首页 > 最新文献

Journal of Approximation Theory最新文献

英文 中文
The Calderón–Mityagin property for couples of weighted Radon measures 加权氡测量偶的Calderón-Mityagin性质
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106224
Per G. Nilsson
The aim of this note is to introduce two new generic Banach lattice couples based on weighted spaces of continuous functions, and weighted Radon measures on the positive real-line, denoted by C and M respectively. This leads to a new approach, based on these couples, of the Sedaev–Semenov result regarding the Calderón–Mityagin property for weighted L1 spaces. As a consequence is obtained a formal equivalence between the concept of K divisibility and the relative Calderón–Mityagin Property between M and general Banach couples.
本文的目的是引入两个新的基于连续函数的加权空间和正实数线上的加权Radon测度的泛型Banach格对,分别用C -l和M -l表示。这导致了一种基于这些对的关于加权L1空间Calderón-Mityagin性质的Sedaev-Semenov结果的新方法。由此得到了K可分性的概念与M - l和一般Banach对的Calderón-Mityagin性质之间的形式等价。
{"title":"The Calderón–Mityagin property for couples of weighted Radon measures","authors":"Per G. Nilsson","doi":"10.1016/j.jat.2025.106224","DOIUrl":"10.1016/j.jat.2025.106224","url":null,"abstract":"<div><div>The aim of this note is to introduce two new generic Banach lattice couples based on weighted spaces of continuous functions, and weighted Radon measures on the positive real-line, denoted by <span><math><mover><mrow><mi>C</mi></mrow><mo>⃗</mo></mover></math></span> and <span><math><mover><mrow><mi>M</mi></mrow><mo>⃗</mo></mover></math></span> respectively. This leads to a new approach, based on these couples, of the Sedaev–Semenov result regarding the Calderón–Mityagin property for weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> spaces. As a consequence is obtained a formal equivalence between the concept of <span><math><mi>K</mi></math></span> divisibility and the relative Calderón–Mityagin Property between <span><math><mover><mrow><mi>M</mi></mrow><mo>⃗</mo></mover></math></span> and general Banach couples.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106224"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145683679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On multiplier analogues of the algebra C+H∞ on weighted rearrangement-invariant sequence spaces 加权重排不变序列空间上代数C+H∞的乘子类似
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106223
Oleksiy Karlovych, Sandra Mary Thampi
<div><div>Let <span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> be a reflexive rearrangement-invariant Banach sequence space with nontrivial Boyd indices <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>,</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> and let <span><math><mi>w</mi></math></span> be a symmetric weight in the intersection of the Muckenhoupt classes <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub></math></span> denote the collection of all periodic distributions <span><math><mi>a</mi></math></span> generating bounded Laurent operators <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> on the space <span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>φ</mi><mo>:</mo><mi>Z</mi><mo>→</mo><mi>ℂ</mi><mo>:</mo><mi>φ</mi><mi>w</mi><mo>∈</mo><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub></math></span> is a Banach algebra. Further, we consider the closure of trigonometric polynomials in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub></math></span> denoted by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub></math></span> and <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow><mrow><mi>∞</mi><mo>,</mo><mo>±</mo></mrow></msubsup><mo>=</mo><mrow><mo>{</mo><mi>a</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mo>:</mo><mover><mrow><mi>a</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>±</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mtext> for </mtext><mi>n</mi><mo><</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. We prove that <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mrow><mo>(</mo><mi>Z</mi><mo>,</mo><mi>w<
设X(Z)为具有非平凡Boyd指标αX、βX的自反重排不变Banach序列空间,设w为Muckenhoupt类A1/αX(Z)和A1/βX(Z)交点上的对称权值。设MX(Z,w)表示空间X(Z,w)={φ:Z→φ: φw∈X(Z)}上生成有界Laurent算子L(a)的所有周期分布的集合。我们证明MX(Z,w)是一个巴拿赫代数。进一步,我们考虑了MX(Z,w)中三角多项式的闭包,用CX(Z,w)和HX(Z,w)∞表示,±={a∈MX(Z,w):对于n<;0},(±n)=0。证明了CX(Z,w)+HX(Z,w)∞,±是MX(Z,w)的闭子代数。
{"title":"On multiplier analogues of the algebra C+H∞ on weighted rearrangement-invariant sequence spaces","authors":"Oleksiy Karlovych,&nbsp;Sandra Mary Thampi","doi":"10.1016/j.jat.2025.106223","DOIUrl":"10.1016/j.jat.2025.106223","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a reflexive rearrangement-invariant Banach sequence space with nontrivial Boyd indices &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and let &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a symmetric weight in the intersection of the Muckenhoupt classes &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denote the collection of all periodic distributions &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; generating bounded Laurent operators &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the space &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;φ&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;φ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We show that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a Banach algebra. Further, we consider the closure of trigonometric polynomials in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denoted by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̂&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mtext&gt; for &lt;/mtext&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106223"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145683609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpolation of functions with zero integrals over balls of fixed radius 固定半径球上零积分函数的插值
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106226
Valery Volchkov, Vitaly Volchkov
We investigate some interpolation problems for functions with vanishing integrals over all balls in Rn (n2) of fixed radius. In the case when the set of interpolation nodes is finite a complete solution of the multiple interpolation problem is obtained. In addition, the case when the set of interpolation nodes is infinite and not contained on some line in Rn is studied for the first time. We give a sufficient condition for the solvability of interpolation problem when the set of interpolation nodes is quite rare. We note that the results of the paper are false in the case of dimension n=1.
