Pub Date : 2024-05-02DOI: 10.1016/j.jat.2024.106048
Alex Bergman, Olof Rubin
We consider weighted Chebyshev polynomials on the unit circle corresponding to a weight of the form where . For integer values of this corresponds to prescribing a zero of the polynomial on the boundary. As such, we extend findings of Lachance et al. (1979), to non-integer . Using this generalisation, we are able to relate Chebyshev polynomials on lemniscates and other, more established, categories of Chebyshev polynomials. An essential part of our proof involves the broadening of the Erdős–Lax inequality to encompass powers of polynomials. We believe that this particular result holds significance in its own right.
{"title":"Chebyshev polynomials corresponding to a vanishing weight","authors":"Alex Bergman, Olof Rubin","doi":"10.1016/j.jat.2024.106048","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106048","url":null,"abstract":"<div><p>We consider weighted Chebyshev polynomials on the unit circle corresponding to a weight of the form <span><math><msup><mrow><mrow><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> where <span><math><mrow><mi>s</mi><mo>></mo><mn>0</mn></mrow></math></span>. For integer values of <span><math><mi>s</mi></math></span> this corresponds to prescribing a zero of the polynomial on the boundary. As such, we extend findings of Lachance et al. (1979), to non-integer <span><math><mi>s</mi></math></span>. Using this generalisation, we are able to relate Chebyshev polynomials on lemniscates and other, more established, categories of Chebyshev polynomials. An essential part of our proof involves the broadening of the Erdős–Lax inequality to encompass powers of polynomials. We believe that this particular result holds significance in its own right.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000340/pdfft?md5=69221809242b1dccb0aa329cd8cfc72b&pid=1-s2.0-S0021904524000340-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.jat.2024.106046
A.A. Vasil’eva
In this paper, order estimates for the Kolmogorov -widths of an intersection of a family of balls in a mixed norm in the space with , are obtained.
本文获得了混合规范空间 lq,σm,k 中 2⩽q,σ<∞, n⩽mk/2 的球族交集的柯尔莫哥洛夫 n 宽的阶估计值。
{"title":"Kolmogorov widths of an intersection of a family of balls in a mixed norm","authors":"A.A. Vasil’eva","doi":"10.1016/j.jat.2024.106046","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106046","url":null,"abstract":"<div><p>In this paper, order estimates for the Kolmogorov <span><math><mi>n</mi></math></span>-widths of an intersection of a family of balls in a mixed norm in the space <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> with <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>q</mi><mo>,</mo><mspace></mspace><mi>σ</mi><mo><</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>⩽</mo><mi>m</mi><mi>k</mi><mo>/</mo><mn>2</mn></mrow></math></span> are obtained.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.jat.2024.106044
Zhongkai Li , Haihua Wei
For , a function defined on the unit disk is said to be -analytic if , where is the (complex) Dunkl operator given by . The aim of the paper is to study several problems on the associated Bergman spaces and Hardy spaces for , such as boundedness of the Bergman projection, growth of functions, density, completeness, and the dual spaces of and , and characterization and interpolation of .
{"title":"Some aspects of the Bergman and Hardy spaces associated with a class of generalized analytic functions","authors":"Zhongkai Li , Haihua Wei","doi":"10.1016/j.jat.2024.106044","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106044","url":null,"abstract":"<div><p>For <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> function <span><math><mi>f</mi></math></span> defined on the unit disk <span><math><mi>D</mi></math></span> is said to be <span><math><mi>λ</mi></math></span>-analytic if <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub></math></span> is the (complex) Dunkl operator given by <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>=</mo><msub><mrow><mi>∂</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>−</mo><mi>λ</mi><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>z</mi><mo>−</mo><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>. The aim of the paper is to study several problems on the associated Bergman spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and Hardy spaces <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>p</mi><mo>≥</mo><mn>2</mn><mi>λ</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>λ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, such as boundedness of the Bergman projection, growth of functions, density, completeness, and the dual spaces of <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, and characterization and interpolation of <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.jat.2024.106045
Yair Censor, Rafiq Mansour , Daniel Reem
Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process is inspired by the Halpern–Lions–Wittmann–Bauschke algorithm and the classical alternating process of Cheney and Goldstein, and its advantage is that there is no need to project onto the intersections themselves, a task which can be rather demanding. We prove that under certain conditions the two interlaced subsequences converge to a best approximation pair. These conditions hold, in particular, when the space is Euclidean and the subsets which generate the intersections are compact and strictly convex. Our result extends the one of Aharoni, Censor and Jiang [“Finding a best approximation pair of points for two polyhedra”, Computational Optimization and Applications 71 (2018), 509–23] who considered the case of finite-dimensional polyhedra.
