Pub Date : 2025-04-15DOI: 10.1016/j.jct.2025.107500
Aldo N. Fuentes , Jesús M. Casas , Francisca J. Justel , Yecid P. Jiménez
This work develops a thermodynamic model for ionic speciation and volumetric properties of the ternary system CuCl2 – HCl – H2O from 273.15 to 373.15 K and at 101.3 kPa, a system relevant to chalcopyrite leaching in chloride media and hydrogen production via the copper–chlorine thermochemical cycle. The Pitzer equations were used to estimate water activities, CuCl2·2H2O(cr) solubilities, and densities, calibrated using published experimental data. The speciation model includes Cu2+, H+, CuCl+, Cl–, , and HCl0, showing reasonable species distribution results as a function of temperature and total concentration. Based on volume of mixing calculations at 298.15 K, CuCl2 acts as a structure breaker of water, while HCl behaves as a structure maker. New Pitzer parameters and the solubility product constant of CuCl2·2H2O(cr) are provided as temperature–dependent functions. The model demonstrates high accuracy in reproducing experimental data and offers insights into the physicochemical behavior of concentrated CuCl2 + HCl + H2O solutions.
{"title":"Ionic speciation and volumetric properties modeling of the ternary system CuCl2 – HCl – H2O from 273.15 to 373.15 K and at 101.3 kPa using the Pitzer equations","authors":"Aldo N. Fuentes , Jesús M. Casas , Francisca J. Justel , Yecid P. Jiménez","doi":"10.1016/j.jct.2025.107500","DOIUrl":"10.1016/j.jct.2025.107500","url":null,"abstract":"<div><div>This work develops a thermodynamic model for ionic speciation and volumetric properties of the ternary system CuCl<sub>2</sub> – HCl – H<sub>2</sub>O from 273.15 to 373.15 K and at 101.3 kPa, a system relevant to chalcopyrite leaching in chloride media and hydrogen production via the copper–chlorine thermochemical cycle. The Pitzer equations were used to estimate water activities, CuCl<sub>2</sub>·2H<sub>2</sub>O(cr) solubilities, and densities, calibrated using published experimental data. The speciation model includes Cu<sup>2+</sup>, H<sup>+</sup>, CuCl<sup>+</sup>, Cl<sup>–</sup>, <span><math><msubsup><mi>CuCl</mi><mn>2</mn><mn>0</mn></msubsup></math></span>, and HCl<sup>0</sup>, showing reasonable species distribution results as a function of temperature and total concentration. Based on volume of mixing calculations at 298.15 K, CuCl<sub>2</sub> acts as a structure breaker of water, while HCl behaves as a structure maker. New Pitzer parameters and the solubility product constant of CuCl<sub>2</sub>·2H<sub>2</sub>O(cr) are provided as temperature–dependent functions. The model demonstrates high accuracy in reproducing experimental data and offers insights into the physicochemical behavior of concentrated CuCl<sub>2</sub> + HCl + H<sub>2</sub>O solutions.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107500"},"PeriodicalIF":2.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143843673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-15DOI: 10.1016/j.jct.2025.107499
Safeer S. Nanji, Connor E. Deering, Kevin L. Lesage, Robert A. Marriott
Despite the increasing importance of CO2 processing and the use of aliphatic alcohols as cosolvents in supercritical fluid extraction, there is an apparent lack of densimetric or volumetric data for dilute alcohols in near-critical CO2 within the literature. To this end, apparent molar volumes of binary solutions for methanol, ethanol, and 2-propanol in CO2 were calculated from measured density differences (δΔρ = 0.01–1.60 kg m−3) determined from T = 298–313 K and p = 8–13 MPa using a flow densimeter modified for high pressure measurement. This temperature and pressure range was chosen for the proximity to the critical point of pure CO2, where volumetric changes are very sensitive and allow for better calibration of binary parameters. The apparent molar volumes of the mixtures were then used to optimize mixing coefficients with reference quality pure component Helmholtz equations-of-state and Fluctuation Solution Theory. Apparent molar volumes of these alcohol solutes resulted in poorer fits of the binary mixing coefficients for reference quality reduced Helmholtz Equations of State when compared to Fluctuation Solution Theory; however, excess functions with more parameters may be developed by future researchers. With the Fluctuation Solution Theory equations, Krichevskii parameters were determined for each alcohol in CO2. These values were similar to a previous study of H2O in CO2; however, variance was noted from literature values with different methods of extrapolation.