研究了固定半径Rn (n≥2)中所有球上积分消失函数的插值问题。在插值节点集有限的情况下,得到了多重插值问题的完全解。此外,还首次研究了插值节点集合无穷且不包含在Rn中的某条直线上的情况。给出了当插值节点集非常少时插值问题可解的一个充分条件。我们注意到,在维度n=1的情况下,本文的结果是假的。
{"title":"Interpolation of functions with zero integrals over balls of fixed radius","authors":"Valery Volchkov,&nbsp;Vitaly Volchkov","doi":"10.1016/j.jat.2025.106226","DOIUrl":"10.1016/j.jat.2025.106226","url":null,"abstract":"<div><div>We investigate some interpolation problems for functions with vanishing integrals over all balls in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>\u0000 (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) of fixed radius. In the case when the set of interpolation nodes is finite a complete solution of the multiple interpolation problem is obtained. In addition, the case when the set of interpolation nodes is infinite and not contained on some line in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is studied for the first time. We give a sufficient condition for the solvability of interpolation problem when the set of interpolation nodes is quite rare. We note that the results of the paper are false in the case of dimension <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106226"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145683673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sequence of partial sums of a unimodular power series is not ultraflat 单模幂级数的部分和序列不是超平坦的
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106219
Tamás Erdélyi
We show that if (aj)j=0 is a sequence of numbers aj with |aj|=1, and Pn(z)=j=0najzj,n=0,1,2,,then (Pn) is NOT an ultraflat sequence of unimodular polynomials. This answers a question raised by Zachary Chase.
证明了如果(aj)j=0∞是一个数列aj∈且|aj|=1,且Pn(z)=∑j=0najzj,n=0,1,2,…,则(Pn)不是一个单模多项式的超平面序列。这回答了Zachary Chase提出的一个问题。
{"title":"The sequence of partial sums of a unimodular power series is not ultraflat","authors":"Tamás Erdélyi","doi":"10.1016/j.jat.2025.106219","DOIUrl":"10.1016/j.jat.2025.106219","url":null,"abstract":"<div><div>We show that if <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of numbers <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>ℂ</mi></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, and <span><span><span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msup><mspace></mspace><mo>,</mo><mspace></mspace><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace></mspace><mo>,</mo></mrow></math></span></span></span>then <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> is NOT an ultraflat sequence of unimodular polynomials. This answers a question raised by Zachary Chase.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106219"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144908604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplified uniform asymptotic expansions for associated Legendre and conical functions 相关Legendre函数和圆锥函数的简化一致渐近展开式
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106228
T.M. Dunster
Asymptotic expansions are derived for associated Legendre functions of degree ν and order μ, where one or the other of the parameters is large. The expansions are uniformly valid for unbounded real and complex values of the argument z, including the singularity z=1. The cases where ν+12 and μ are real or purely imaginary are included, which includes conical functions. The approximations involve either exponential or modified Bessel functions, along with slowly varying coefficient functions. The coefficients of the new asymptotic expansions are simple and readily obtained explicitly, allowing for computation to a high degree of accuracy. The results are constructed and rigorously established by employing certain Liouville–Green type expansions where the coefficients appear in the exponent of an exponential function.
对于ν阶和μ阶的相关Legendre函数,当其中一个参数较大时,导出了渐近展开式。这些展开式对参数z的无界实值和复值一致有效,包括奇点z=1。包括ν+12和μ为实数或纯虚数的情况,其中包括圆锥函数。近似包括指数函数或修正贝塞尔函数,以及缓慢变化的系数函数。新的渐近展开式的系数很简单,容易显式地得到,允许计算具有很高的精度。通过采用某些Liouville-Green型展开式,其中系数出现在指数函数的指数中,构造并严格地建立了结果。
{"title":"Simplified uniform asymptotic expansions for associated Legendre and conical functions","authors":"T.M. Dunster","doi":"10.1016/j.jat.2025.106228","DOIUrl":"10.1016/j.jat.2025.106228","url":null,"abstract":"<div><div>Asymptotic expansions are derived for associated Legendre functions of degree <span><math><mi>ν</mi></math></span> and order <span><math><mi>μ</mi></math></span>, where one or the other of the parameters is large. The expansions are uniformly valid for unbounded real and complex values of the argument <span><math><mi>z</mi></math></span>, including the singularity <span><math><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></math></span>. The cases where <span><math><mrow><mi>ν</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mi>μ</mi></math></span> are real or purely imaginary are included, which includes conical functions. The approximations involve either exponential or modified Bessel functions, along with slowly varying coefficient functions. The coefficients of the new asymptotic expansions are simple and readily obtained explicitly, allowing for computation to a high degree of accuracy. The results are constructed and rigorously established by employing certain Liouville–Green type expansions where the coefficients appear in the exponent of an exponential function.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106228"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best approximation of constants by polynomials with integer coefficients 常数的最佳近似多项式与整数系数
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.jat.2025.106225
R. Trigub , V. Volchkov
What is best approximation of a non-integer number λR by polynomials qn of degree at most n with integer coefficients on the segment [a,b](0,1) in the uniform metric? In the paper, this old problem is solved for any rational number λ=pq and a segment on the real line. The same problem is solved when the segment is replaced by a disk in and a cube in Rm, both non containing integer points. Best approximation of rational numbers by polynomials with natural coefficients is considered as well. At the same time, the question of uniqueness and non-uniqueness of best approximation polynomials has also been studied. In addition, connection between theorems on best approximation to functions by polynomials with integer coefficients and integer transfinite diameter is established.