{"title":"The alternating simultaneous Halpern–Lions–Wittmann–Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets","authors":"Yair Censor, Rafiq Mansour , Daniel Reem","doi":"10.1016/j.jat.2024.106045","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106045","url":null,"abstract":"<div><p>Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process is inspired by the Halpern–Lions–Wittmann–Bauschke algorithm and the classical alternating process of Cheney and Goldstein, and its advantage is that there is no need to project onto the intersections themselves, a task which can be rather demanding. We prove that under certain conditions the two interlaced subsequences converge to a best approximation pair. These conditions hold, in particular, when the space is Euclidean and the subsets which generate the intersections are compact and strictly convex. Our result extends the one of Aharoni, Censor and Jiang [“Finding a best approximation pair of points for two polyhedra”, Computational Optimization and Applications 71 (2018), 509–23] who considered the case of finite-dimensional polyhedra.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.jat.2024.106047
Mozhgan Mohammadpour, Shayne Waldron
We consider the general question of when all orbits under the unitary action of a finite group give a complex spherical design. Those orbits which have large stabilisers are then good candidates for being optimal complex spherical designs. This is done by developing the general theory of complex designs and associated (harmonic) Molien series for group actions. As an application, we give explicit constructions of some putatively optimal real and complex spherical -designs.
我们考虑的一般问题是,在有限群的单元作用下,什么时候所有轨道都是复球面设计。那些具有大稳定器的轨道是最佳复球面设计的良好候选者。为此,我们发展了复杂设计的一般理论和群作用的相关(谐波)莫连级数。作为应用,我们给出了一些推定最优实球面和复球面 t 设计的明确构造。
{"title":"Complex spherical designs from group orbits","authors":"Mozhgan Mohammadpour, Shayne Waldron","doi":"10.1016/j.jat.2024.106047","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106047","url":null,"abstract":"<div><p>We consider the general question of when all orbits under the unitary action of a finite group give a complex spherical design. Those orbits which have large stabilisers are then good candidates for being optimal complex spherical designs. This is done by developing the general theory of complex designs and associated (harmonic) Molien series for group actions. As an application, we give explicit constructions of some putatively optimal real and complex spherical <span><math><mi>t</mi></math></span>-designs.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000339/pdfft?md5=219ecf58a623a8cc1c9ad8954bcd36ab&pid=1-s2.0-S0021904524000339-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1016/j.jat.2024.106041
Olivier Roustant , Nora Lüthen , Fabrice Gamboa
Motivated by uncertainty quantification of complex systems, we aim at finding quadrature formulas of the form where belongs to . Here, belongs to a class of continuous probability distributions on and is a discrete probability distribution on . We show that is a reproducing kernel Hilbert space with a continuous kernel , which allows to reformulate the quadrature question as a kernel (or Bayesian) quadrature problem. Although has not an easy closed form in general, we establish a correspondence between its spectral decomposition and the one associated to Poincaré inequalities, whose common eigenfunctions form a -system (Karlin and Studden, 1966). The quadrature problem can then be solved in the finite-dimensional proxy space spanned by the first eigenfunctions. The solution is given by a generalized Gaussian quadrature, which we call Poincaré quadrature.
We derive several results for the Poincaré quadrature weights and the associated worst-case error. When is the uniform distribution, the results are explicit: the Poincaré quadrature is equivalent to the midpoint (rectangle) quadrature rule. Its nodes coincide with the zeros of an eigenfunction and the worst-case error scales as for lar
受复杂系统不确定性量化的激励,我们的目标是找到形式为∫abf(x)dμ(x)=∑i=1nwif(xi)的正交公式,其中 f 属于 H1(μ)。这里,μ 属于[a,b]⊂R 上的一类连续概率分布,∑i=1nwiδxi 是[a,b]上的离散概率分布。我们证明,H1(μ) 是一个具有连续核 K 的重现核希尔伯特空间,因此可以将正交问题重新表述为核(或贝叶斯)正交问题。虽然 K 在一般情况下并不容易封闭,但我们在其谱分解和与波恩卡莱不等式相关的谱分解之间建立了对应关系,波恩卡莱不等式的公共特征函数构成了一个 T 系统(Karlin 和 Studden,1966 年)。然后,正交问题就可以在第一特征函数所跨越的有限维代理空间中求解。我们推导出 Poincaré 正交权重和相关最坏情况误差的几个结果。当 μ 为均匀分布时,结果是明确的:Poincaré 正交等价于中点(矩形)正交规则。它的节点与特征函数的零点重合,最坏情况下的误差在大 n 时按 b-a23n-1 的比例缩放。通过与 H1(0,1) 的已知结果进行比较,这表明 Poincaré 正交是渐近最优的。对于一般的 μ,我们提供了一种基于有限元和线性规划的高效数值计算程序。数值实验提供了有益的启示:节点间距接近均匀,权重接近节点处的概率密度,对于大 n,最坏情况误差约为 O(n-1)。
{"title":"Spectral decomposition of H1(μ) and Poincaré inequality on a compact interval — Application to kernel quadrature","authors":"Olivier Roustant , Nora Lüthen , Fabrice Gamboa","doi":"10.1016/j.jat.2024.106041","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106041","url":null,"abstract":"<div><p>Motivated by uncertainty quantification of complex systems, we aim at finding quadrature formulas of the form <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> belongs to <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>. Here, <span><math><mi>μ</mi></math></span> belongs to a class of continuous probability distributions on <span><math><mrow><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>⊂</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></mrow></math></span> is a discrete probability distribution on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. We show that <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span> is a reproducing kernel Hilbert space with a continuous kernel <span><math><mi>K</mi></math></span>, which allows to reformulate the quadrature question as a kernel (or Bayesian) quadrature problem. Although <span><math><mi>K</mi></math></span> has not an easy closed form in general, we establish a correspondence between its spectral decomposition and the one associated to Poincaré inequalities, whose common eigenfunctions form a <span><math><mi>T</mi></math></span>-system (Karlin and Studden, 1966). The quadrature problem can then be solved in the finite-dimensional proxy space spanned by the first eigenfunctions. The solution is given by a generalized Gaussian quadrature, which we call Poincaré quadrature.