尽管CO2处理和在超临界流体萃取中使用脂肪族醇作为助溶剂的重要性日益增加,但在文献中明显缺乏近临界CO2中稀醇的密度或体积数据。为此,在T = 298-313 K和p = 8-13 MPa的条件下,使用改进的高压测量流量密度计,通过测量密度差(δΔρ = 0.01-1.60 kg m - 3),计算出甲醇、乙醇和2-丙醇在CO2中的二元溶液的表观摩尔体积。选择这个温度和压力范围是为了接近纯二氧化碳的临界点,在那里,体积变化非常敏感,可以更好地校准二进制参数。采用纯组分亥姆霍兹状态方程和涨落解理论,利用混合物的表观摩尔体积来优化混合系数。与波动解理论相比,这些醇溶质的表观摩尔体积导致二元混合系数的拟合较差,参比质量降低了亥姆霍兹状态方程;然而,未来的研究人员可能会开发出具有更多参数的过剩函数。利用波动解理论方程,确定了CO2中每种醇的克里切夫斯基参数。这些数值与之前对CO2中H2O的研究相似;然而,不同外推方法的文献值存在差异。
{"title":"Apparent molar volumes of methanol, ethanol, and 2-propanol in dense phase CO2","authors":"Safeer S. Nanji, Connor E. Deering, Kevin L. Lesage, Robert A. Marriott","doi":"10.1016/j.jct.2025.107499","DOIUrl":"10.1016/j.jct.2025.107499","url":null,"abstract":"<div><div>Despite the increasing importance of CO<sub>2</sub> processing and the use of aliphatic alcohols as cosolvents in supercritical fluid extraction, there is an apparent lack of densimetric or volumetric data for dilute alcohols in near-critical CO<sub>2</sub> within the literature. To this end, apparent molar volumes of binary solutions for methanol, ethanol, and 2-propanol in CO<sub>2</sub> were calculated from measured density differences (<em>δΔρ =</em> 0.01–1.60 kg m<sup>−3</sup>) determined from <em>T</em> = 298–313 K and <em>p</em> = 8–13 MPa using a flow densimeter modified for high pressure measurement. This temperature and pressure range was chosen for the proximity to the critical point of pure CO<sub>2</sub>, where volumetric changes are very sensitive and allow for better calibration of binary parameters. The apparent molar volumes of the mixtures were then used to optimize mixing coefficients with reference quality pure component Helmholtz equations-of-state and Fluctuation Solution Theory. Apparent molar volumes of these alcohol solutes resulted in poorer fits of the binary mixing coefficients for reference quality reduced Helmholtz Equations of State when compared to Fluctuation Solution Theory; however, excess functions with more parameters may be developed by future researchers. With the Fluctuation Solution Theory equations, Krichevskii parameters were determined for each alcohol in CO<sub>2</sub>. These values were similar to a previous study of H<sub>2</sub>O in CO<sub>2</sub>; however, variance was noted from literature values with different methods of extrapolation.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107499"},"PeriodicalIF":2.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143848713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-03DOI: 10.1016/j.jct.2025.107490
Bradley Lin, Saikiran Motati, William E. Acree
A polemic is given regarding the van't Hoff curve-fit parameters and apparent thermodynamic properties of solution of sulfentrazone (form I) that Mao and coworkers reported in their recently published paper. The van't Hoff parameters were found to be inconsistent with the tabulated thermodynamic quantities. New sets of curve-fit parameters were determined by reanalysis of the authors' published mole fraction solubility data.
