m linear sprint, and T-agility performance. In conclusion, SQT and SQL are equally effective to enhance performance as Re-w strategies after the 1<sup>st</sup>-half of a soccer match. However, the lack of physiological data and 2<sup>nd</sup>-half assessments suggests the need for further research to confirm the persistence of these effects.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"843-851"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvain Dhote, Philippe Gimenez, Sidney Grosprêtre
There is little evidence of the acute effect of random practice, performed by solely varying the intensity but not the task itself, as compared to block practice, i.e. when one task is repeated in a constant manner. This study aimed to examine the acute neuromuscular effects of physical exercise consisting of repeated jumps of randomized length. Fifteen healthy young participants completed 2 separate sessions of 90 minutes. They did 20 minutes of fatiguing exercise, consisting of 100 repeated standing long jumps (SLJ), in two different manners: one session with targeted jump length kept constant (CO), and one with targeted jump length being varied and unpredictable (RA). Pre- and post-tests were conducted before and immediately after, including measurements of Countermovement Jump (CMJ), SLJ, leg extension maximal voluntary isometric contractions (MViC), EMG activities of leg muscles and patellar tendon reflex amplitude (T-reflex: strike force and evoked force). Results showed that performances decreased after the repeated SLJs, independently of the condition (MViC decreased from 448 ± 118 N to 399 ± 122 N; CMJ decreased from 36.7 ± 7.2 cm to 34.6 ± 6.6 cm). EMG during MViC decreased by 21 ± 28 % from pre- to post-intervention. T-reflex decreased after both conditions ([Force/Strike] ratio decreased by 38 ± 69 % from pre to post). Subjective measures showed a greater sense of personal performance and enjoyment after the RA session. Results suggest that a randomly organized intensity of effort led to a similar decrease in physical performance compared to constant intensity when the session loads were matched. It also led to similar fatigue of the neuromuscular system as shown by T-reflexes and EMG measures. Nonetheless, random practice presents the benefit of being markedly more appreciated by participants.
{"title":"Acute Neuromuscular Fatigue of a Random Vs Constant Session of Repeated Standing Long Jumps.","authors":"Sylvain Dhote, Philippe Gimenez, Sidney Grosprêtre","doi":"10.52082/jssm.2024.895","DOIUrl":"10.52082/jssm.2024.895","url":null,"abstract":"<p><p>There is little evidence of the acute effect of random practice, performed by solely varying the intensity but not the task itself, as compared to block practice, i.e. when one task is repeated in a constant manner. This study aimed to examine the acute neuromuscular effects of physical exercise consisting of repeated jumps of randomized length. Fifteen healthy young participants completed 2 separate sessions of 90 minutes. They did 20 minutes of fatiguing exercise, consisting of 100 repeated standing long jumps (SLJ), in two different manners: one session with targeted jump length kept constant (CO), and one with targeted jump length being varied and unpredictable (RA). Pre- and post-tests were conducted before and immediately after, including measurements of Countermovement Jump (CMJ), SLJ, leg extension maximal voluntary isometric contractions (MViC), EMG activities of leg muscles and patellar tendon reflex amplitude (T-reflex: strike force and evoked force). Results showed that performances decreased after the repeated SLJs, independently of the condition (MViC decreased from 448 ± 118 N to 399 ± 122 N; CMJ decreased from 36.7 ± 7.2 cm to 34.6 ± 6.6 cm). EMG during MViC decreased by 21 ± 28 % from pre- to post-intervention. T-reflex decreased after both conditions ([Force/Strike] ratio decreased by 38 ± 69 % from pre to post). Subjective measures showed a greater sense of personal performance and enjoyment after the RA session. Results suggest that a randomly organized intensity of effort led to a similar decrease in physical performance compared to constant intensity when the session loads were matched. It also led to similar fatigue of the neuromuscular system as shown by T-reflexes and EMG measures. Nonetheless, random practice presents the benefit of being markedly more appreciated by participants.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"895-906"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrian Kużdzał, Filipe Manuel Clemente, Sebastian Klich, Adam Kawczyński, Robert Trybulski
This study aimed to compare the effects of manual therapy combined with dry needling (MTDN) to a control group, focusing on the impact on pressure pain threshold (PPT), muscle tone (MT), muscle stiffness (MS), muscle strength, and range of motion in the neck muscles of adult combat sports athletes. A randomized controlled study design was employed, with one group of athletes (n = 15) receiving MTDN intervention, while the other group (n = 15) underwent a control treatment (CG) involving a quasi-needle technique combined with manual therapy. Both groups participated in three sessions, either in the MTDN intervention or the control condition. All athletes, who were experiencing neck pain, were evaluated at rest, after one session, after three sessions, and again 72 hours after the third session. Muscle tone (MT) and muscle stiffness (MS) were measured using myotonometry, pressure pain threshold (PPT) was assessed with an algesiometer, muscle strength was evaluated using a handheld dynamometer, and range of motion was measured with an electronic goniometer. Group comparisons revealed significantly higher MT in CG compared to MTDN after the 3rd session (p < 0.001; d = 1.50). Additionally, CG showed significantly greater MS than MTDN after the 3rd session (p < 0.001; d = 1.75) and at 72 hours post-session (p < 0.001; d = 2.45). Conversely, MTDN exhibited significantly greater PPT than CG at 72 hours post-session (p < 0.001; d = 1.80). Our results suggest that MTDN is significantly more effective in improving muscle tone, stiffness, and acute pain compared to manual therapy alone. However, no significant impact was observed on maximal strength or neck range of motion. A combined approach may offer benefits by more rapidly reducing neck pain and better preparing muscle properties for future activities.