</p><p>We derive several results for the Poincaré quadrature weights and the associated worst-case error. When <span><math><mi>μ</mi></math></span> is the uniform distribution, the results are explicit: the Poincaré quadrature is equivalent to the midpoint (rectangle) quadrature rule. Its nodes coincide with the zeros of an eigenfunction and the worst-case error scales as <span><math><mrow><mfrac><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow><mrow><mn>2</mn><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for lar","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.jat.2024.106042
Michael S. Floater
Curry and Schoenberg showed that a B-spline is log-concave in its support by applying Brunn’s theorem to a simplex. In this note we provide an alternative, ‘analytic’ proof of the log-concave property using only recursion formulas for B-splines and their first and second derivatives.
{"title":"Log-concavity of B-splines","authors":"Michael S. Floater","doi":"10.1016/j.jat.2024.106042","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106042","url":null,"abstract":"<div><p>Curry and Schoenberg showed that a B-spline is log-concave in its support by applying Brunn’s theorem to a simplex. In this note we provide an alternative, ‘analytic’ proof of the log-concave property using only recursion formulas for B-splines and their first and second derivatives.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000285/pdfft?md5=e7cbce1cee37c3e76009eab70b3d59a1&pid=1-s2.0-S0021904524000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.jat.2024.106043
Fu Ken Ly
We introduce a class of rough symbols for pseudo-multipliers for Hermite expansions and obtain and weighted estimates. These symbols generalise the class of rough symbols introduced by Kenig–Staubach.
{"title":"Weighted estimates for Hermite pseudo-multipliers with rough symbols","authors":"Fu Ken Ly","doi":"10.1016/j.jat.2024.106043","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106043","url":null,"abstract":"<div><p>We introduce a class of rough symbols for pseudo-multipliers for Hermite expansions and obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> estimates. These symbols generalise the class of rough symbols introduced by Kenig–Staubach.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000297/pdfft?md5=fa08028486fb2973a12d793b81945cd7&pid=1-s2.0-S0021904524000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1016/j.jat.2024.106040
Diane Guignard , Peter Jantsch
Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain . When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 [4]) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) [5]. In this way we show both where the theory developed in Bonito et al. (2021) [4] depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.
{"title":"Nonlinear approximation of high-dimensional anisotropic analytic functions","authors":"Diane Guignard , Peter Jantsch","doi":"10.1016/j.jat.2024.106040","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106040","url":null,"abstract":"<div><p>Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain <span><math><mrow><mi>Y</mi><mo>≔</mo><msup><mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 <span>[4]</span>) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) <span>[5]</span>. In this way we show both where the theory developed in Bonito et al. (2021) <span>[4]</span> depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000261/pdfft?md5=37c84e9e2faa6a5470ebb676b660de8f&pid=1-s2.0-S0021904524000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1016/j.jat.2024.106037
Yoshihiro Kogure, Ken’ichiro Tanaka
Although numerous studies have focused on normal Besov spaces, limited studies have been conducted on exponentially weighted Besov spaces. Therefore, we define exponentially weighted Besov space whose smoothness includes normal Besov spaces, Besov spaces with dominating mixed smoothness, and their interpolation. Furthermore, we obtain wavelet characterization of . Next, approximation formulas such as sparse grids are derived using the determined formula. The results of this study are expected to provide considerable insight into the application of exponentially weighted Besov spaces with mixed smoothness.
{"title":"Wavelet characterization of exponentially weighted Besov space with dominating mixed smoothness and its application to function approximation","authors":"Yoshihiro Kogure, Ken’ichiro Tanaka","doi":"10.1016/j.jat.2024.106037","DOIUrl":"10.1016/j.jat.2024.106037","url":null,"abstract":"<div><p>Although numerous studies have focused on normal Besov spaces, limited studies have been conducted on exponentially weighted Besov spaces. Therefore, we define exponentially weighted Besov space <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> whose smoothness includes normal Besov spaces, Besov spaces with dominating mixed smoothness, and their interpolation. Furthermore, we obtain wavelet characterization of <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Next, approximation formulas such as sparse grids are derived using the determined formula. The results of this study are expected to provide considerable insight into the application of exponentially weighted Besov spaces with mixed smoothness.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}