{"title":"Comments regarding “Solubility determination, model evaluation, molecular simulation and thermodynamic analysis of sulfentrazone (form I) in single and binary solvents”","authors":"Bradley Lin, Saikiran Motati, William E. Acree","doi":"10.1016/j.jct.2025.107490","DOIUrl":"10.1016/j.jct.2025.107490","url":null,"abstract":"<div><div>A polemic is given regarding the van't Hoff curve-fit parameters and apparent thermodynamic properties of solution of sulfentrazone (form I) that Mao and coworkers reported in their recently published paper. The van't Hoff parameters were found to be inconsistent with the tabulated thermodynamic quantities. New sets of curve-fit parameters were determined by reanalysis of the authors' published mole fraction solubility data.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107490"},"PeriodicalIF":2.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-28DOI: 10.1016/j.jct.2025.107489
Evgeniy V. Ivanov , Dmitriy V. Batov , Andrey V. Kustov , Alexander F. Syschenko
The enthalpies of dilution of solutions of hexamethylenetetramine (HMTA), the well-known pharmaceutical urotropine, in water (H2O) and heavy water (D2O) were determined with a new heat conduction calorimeter at 298.15 K. The enthalpy-related homotactic coefficients of pairwise, , and triplet, , interactions between hydrated solute molecules were computed using the excess thermodynamic function concept (based on the McMillan-Mayer theory formalism). The and values were found to be large and positive in both H2O and D2O due to a partial overlapping of solute hydrophobic hydration shells and appearance of solute – solute correlations at rather large distances. This phenomenon is stronger pronounced in heavy water both for pairwise and for triplet HMTA – HMTA interactions indicating a highly ordered hydration structure in D2O. The established correlation between the values and the corresponding solvent isotope effects, (H2O → D2O), for HMTA and tetramethylurea mono- and bicyclic derivatives as solute species confirms the hypothesis of the differentiating effect of a solvent isotopic substitution on both the energetics of solvation and solute – solute interactions in aqueous solutions of proton-accepting non-electrolytes. In other words, the more negative or positive the value due to stronger homo- and heterocomponent D-bonds, the more negative or positive the corresponding isotopic effect is.
{"title":"Effect of the solvent H/D isotope substitution on enthalpy-interaction parameters for the pharmaceutical urotropine (hexamethylenetetramine) in aqueous solutions at 298.15 K","authors":"Evgeniy V. Ivanov , Dmitriy V. Batov , Andrey V. Kustov , Alexander F. Syschenko","doi":"10.1016/j.jct.2025.107489","DOIUrl":"10.1016/j.jct.2025.107489","url":null,"abstract":"<div><div>The enthalpies of dilution of solutions of hexamethylenetetramine (HMTA), the well-known pharmaceutical <em>urotropine</em>, in water (H<sub>2</sub>O) and heavy water (D<sub>2</sub>O) were determined with a new heat conduction calorimeter at 298.15 K. The enthalpy-related homotactic coefficients of pairwise, <span><math><msub><mi>h</mi><mn>22</mn></msub></math></span>, and triplet, <span><math><msub><mi>h</mi><mn>222</mn></msub></math></span>, interactions between hydrated solute molecules were computed using the excess thermodynamic function concept (based on the McMillan-Mayer theory formalism). The <span><math><msub><mi>h</mi><mn>22</mn></msub></math></span> and <span><math><msub><mi>h</mi><mn>222</mn></msub></math></span> values were found to be large and positive in both H<sub>2</sub>O and D<sub>2</sub>O due to a partial overlapping of solute hydrophobic hydration shells and appearance of solute – solute correlations at rather large distances. This phenomenon is stronger pronounced in heavy water both for pairwise and for triplet HMTA – HMTA interactions indicating a highly ordered hydration structure in D<sub>2</sub>O. The established correlation between the <span><math><msub><mi>h</mi><mn>22</mn></msub></math></span> values and the corresponding solvent isotope effects, <span><math><msub><mi>δh</mi><mn>22</mn></msub></math></span>(H<sub>2</sub>O → D<sub>2</sub>O), for HMTA and tetramethylurea mono- and bicyclic derivatives as solute species confirms the hypothesis of the differentiating effect of a solvent isotopic substitution on both the energetics of solvation and solute – solute interactions in aqueous solutions of proton-accepting non-electrolytes. In other words, the more negative or positive the <span><math><msub><mi>h</mi><mn>22</mn></msub></math></span> value due to stronger homo- and heterocomponent D-bonds, the more negative or positive the corresponding isotopic effect is.