{"title":"Combination of Manual Therapy and Dry Needling Effectively Improves Acute Neck Pain and Muscular Tone and Stiffness in Combat Sports Athletes: A Randomized Controlled Study.","authors":"Adrian Kużdzał, Filipe Manuel Clemente, Sebastian Klich, Adam Kawczyński, Robert Trybulski","doi":"10.52082/jssm.2024.852","DOIUrl":"10.52082/jssm.2024.852","url":null,"abstract":"<p><p>This study aimed to compare the effects of manual therapy combined with dry needling (MTDN) to a control group, focusing on the impact on pressure pain threshold (PPT), muscle tone (MT), muscle stiffness (MS), muscle strength, and range of motion in the neck muscles of adult combat sports athletes. A randomized controlled study design was employed, with one group of athletes (n = 15) receiving MTDN intervention, while the other group (n = 15) underwent a control treatment (CG) involving a quasi-needle technique combined with manual therapy. Both groups participated in three sessions, either in the MTDN intervention or the control condition. All athletes, who were experiencing neck pain, were evaluated at rest, after one session, after three sessions, and again 72 hours after the third session. Muscle tone (MT) and muscle stiffness (MS) were measured using myotonometry, pressure pain threshold (PPT) was assessed with an algesiometer, muscle strength was evaluated using a handheld dynamometer, and range of motion was measured with an electronic goniometer. Group comparisons revealed significantly higher MT in CG compared to MTDN after the 3rd session (<i>p</i> < 0.001; <i>d</i> = 1.50). Additionally, CG showed significantly greater MS than MTDN after the 3rd session (<i>p</i> < 0.001; <i>d</i> = 1.75) and at 72 hours post-session (<i>p</i> < 0.001; <i>d</i> = 2.45). Conversely, MTDN exhibited significantly greater PPT than CG at 72 hours post-session (<i>p</i> < 0.001; <i>d</i> = 1.80). Our results suggest that MTDN is significantly more effective in improving muscle tone, stiffness, and acute pain compared to manual therapy alone. However, no significant impact was observed on maximal strength or neck range of motion. A combined approach may offer benefits by more rapidly reducing neck pain and better preparing muscle properties for future activities.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"852-862"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to compare the effects of unilateral (UT), bilateral (BT), and combined (UBT) plyometric training on muscular strength, power, and change-of-direction performance in youth male basketball players. Sixty-six male youth basketball players (age: 16.1 ± 0.8 years) participated in this randomized experimental study, which lasted 8 weeks with a training frequency of 2 sessions per week. The UT group performed only single-leg plyometric exercises, while the BT group conducted similar plyometric drills using both feet. The UBT group combined both approaches, performing one session of UT and one session of BT each week. The players were evaluated at baseline and after the 8-week period using a force platform for the unilateral countermovement jump test (UCMJ), isometric squat test (IST), isometric knee flexor strength test (KFS), leg land and hold test (LHT), and 5-0-5 tests. The asymmetry between legs per outcome was measured using the symmetry angle. The UT, BT, and UBT all significantly improved outcomes in the IST, UCMJ, KFS, LHT, and 5-0-5 tests (p < 0.05) following the intervention, with no significant differences among the three methods. However, while UT and UBT significantly reduced asymmetries in the tests (p < 0.05), BT increased asymmetries. Only, the UT group showed significant improvements over the control group in asymmetry measures: IST asymmetry (mean difference: 1.2%, p = 0.049), KFS asymmetry (mean difference: 2.5%, p < 0.001), and LHT asymmetry (mean difference: 1.1%, p = 0.013). While there are no substantial differences among UT, BT, and UBT in terms of improvements in unilateral tests and symmetry levels, UT stands out for its effectiveness in enhancing neuromuscular performance and reducing asymmetries among basketball players compared to the control condition. UT was the only method that showed significant benefits in this context. Strength and conditioning coaches might consider incorporating UT, either alone or alongside BT, to optimize individual limb strength and coordination.