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107489"},"PeriodicalIF":2.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143783793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the thermophysical properties of binary mixtures consisting of methyl myristate (MM) and a homologous series of 2-alkanols (ranging from 2-propanol to 2-hexanol) over a temperature range of 293.15 to 323.15 K. Experimental measurements of liquid densities and viscosities reveal significant deviations from ideal behavior, characterized by positive excess molar volumes and negative viscosity deviations across all examined mixtures. The observed positive deviations in excess molar volume suggest weak intermolecular interactions between MM and the 2-alkanols. Furthermore, both an increase in the alkyl chain length of the 2-alkanols and temperature rise were found to reduce these molecular interactions, leading to more pronounced excess volumes. To better understand the viscosity behavior of both pure components and their mixtures, we applied free volume theory. This theoretical approach demonstrated excellent agreement with experimental data, with a maximum deviation of only 2.41 % observed in the MM/2-propanol system.
{"title":"Exploring molecular interactions between methyl Myristate and 2-alcohols: Free volume theory perspective","authors":"Sanaz Gharehzadeh Shirazi, Samaneh Heydarian, Hassan Moghanian, Mohamad Naseh","doi":"10.1016/j.jct.2025.107485","DOIUrl":"10.1016/j.jct.2025.107485","url":null,"abstract":"<div><div>This study investigates the thermophysical properties of binary mixtures consisting of methyl myristate (MM) and a homologous series of 2-alkanols (ranging from 2-propanol to 2-hexanol) over a temperature range of 293.15 to 323.15 K. Experimental measurements of liquid densities and viscosities reveal significant deviations from ideal behavior, characterized by positive excess molar volumes and negative viscosity deviations across all examined mixtures. The observed positive deviations in excess molar volume suggest weak intermolecular interactions between MM and the 2-alkanols. Furthermore, both an increase in the alkyl chain length of the 2-alkanols and temperature rise were found to reduce these molecular interactions, leading to more pronounced excess volumes. To better understand the viscosity behavior of both pure components and their mixtures, we applied free volume theory. This theoretical approach demonstrated excellent agreement with experimental data, with a maximum deviation of only 2.41 % observed in the MM/2-propanol system.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107485"},"PeriodicalIF":2.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.jct.2025.107486
Stéphane Vitu , Kaoutar Berkalou , Jean-Louis Havet , Vincent Caqueret
The 2,2,4-trimethylpentane (isooctane) – ethyl ethanoate binary system was experimentally investigated. The density of the mixture was measured using a vibrating-tube apparatus and is reported at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The mixture exhibits positive excess molar volumes. Isobaric vapor-liquid equilibrium (VLE) of the system were obtained at three pressures P = (30, 60 and 101.3) kPa. Pure components vapor pressures were also acquired over a range of P = (20 to 160) kPa. Equilibrium data were measured using a recirculation ebulliometer (Gillespie-type VLE cell).
The 2,2,4-trimethylpentane – ethyl ethanoate presents a Bancroft point within the investigated pressure range and, consequently, an azeotropic behavior at each studied pressure. The azeotropic coordinates, derived from the measured VLE data, are reported. A notable dependence of the azeotropic composition on pressure was observed.