{"title":"Effects of Unilateral, Bilateral and Combined Plyometric Jump Training on Asymmetry of Muscular Strength and Power, and Change-of-Direction in Youth Male Basketball Players.","authors":"JianChun Cao, SiHang Xun, Rui Zhang, ZhaoJin Zhang","doi":"10.52082/jssm.2024.754","DOIUrl":"10.52082/jssm.2024.754","url":null,"abstract":"<p><p>This study aimed to compare the effects of unilateral (UT), bilateral (BT), and combined (UBT) plyometric training on muscular strength, power, and change-of-direction performance in youth male basketball players. Sixty-six male youth basketball players (age: 16.1 ± 0.8 years) participated in this randomized experimental study, which lasted 8 weeks with a training frequency of 2 sessions per week. The UT group performed only single-leg plyometric exercises, while the BT group conducted similar plyometric drills using both feet. The UBT group combined both approaches, performing one session of UT and one session of BT each week. The players were evaluated at baseline and after the 8-week period using a force platform for the unilateral countermovement jump test (UCMJ), isometric squat test (IST), isometric knee flexor strength test (KFS), leg land and hold test (LHT), and 5-0-5 tests. The asymmetry between legs per outcome was measured using the symmetry angle. The UT, BT, and UBT all significantly improved outcomes in the IST, UCMJ, KFS, LHT, and 5-0-5 tests (p < 0.05) following the intervention, with no significant differences among the three methods. However, while UT and UBT significantly reduced asymmetries in the tests (p < 0.05), BT increased asymmetries. Only, the UT group showed significant improvements over the control group in asymmetry measures: IST asymmetry (mean difference: 1.2%, p = 0.049), KFS asymmetry (mean difference: 2.5%, p < 0.001), and LHT asymmetry (mean difference: 1.1%, p = 0.013). While there are no substantial differences among UT, BT, and UBT in terms of improvements in unilateral tests and symmetry levels, UT stands out for its effectiveness in enhancing neuromuscular performance and reducing asymmetries among basketball players compared to the control condition. UT was the only method that showed significant benefits in this context. Strength and conditioning coaches might consider incorporating UT, either alone or alongside BT, to optimize individual limb strength and coordination.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"754-766"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study compared inter-individual variability in the adaptive responses of cardiorespiratory fitness, anaerobic power, and motor abilities of male volleyball players to high-intensity interval training (HIIT) prescribed as repetitive drop jumps (interval jumping) and running-based intervals (interval running). Twenty-four collegiate volleyball players were equally randomized to two training groups executing 11 minutes of interval running or interval jumping during which they ran or repeated drop-jumps for 15 seconds, alternating with 15 seconds of passive recovery. Before and after the 6-week training period, aerobic fitness, cardiac function, and anaerobic power were evaluated using a graded exercise test, impedance cardiography, and a lower-body Wingate test, respectively. Additionally, linear speed, agility, and jumping tests determined motor abilities. Both interventions significantly enhanced maximum oxygen uptake (V̇O2max), velocity associated with V̇O2max, first and second ventilatory thresholds (VT1 & VT2), maximal cardiac output (Q̇max), stroke volume (SVmax), peak and average power output, vertical jump, change of direction, and linear sprint speed. Interval jumping group demonstrated a significantly greater improvement in squat jump (p = 0.001; 95% CI: 2.51-5.42) and countermovement jump (p = 0.001; 95% CI: 2.11-4.61) compared to interval running group. Conversely, interval running group elicited a greater enhancement in sprint speed (p = 0.002; 95% CI: 2.53-5.71) than interval jumping group. Examining the individual residual in the adaptive responses revealed that interval running induced more homogenized adaptations across individuals in VT1 (p = 0.04; 95% CI: 0.03-1.33), Q̇max (p = 0.03; 95% CI: 0.04-1.64), SVmax (p = 0.04; 95% CI: 0.02-1.75), and maximal sprint speed (p = 0.01; 95% CI: 0.72-1.95) in contrast to interval jumping. However, the uniformity of adaptations in countermovement jump in response to interval jumping surpassed that of interval running (p = 0.02; 95% CI: 0.08-1.32). Although both training modalities effectively improved the mentioned variables concurrently, tailoring the HIIT intervention to the reference intensity and training modality specific for each quality may enhance measured quality.
{"title":"The Impact of Running-Based and Drop Jumping Interval Interventions on Cardiorespiratory Fitness and Anaerobic Power of Collegiate Volleyball Players: A Comparative Analysis of Inter-Individual Variability in the Adaptive Responses.","authors":"Xuefeng Zhao, Minying Lu","doi":"10.52082/jssm.2024.863","DOIUrl":"10.52082/jssm.2024.863","url":null,"abstract":"<p><p>This study compared inter-individual variability in the adaptive responses of cardiorespiratory fitness, anaerobic power, and motor abilities of male volleyball players to high-intensity interval training (HIIT) prescribed as repetitive drop jumps (interval jumping) and running-based intervals (interval running). Twenty-four collegiate volleyball players were equally randomized to two training groups executing 11 minutes of interval running or interval jumping during which they ran or repeated drop-jumps for 15 seconds, alternating with 15 seconds of passive recovery. Before and after the 6-week training period, aerobic fitness, cardiac function, and anaerobic power were evaluated using a graded exercise test, impedance cardiography, and a lower-body Wingate test, respectively. Additionally, linear speed, agility, and jumping tests determined motor abilities. Both interventions significantly enhanced maximum oxygen uptake (V̇O<sub>2max</sub>), velocity associated with V̇O<sub>2max</sub>, first and second ventilatory thresholds (VT<sub>1</sub> & VT<sub>2</sub>), maximal cardiac output (Q̇<sub>max</sub>), stroke volume (SV<sub>max</sub>), peak and average power output, vertical jump, change of direction, and linear sprint speed. Interval jumping group demonstrated a significantly greater improvement in squat jump (<i>p</i> = 0.001; 95% CI: 2.51-5.42) and countermovement jump (<i>p</i> = 0.001; 95% CI: 2.11-4.61) compared to interval running group. Conversely, interval running group elicited a greater enhancement in sprint speed (<i>p</i> = 0.002; 95% CI: 2.53-5.71) than interval jumping group. Examining the individual residual in the adaptive responses revealed that interval running induced more homogenized adaptations across individuals in VT<sub>1</sub> (<i>p</i> = 0.04; 95% CI: 0.03-1.33), Q̇<sub>max</sub> (<i>p</i> = 0.03; 95% CI: 0.04-1.64), SV<sub>max</sub> (<i>p</i> = 0.04; 95% CI: 0.02-1.75), and maximal sprint speed (<i>p</i> = 0.01; 95% CI: 0.72-1.95) in contrast to interval jumping. However, the uniformity of adaptations in countermovement jump in response to interval jumping surpassed that of interval running (<i>p</i> = 0.02; 95% CI: 0.08-1.32). Although both training modalities effectively improved the mentioned variables concurrently, tailoring the HIIT intervention to the reference intensity and training modality specific for each quality may enhance measured quality.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"863-871"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to examine the impact of different set configurations during combination of resistance and plyometric training (complex [COX]) on jumping ability, power output, strength, and hormonal adaptations in young male volleyball players after a 6-week training period. A randomized controlled trial was conducted with twenty-four trained male volleyball players under the age of 19, who were assigned to one of two groups for lower-body COX training: cluster sets (CS-COX: n = 8) or traditional sets (TS-COX: n = 8), with an additional active control group (CON: n = 8). The players underwent evaluations for countermovement vertical jump (CMVJ), spike jump (SPJ), T-test change of direction speed (T-test CODS), one repetition maximum (1RM) in the back squat and leg press, and the Wingate Anaerobic Test before and after the 6-week training intervention (12 sessions in total). Blood samples were also collected before and after training to assess resting testosterone and cortisol responses. Following the training, both the CS-COX and TS-COX groups exhibited significantly greater (p = 0.001) changes than the CON group in the variables, while similar improvements in maximal strength, mean power output, and testosterone adaptations were observed following the training (p < 0.05). Moreover, the CS-COX group demonstrated greater improvements in CMVJ (effect size [ES] = 0.36), SPJ (ES = 0.06), T-test CODS (ES = -0.60), and peak power output (ES = 0.72), along with greater reductions in resting cortisol (ES = -0.30) levels compared to the TS-COX group after the 6-week intervention (p < 0.05). In conclusion, the results indicate that incorporating cluster sets during COX training sessions led to more favorable changes in bio-motor ability, peak power output, and cortisol adaptations, with greater consistency and uniformity in adaptations among the players compared to traditional set configurations.