The NRTL and Wilson activity coefficient models were used to correlate the VLE data. Temperature-dependent interaction parameters were determined, enabling precise correlation of the reported VLE data. The predictive UNIFAC (Dortmund) model was also tested. While it produced accurate results at 30 kPa, significant deviations were noted at higher pressures.
{"title":"The 2,2,4-trimethylpentane + ethyl propanoate binary system: density, Bancroft point and vapor–liquid equilibrium at 30, 60 and 101.3 kPa","authors":"Stéphane Vitu , Kaoutar Berkalou , Jean-Louis Havet , Vincent Caqueret","doi":"10.1016/j.jct.2025.107486","DOIUrl":"10.1016/j.jct.2025.107486","url":null,"abstract":"<div><div>The 2,2,4-trimethylpentane (isooctane) – ethyl ethanoate binary system was experimentally investigated. The density of the mixture was measured using a vibrating-tube apparatus and is reported at temperatures <em>T</em> = (288.15, 298.15, 308.15 and 318.15) K. The mixture exhibits positive excess molar volumes. Isobaric vapor-liquid equilibrium (VLE) of the system were obtained at three pressures <em>P</em> = (30, 60 and 101.3) kPa. Pure components vapor pressures were also acquired over a range of <em>P</em> = (20 to 160) kPa. Equilibrium data were measured using a recirculation ebulliometer (Gillespie-type VLE cell).</div><div>The 2,2,4-trimethylpentane – ethyl ethanoate presents a Bancroft point within the investigated pressure range and, consequently, an azeotropic behavior at each studied pressure. The azeotropic coordinates, derived from the measured VLE data, are reported. A notable dependence of the azeotropic composition on pressure was observed.</div><div>The NRTL and Wilson activity coefficient models were used to correlate the VLE data. Temperature-dependent interaction parameters were determined, enabling precise correlation of the reported VLE data. The predictive UNIFAC (Dortmund) model was also tested. While it produced accurate results at 30 kPa, significant deviations were noted at higher pressures.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107486"},"PeriodicalIF":2.2,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.jct.2025.107487
Hai-Fang Wang
7-Amino-6-nitrobenzodifuroxan (ANBDF) solubility was determined using a laser dynamic technique from 288.15 K to 333.15 K under 0.1 MPa in fifteen pure solvents, including methanol, ethanol, acetone, cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, 1,2-dichloroethane, ethanoic acid, propanoic acid, toluene, o-xylene, N-Methylpyrrolidone (NMP), N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO). ANBDF might become more soluble in fifteen pure solvents as the temperature rose. At 298.15 K, the following substances dissolve ANBDF in the following order: DMSO > NMP > DMF > cyclohexanone > acetone > acetonitrile > ethyl acetate > ethanoic acid >1,2-dichloroethane > o-xylene > propanoic acid > methanol > dichloromethane > toluene > ethanol. The KAT-LSER model was used to study the influence of the solvent, and it revealed that the acidity of the solvents' hydrogen bonds has a stronger impact on the solubility of ANBDF. The solubility of ANBDF was correlated using van't Hoff equation, modified Apelblat equation, Yaws equation and polynomial empirical equation. In addition, thermodynamic parameters such as the standard dissolution enthalpy, standard dissolution entropy, and standard Gibbs free energy were calculated based on the experimental solubility values. The dissolution process of ANBDF could be an enthalpy-driven, non-spontaneous and endothermic process in fifteen pure solvents. The measurement and fitting solubility of ANBDF have important guiding significance for the purification and crystallization of its preparation process.