{"title":"Effects of Cluster vs. Traditional Sets Complex Training on Physical Performance Adaptations of Trained Male Volleyball Players.","authors":"Bo Rong, Chen Xiu","doi":"10.52082/jssm.2024.822","DOIUrl":"10.52082/jssm.2024.822","url":null,"abstract":"<p><p>This study aimed to examine the impact of different set configurations during combination of resistance and plyometric training (complex [COX]) on jumping ability, power output, strength, and hormonal adaptations in young male volleyball players after a 6-week training period. A randomized controlled trial was conducted with twenty-four trained male volleyball players under the age of 19, who were assigned to one of two groups for lower-body COX training: cluster sets (CS-COX: n = 8) or traditional sets (TS-COX: n = 8), with an additional active control group (CON: n = 8). The players underwent evaluations for countermovement vertical jump (CMVJ), spike jump (SPJ), T-test change of direction speed (T-test CODS), one repetition maximum (1RM) in the back squat and leg press, and the Wingate Anaerobic Test before and after the 6-week training intervention (12 sessions in total). Blood samples were also collected before and after training to assess resting testosterone and cortisol responses. Following the training, both the CS-COX and TS-COX groups exhibited significantly greater (p = 0.001) changes than the CON group in the variables, while similar improvements in maximal strength, mean power output, and testosterone adaptations were observed following the training (p < 0.05). Moreover, the CS-COX group demonstrated greater improvements in CMVJ (effect size [ES] = 0.36), SPJ (ES = 0.06), T-test CODS (ES = -0.60), and peak power output (ES = 0.72), along with greater reductions in resting cortisol (ES = -0.30) levels compared to the TS-COX group after the 6-week intervention (p < 0.05). In conclusion, the results indicate that incorporating cluster sets during COX training sessions led to more favorable changes in bio-motor ability, peak power output, and cortisol adaptations, with greater consistency and uniformity in adaptations among the players compared to traditional set configurations.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"822-833"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingde Shi, Jinlei Nie, Tomas K Tong, Haifeng Zhang, Zhaowei Kong
Repeated-sprint training in hypoxia (RSH) has been shown to boost team-sport players' repeated-sprint ability (RSA). Whether players' global inspiratory muscle (IM) and core muscle (CM) functions would be altered concomitantly with RSH was not reported. This study was designed to compare the concomitant alternations in players' RSA and their IM and CM functions during a team-sport-specific intermittent exercise protocol (IEP) before and after the intervention. Twenty players were assigned into either RSH or control (CON) groups (n = 10 for each). RSH players participated in 5-wk RSH (15 sessions, 3 sets 5x5-s all-out treadmill sprints interspersed with 25-s passive recovery under the hypoxia of 13.5%) while CON players had no corresponding training. The changes in RSA between pre- and post-intervention, and the alterations in IM and CM functions that were revealed by maximum inspiratory mouth pressure (PImax) and sport-specific endurance plank test (SEPT) performance, respectively, between pre- and post-IEP and across pre- and post-intervention in the RSH group were compared with that of CON. Following the 5-wk RSH, players' RSA improved significantly (>6%, p < 0.05) while PImax and SEPT performance did not alter (P > 0.05). Nevertheless, PImax which declined markedly in pre-intervention IEP (pre-IEP 155.4 ± 22.7 vs post-IEP 140.6 ± 22.8 cmH2O, p < 0.05) was alleviated significantly in post-intervention IEP (152.2 ± 27.4 vs 152.6 ± 31.8, p > 0.05), while the concomitant declined SEPT performance in the pre-intervention IEP (155 ± 24.6 vs 98.1 ± 21.7 s, p < 0.05) was retained post intervention (170.7 ± 38.1 vs 100.5 ± 33.4, p < 0.05). For the CON, all variables were unchanged (p > 0.05). Such findings suggest that 5-wk RSH could enhance players' RSA but not global IM and CM functions. Nonetheless, the decline in PImax in pre-intervention IEP alleviated significantly post intervention led to a postulation that players' IM endurance, rather than strength, might improve with the 5-wk RSH regimen, while the possible improved IM endurance did not advance the fatigue resistance of CM.
缺氧条件下的重复冲刺训练(RSH)已被证明可以提高团队运动员的重复冲刺能力(RSA)。运动员的全身吸气肌(IM)和核心肌(CM)功能是否会随RSH而改变尚未见报道。本研究旨在比较在团队运动间歇运动方案(IEP)干预前后运动员的RSA、IM和CM功能的变化。20名参与者被分配到RSH组或对照组(CON)组(每组n = 10)。RSH组进行为期5周的RSH(15次,3组5x5-s的跑步机全力冲刺,中间穿插25-s的被动恢复,缺氧率为13.5%),CON组没有进行相应的训练。RSH组与对照组比较干预前后RSA的变化,以及iep前后和干预前后最大吸气口压(PImax)和运动特异性耐力平板支撑测试(SEPT)成绩所显示的IM和CM功能的变化。RSH 5周后,运动员的RSA显著提高(>6%,p < 0.05),而PImax和SEPT成绩没有变化(p > 0.05)。然而,干预前IEP中的PImax(155.4±22.7 vs 140.6±22.8 cmH2O, p < 0.05)在干预后IEP中显著下降(152.2±27.4 vs 152.6±31.8,p < 0.05),而干预后IEP中伴随的SEPT下降(155±24.6 vs 98.1±21.7 s, p < 0.05)保留在干预后(170.7±38.1 vs 100.5±33.4,p < 0.05)。CON的所有变量均无变化(p < 0.05)。这些结果表明,5周的RSH可以提高球员的RSA功能,但不能提高整体IM和CM功能。然而,干预前IEP中PImax的下降在干预后显著缓解,这导致了一种假设,即5周RSH方案可能会提高运动员的IM耐力,而不是力量,而可能提高的IM耐力并没有提高CM的疲劳抵抗能力。
{"title":"Effects of 5-Wk Repeated Sprint Training in Hypoxia on Global Inspiratory and Core Muscle Functions.","authors":"Qingde Shi, Jinlei Nie, Tomas K Tong, Haifeng Zhang, Zhaowei Kong","doi":"10.52082/jssm.2024.767","DOIUrl":"10.52082/jssm.2024.767","url":null,"abstract":"<p><p>Repeated-sprint training in hypoxia (RSH) has been shown to boost team-sport players' repeated-sprint ability (RSA). Whether players' global inspiratory muscle (IM) and core muscle (CM) functions would be altered concomitantly with RSH was not reported. This study was designed to compare the concomitant alternations in players' RSA and their IM and CM functions during a team-sport-specific intermittent exercise protocol (IEP) before and after the intervention. Twenty players were assigned into either RSH or control (CON) groups (n = 10 for each). RSH players participated in 5-wk RSH (15 sessions, 3 sets 5x5-s all-out treadmill sprints interspersed with 25-s passive recovery under the hypoxia of 13.5%) while CON players had no corresponding training. The changes in RSA between pre- and post-intervention, and the alterations in IM and CM functions that were revealed by maximum inspiratory mouth pressure (PI<sub>max</sub>) and sport-specific endurance plank test (SEPT) performance, respectively, between pre- and post-IEP and across pre- and post-intervention in the RSH group were compared with that of CON. Following the 5-wk RSH, players' RSA improved significantly (>6%, <i>p</i> < 0.05) while PI<sub>max</sub> and SEPT performance did not alter (<i>P</i> > 0.05). Nevertheless, PI<sub>max</sub> which declined markedly in pre-intervention IEP (pre-IEP 155.4 ± 22.7 <i>vs</i> post-IEP 140.6 ± 22.8 cmH<sub>2</sub>O, <i>p</i> < 0.05) was alleviated significantly in post-intervention IEP (152.2 ± 27.4 <i>vs</i> 152.6 ± 31.8, <i>p</i> > 0.05), while the concomitant declined SEPT performance in the pre-intervention IEP (155 ± 24.6 <i>vs</i> 98.1 ± 21.7 s, <i>p</i> < 0.05) was retained post intervention (170.7 ± 38.1 <i>vs</i> 100.5 ± 33.4, <i>p</i> < 0.05). For the CON, all variables were unchanged (<i>p</i> > 0.05). Such findings suggest that 5-wk RSH could enhance players' RSA but not global IM and CM functions. Nonetheless, the decline in PI<sub>max</sub> in pre-intervention IEP alleviated significantly post intervention led to a postulation that players' IM endurance, rather than strength, might improve with the 5-wk RSH regimen, while the possible improved IM endurance did not advance the fatigue resistance of CM.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"767-777"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Repeated sprint ability (RSA) is crucial for success in team sports, and involves both neuromuscular and metabolic factors. While single-mode training (SGL; e.g., sprint training) and combined training (CT; e.g., sprint + plyometric) can improve RSA, whether CT offers additional benefits compared to SGL or active controls maintaining routine training (CON) remains uncertain in team-sport athletes. This study evaluates the effect of CT versus SGL and CON on the RSA of team-sport athletes. A comprehensive search was conducted in five electronic databases. Thirteen studies involving 394 males and 28 females, aged 14 to 26 years, were included. The random effects model for meta-analyses revealed greater improvement in RSA mean after CT compared to SGL (Hedge's g effect size [g] = -0.46; 95 % confidence interval [CI]: -0.82, -0.10; p < 0.01) and CON (g = -1.39; 95% CI: -2.09, -0.70; p < 0.01). CT also improved RSA best compared to CON (g = -1.17; 95% CI: -1.58, -0.76; p < 0.01). The GRADE analyses revealed low- to very-low certainty of evidence in all meta-analyses. Subgroup analysis revealed that plyometric + sprint training yielded greater RSA mean (g = -1.46) and RSA best (g = -1.35) improvement than plyometric + resistance + sprint training and resistance + sprint training. The effects of CT on RSA did not differ according to age (≥ 18 vs. < 18), sports (e.g., soccer vs. basketball vs. handball), or RSA test type (linear sprint vs. sprint with change-of-direction). Studies showed an overall high risk of bias (ROB 2). In conclusion, CT may be improving team-sport athletes' RSA more effectively than SGL (small effect size) and CON (large effect size), particularly when CT involves plyometric + sprint training.
{"title":"The Effect of Combined Strength, Plyometric, and Sprint Training on Repeated Sprint Ability in Team-Sport Athletes: A Systematic Review and Meta-Analysis.","authors":"Hengxian Liu, Rui Li, Wen Zheng, Rodrigo Ramirez-Campillo, Eduardo Sáez de Villarreal, Mingxin Zhang","doi":"10.52082/jssm.2024.718","DOIUrl":"10.52082/jssm.2024.718","url":null,"abstract":"<p><p>Repeated sprint ability (RSA) is crucial for success in team sports, and involves both neuromuscular and metabolic factors. While single-mode training (SGL; e.g., sprint training) and combined training (CT; e.g., sprint + plyometric) can improve RSA, whether CT offers additional benefits compared to SGL or active controls maintaining routine training (CON) remains uncertain in team-sport athletes. This study evaluates the effect of CT versus SGL and CON on the RSA of team-sport athletes. A comprehensive search was conducted in five electronic databases. Thirteen studies involving 394 males and 28 females, aged 14 to 26 years, were included. The random effects model for meta-analyses revealed greater improvement in RSA mean after CT compared to SGL (Hedge's <i>g</i> effect size [<i>g</i>] = -0.46; 95 % confidence interval [CI]: -0.82, -0.10; p < 0.01) and CON (<i>g</i> = -1.39; 95% CI: -2.09, -0.70; p < 0.01). CT also improved RSA best compared to CON (<i>g</i> = -1.17; 95% CI: -1.58, -0.76; p < 0.01). The GRADE analyses revealed low- to very-low certainty of evidence in all meta-analyses. Subgroup analysis revealed that plyometric + sprint training yielded greater RSA mean (<i>g</i> = -1.46) and RSA best (<i>g</i> = -1.35) improvement than plyometric + resistance + sprint training and resistance + sprint training. The effects of CT on RSA did not differ according to age (≥ 18 vs. < 18), sports (e.g., soccer vs. basketball vs. handball), or RSA test type (linear sprint vs. sprint with change-of-direction). Studies showed an overall high risk of bias (ROB 2). In conclusion, CT may be improving team-sport athletes' RSA more effectively than SGL (small effect size) and CON (large effect size), particularly when CT involves plyometric + sprint training.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"718-743"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to compare the adaptations in muscular strength, power, and landing forces of young female volleyball players enrolled in two experimental programs: one using smaller formats of the game (SFG) and the other using larger formats of the game (LFG), with a third group serving as a control. This study employed a randomized controlled design, with an 8-week intervention period and pre- and post-intervention evaluations. Fifty-six trained/developmental participants (age: 14.7 ± 0.5 years) voluntarily participated in this study. Each experimental group received additional training twice a week. The SFG group participated in 2v2 and 3v3 formats on smaller courts (covering 2/6 of the court's available zones) with a regular net, while the LFG group played in 4v4 and 5v5 formats on larger courts (covering 4/6 of the court's available zones). Assessments were conducted using force platforms