采用激光动力学技术测定了7-氨基-6-硝基苯并二硝基呋喃(ANBDF)在0.1 MPa、288.15 K ~ 333.15 K范围内,在甲醇、乙醇、丙酮、环己酮、乙酸乙酯、乙腈、二氯甲烷、1,2-二氯乙烷、乙醇酸、丙酸、甲苯、邻二甲苯、N-甲基吡罗烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等15种纯溶剂中的溶解度。随着温度的升高,ANBDF可能在15种纯溶剂中更容易溶解。在298.15 K时,下列物质按顺序溶解ANBDF: DMSO >;NMP祝辞DMF祝辞环己酮在丙酮比;乙腈比;乙酸乙酯>;乙酸>;1,2-二氯乙烷>;邻二甲苯的在丙酸>;甲醇比;二氯甲烷比;甲苯比;乙醇。利用KAT-LSER模型研究了溶剂的影响,发现溶剂氢键的酸度对ANBDF的溶解度有较大的影响。利用van't Hoff方程、修正Apelblat方程、Yaws方程和多项式经验方程对ANBDF的溶解度进行了相关性分析。根据实验溶解度值计算了标准溶解焓、标准溶解熵和标准吉布斯自由能等热力学参数。ANBDF在15种纯溶剂中的溶解过程为焓驱动、非自发和吸热过程。ANBDF溶解度的测定和拟合对其制备过程的纯化和结晶具有重要的指导意义。
{"title":"Measurement and correlation solubility of 7-amino-6-nitrobenzodifuroxan in fifteen pure solvents from 288.15 to 333.15 K","authors":"Hai-Fang Wang","doi":"10.1016/j.jct.2025.107487","DOIUrl":"10.1016/j.jct.2025.107487","url":null,"abstract":"<div><div>7-Amino-6-nitrobenzodifuroxan (ANBDF) solubility was determined using a laser dynamic technique from 288.15 K to 333.15 K under 0.1 MPa in fifteen pure solvents, including methanol, ethanol, acetone, cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, 1,2-dichloroethane, ethanoic acid, propanoic acid, toluene, o-xylene, N-Methylpyrrolidone (NMP), <em>N</em>,<em>N</em>-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO). ANBDF might become more soluble in fifteen pure solvents as the temperature rose. At 298.15 K, the following substances dissolve ANBDF in the following order: DMSO > NMP > DMF > cyclohexanone > acetone > acetonitrile > ethyl acetate > ethanoic acid >1,2-dichloroethane > o-xylene > propanoic acid > methanol > dichloromethane > toluene > ethanol. The KAT-LSER model was used to study the influence of the solvent, and it revealed that the acidity of the solvents' hydrogen bonds has a stronger impact on the solubility of ANBDF. The solubility of ANBDF was correlated using van't Hoff equation, modified Apelblat equation, Yaws equation and polynomial empirical equation. In addition, thermodynamic parameters such as the standard dissolution enthalpy, standard dissolution entropy, and standard Gibbs free energy were calculated based on the experimental solubility values. The dissolution process of ANBDF could be an enthalpy-driven, non-spontaneous and endothermic process in fifteen pure solvents. The measurement and fitting solubility of ANBDF have important guiding significance for the purification and crystallization of its preparation process.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107487"},"PeriodicalIF":2.2,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1016/j.jct.2025.107484
Allison Kabin, Dhishithaa Kumarandurai, Bradley Lin, William E. Acree
A polemic is given regarding the solution models used by Wang and coworkers to correlate the solubility behavior of tolnaftate in ten organic mono-solvents and in binary acetic acid + ethylene glycol solvent mixtures. For several of the mixtures studied authors' calculated curve-fit parameters yielded mole fraction solubilities that exceeded unity.
{"title":"Comments on “solubility determination, correlation, solvent effect and thermodynamic properties of tolnaftate in ten mono-solvents and binary solvent systems from 283.15 K to 328.15 K\"","authors":"Allison Kabin, Dhishithaa Kumarandurai, Bradley Lin, William E. Acree","doi":"10.1016/j.jct.2025.107484","DOIUrl":"10.1016/j.jct.2025.107484","url":null,"abstract":"<div><div>A polemic is given regarding the solution models used by Wang and coworkers to correlate the solubility behavior of tolnaftate in ten organic mono-solvents and in binary acetic acid + ethylene glycol solvent mixtures. For several of the mixtures studied authors' calculated curve-fit parameters yielded mole fraction solubilities that exceeded unity.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107484"},"PeriodicalIF":2.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-11DOI: 10.1016/j.jct.2025.107483
Xianming Zhang , Yanping Li , Yongli Wu , Yunfei Wang , Panpan Yan , Zhilei Zheng , Hongyu Peng , Yuexin Chu
Liquid–liquid equilibrium (LLE) for the binary systems of 1-octene +1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]), 1-octene +1-butyl-3-methylimidazolium acetate ([BMIM][Ac]), 1-octene +1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 2-hexanone + [EMIM][Ac], and 2-hexanone + [BMIM][Ac], and the ternary systems of 1-octene +2-hexanone + [EMIM][Ac], 1-octene +2-hexanone + [BMIM][Ac], and 1-octene +2-hexanone + [BMIM][BF4] were measured at 298.15 K, 303.15 K and 313.15 K under 101.3 kPa. The solute distribution coefficient (D) and selectivity (S) were calculated to investigate the efficiencies of [EMIM][Ac], [BMIM][Ac], and [BMIM][BF4] as solvents. Moreover, the temperature dependencies of D and S were investigated in this study. NRTL and UNIQUAC models were applied to correlate the experimental LLE data.
1- 辛烯+1-乙基-3-甲基咪唑鎓乙酸盐([EMIM][Ac])、1-辛烯+1-丁基-3-甲基咪唑鎓乙酸盐([BMIM][Ac])、1-辛烯+1-丁基-3-甲基咪唑鎓四氟硼酸盐([BMIM][BF4])二元体系的液液平衡(LLE)、2-hexanone + [EMIM][Ac] 和 2-hexanone + [BMIM][Ac] 以及 1- 辛烯 +2-hexanone + [EMIM][Ac], 1- 辛烯 +2-hexanone + [BMIM][Ac] 和 1- 辛烯 +2-hexanone + [BMIM][BF4] 的三元体系在 298.15 K、303.15 K 和 313.15 K 在 101.3 kPa 下进行了测量。计算了溶质分配系数(D)和选择性(S),以研究[EMIM][Ac]、[BMIM][Ac]和[BMIM][BF4]作为溶剂的效率。此外,本研究还考察了 D 和 S 的温度依赖性。应用 NRTL 和 UNIQUAC 模型对 LLE 实验数据进行了相关分析。
{"title":"Liquid−liquid equilibrium for ternary systems of 1-Octene +2-Hexanone + ionic liquid: Phase equilibrium measurement and correlation","authors":"Xianming Zhang , Yanping Li , Yongli Wu , Yunfei Wang , Panpan Yan , Zhilei Zheng , Hongyu Peng , Yuexin Chu","doi":"10.1016/j.jct.2025.107483","DOIUrl":"10.1016/j.jct.2025.107483","url":null,"abstract":"<div><div>Liquid–liquid equilibrium (LLE) for the binary systems of 1-octene +1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]), 1-octene +1-butyl-3-methylimidazolium acetate ([BMIM][Ac]), 1-octene +1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF<sub>4</sub>]), 2-hexanone + [EMIM][Ac], and 2-hexanone + [BMIM][Ac], and the ternary systems of 1-octene +2-hexanone + [EMIM][Ac], 1-octene +2-hexanone + [BMIM][Ac], and 1-octene +2-hexanone + [BMIM][BF<sub>4</sub>] were measured at 298.15 K, 303.15 K and 313.15 K under 101.3 kPa. The solute distribution coefficient (<em>D</em>) and selectivity (<em>S</em>) were calculated to investigate the efficiencies of [EMIM][Ac], [BMIM][Ac], and [BMIM][BF<sub>4</sub>] as solvents. Moreover, the temperature dependencies of <em>D</em> and <em>S</em> were investigated in this study. NRTL and UNIQUAC models were applied to correlate the experimental LLE data.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107483"},"PeriodicalIF":2.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28DOI: 10.1016/j.jct.2025.107475