and included the following tests: (i) isometric mid-thigh pull test (IMTP), measuring peak force; (ii) squat jump test (SJ), measuring peak force; (iii) countermovement jump test (CMJ), measuring peak power and landing force; and (iv) drop jump test (DJT), measuring the reactive strength index. Significant differences emerged post-intervention across all outcomes (p < 0.05). The SFG exhibited significantly greater IMTP peak force compared to both the LFG (p = 0.012) and control groups (p = 0.035). Additionally, the SFG showed significantly greater SJ peak force than the LFG (p = 0.036) and control groups (p = 0.023). Regarding CMJ peak power, significantly higher values were observed in the SFG compared to the LFG (p = 0.042) and control groups (p = 0.046). Moreover, the SFG had significantly lower CMJ peak landing force than both the LFG (p = 0.049) and control groups (p = 0.046). Finally, RSI was significantly higher in the SFG than in the LFG (p = 0.046) and control groups (p = 0.036). This study highlights the significant benefits of incorporating 2v2 and 3v3 SFG formats to enhance muscular strength, power, and landing forces in young female volleyball players, contrasting with less effective outcomes observed with 4v4 and 5v5 LFG formats, suggesting potential neuromuscular advantages crucial for improving volleyball performance.
{"title":"Smaller Formats of Volleyball Lead to Greater Improvements in Lower Limb Strength and Power, As Well As Reductions in Landing Forces: A Randomized Controlled Study in Girls.","authors":"YuQing Duan, Li Wang, Qi Liu, Wanyu Huang","doi":"10.52082/jssm.2024.872","DOIUrl":"10.52082/jssm.2024.872","url":null,"abstract":"<p><p>The purpose of this study was to compare the adaptations in muscular strength, power, and landing forces of young female volleyball players enrolled in two experimental programs: one using smaller formats of the game (SFG) and the other using larger formats of the game (LFG), with a third group serving as a control. This study employed a randomized controlled design, with an 8-week intervention period and pre- and post-intervention evaluations. Fifty-six trained/developmental participants (age: 14.7 ± 0.5 years) voluntarily participated in this study. Each experimental group received additional training twice a week. The SFG group participated in 2v2 and 3v3 formats on smaller courts (covering 2/6 of the court's available zones) with a regular net, while the LFG group played in 4v4 and 5v5 formats on larger courts (covering 4/6 of the court's available zones). Assessments were conducted using force platforms and included the following tests: (i) isometric mid-thigh pull test (IMTP), measuring peak force; (ii) squat jump test (SJ), measuring peak force; (iii) countermovement jump test (CMJ), measuring peak power and landing force; and (iv) drop jump test (DJT), measuring the reactive strength index. Significant differences emerged post-intervention across all outcomes (p < 0.05). The SFG exhibited significantly greater IMTP peak force compared to both the LFG (p = 0.012) and control groups (p = 0.035). Additionally, the SFG showed significantly greater SJ peak force than the LFG (p = 0.036) and control groups (p = 0.023). Regarding CMJ peak power, significantly higher values were observed in the SFG compared to the LFG (p = 0.042) and control groups (p = 0.046). Moreover, the SFG had significantly lower CMJ peak landing force than both the LFG (p = 0.049) and control groups (p = 0.046). Finally, RSI was significantly higher in the SFG than in the LFG (p = 0.046) and control groups (p = 0.036). This study highlights the significant benefits of incorporating 2v2 and 3v3 SFG formats to enhance muscular strength, power, and landing forces in young female volleyball players, contrasting with less effective outcomes observed with 4v4 and 5v5 LFG formats, suggesting potential neuromuscular advantages crucial for improving volleyball performance.</p>","PeriodicalId":54765,"journal":{"name":"Journal of Sports Science and Medicine","volume":"23 4","pages":"872-881"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}