Haifang Mao , Jiangmei Chen , Qiyu Wang , Mengjie Luo , Zhiqing Li , Changtao Zhou , Bing Wei , Jibo Liu , Miaomiao Jin
The molar fraction solubility of sulfentrazone (Form I) in ethanol, n-propanol, i-propanol, n-butanol, and binary solvents (ethanol + water) was measured by a laser dynamic method at temperatures from 278.15 K to 313.15 K under 101.6 kPa (standard uncertainty is = 1.2 kPa). The solid-liquid phase equilibrium data were verified using five thermodynamic models: van't Hoff equation, modified Apelblat equation, λh equation, Wilson model, and modified Jouyban-Acree model. The modified Apelblat equation showed the best fitting results for the solubility correlation of sulfentrazone (Form I). In addition, the molecular interaction was analyzed using the Hirshfeld surface analysis, molecular electrostatic potential surface analysis, and Hansen solubility parameters to understand the dissolution mechanism of sulfentrazone (Form I). Molecular dynamics simulation was used to analyze the radial distribution function to explore intermolecular interactions of sulfentrazone (Form I) in ethanol + water binary solvents. Finally, the thermodynamic properties of sulfentrazone (Form I) in the studied solvents were also discussed using the van't Hoff equation, and the results implied that the dissolution of sulfentrazone (Form I) was an endothermic and entropy-driven process. The solubility data and the relevant thermodynamic analysis of sulfentrazone (Form I) provide fundamental guidance for the crystallization and purification of sulfentrazone (Form I).
{"title":"Solubility determination, model evaluation, molecular simulation and thermodynamic analysis of sulfentrazone (Form I) in single and binary solvents","authors":"Haifang Mao , Jiangmei Chen , Qiyu Wang , Mengjie Luo , Zhiqing Li , Changtao Zhou , Bing Wei , Jibo Liu , Miaomiao Jin","doi":"10.1016/j.jct.2025.107475","DOIUrl":"10.1016/j.jct.2025.107475","url":null,"abstract":"<div><div>The molar fraction solubility of sulfentrazone (Form I) in ethanol, n-propanol, i-propanol, n-butanol, and binary solvents (ethanol + water) was measured by a laser dynamic method at temperatures from 278.15 <em>K</em> to 313.15 <em>K</em> under 101.6 <em>kPa</em> (standard uncertainty is <span><math><mi>u</mi><mfenced><mi>p</mi></mfenced></math></span> = 1.2 <em>kPa</em>). The solid-liquid phase equilibrium data were verified using five thermodynamic models: van't Hoff equation, modified Apelblat equation, <em>λh</em> equation, Wilson model, and modified Jouyban-Acree model. The modified Apelblat equation showed the best fitting results for the solubility correlation of sulfentrazone (Form I). In addition, the molecular interaction was analyzed using the Hirshfeld surface analysis, molecular electrostatic potential surface analysis, and Hansen solubility parameters to understand the dissolution mechanism of sulfentrazone (Form I). Molecular dynamics simulation was used to analyze the radial distribution function to explore intermolecular interactions of sulfentrazone (Form I) in ethanol + water binary solvents. Finally, the thermodynamic properties of sulfentrazone (Form I) in the studied solvents were also discussed using the van't Hoff equation, and the results implied that the dissolution of sulfentrazone (Form I) was an endothermic and entropy-driven process. The solubility data and the relevant thermodynamic analysis of sulfentrazone (Form I) provide fundamental guidance for the crystallization and purification of sulfentrazone (Form I).</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107475"},"PeriodicalIF":2.2,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}