在一致度规的段[a,b]∧(0,1)上,次数最多为n且系数为整数的多项式qn对非整数λ∈R的最佳逼近是什么?本文对任意有理数λ=pq和实线上的一段,解决了这一老问题。同样的问题也解决了,当这段被替换为一个圆盘和一个立方体在Rm中,两者都不包含整数点。本文还讨论了带自然系数的多项式对有理数的最佳逼近。同时,还研究了最佳逼近多项式的唯一性和非唯一性问题。此外,还建立了整数系数多项式函数最佳逼近定理与整数超限直径定理之间的联系。
{"title":"Best approximation of constants by polynomials with integer coefficients","authors":"R. Trigub ,&nbsp;V. Volchkov","doi":"10.1016/j.jat.2025.106225","DOIUrl":"10.1016/j.jat.2025.106225","url":null,"abstract":"<div><div>What is best approximation of a non-integer number <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> by polynomials <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree at most <span><math><mi>n</mi></math></span> with integer coefficients on the segment <span><math><mrow><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>⊂</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> in the uniform metric? In the paper, this old problem is solved for any rational number <span><math><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></math></span> and a segment on the real line. The same problem is solved when the segment is replaced by a disk in <span><math><mi>ℂ</mi></math></span> and a cube in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, both non containing integer points. Best approximation of rational numbers by polynomials with natural coefficients is considered as well. At the same time, the question of uniqueness and non-uniqueness of best approximation polynomials has also been studied. In addition, connection between theorems on best approximation to functions by polynomials with integer coefficients and integer transfinite diameter is established.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106225"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145683672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing the degree of constrained and unconstrained trigonometric approximation 比较有约束和无约束三角逼近的程度
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-07 DOI: 10.1016/j.jat.2025.106220
D. Leviatan , I. Shevchuk , V. Shevchuk
Let r,sN. For a continuous 2π-periodic function, changing its monotonicity 2s times in a period, and whose degree of approximation by trigonometric polynomials of degree <n, is nr, n1, we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for r>2s2, there is a constant c(s,r) such that the constrained degree is c(s,r)nr, n1. On the other hand we show that, in general, this is invalid for r2s2.
让r, s∈N。对于一个连续的2π周期函数,在一个周期内单调变化2s次,且阶为<;n的三角多项式的逼近度≤n−r, n≥1,我们研究了其单调变化的多项式的逼近度。显然,不受约束的程度小于受约束的程度,但对于r>;2s−2,存在一个常数c(s,r),使得受约束程度≤c(s,r)n−r, n≥1。另一方面,我们证明,一般来说,这对于r≤2s−2是无效的。
{"title":"Comparing the degree of constrained and unconstrained trigonometric approximation","authors":"D. Leviatan ,&nbsp;I. Shevchuk ,&nbsp;V. Shevchuk","doi":"10.1016/j.jat.2025.106220","DOIUrl":"10.1016/j.jat.2025.106220","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. For a continuous <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic function, changing its monotonicity <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span> times in a period, and whose degree of approximation by trigonometric polynomials of degree <span><math><mrow><mo>&lt;</mo><mi>n</mi></mrow></math></span>, is <span><math><mrow><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for <span><math><mrow><mi>r</mi><mo>&gt;</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>, there is a constant <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that the constrained degree is <span><math><mrow><mo>≤</mo><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. On the other hand we show that, in general, this is invalid for <span><math><mrow><mi>r</mi><mo>≤</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106220"},"PeriodicalIF":0.6,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial approximation in L2 with the double-sided exponential weight via complex analysis 通过复分析,用双面指数权在L2中的多项式近似
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-08-06 DOI: 10.1016/j.jat.2025.106218
Pierre Bizeul , Boaz Klartag
<div><div>We study the problem of polynomial approximation in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>), where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (<span><math><mrow><mi>d</mi><mi>x</mi></mrow></math></span>) = <span><math><mrow><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>. We show that for any absolutely continuous function <span><math><mi>f</mi></math></span>, <span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></munderover><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>〉</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>C</mi><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></mrow></math></span> for some universal constant <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span>, where <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> are the orthonormal polynomials associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. This inequality is tight in the sense that <span><math><mrow><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> on the left-hand side cannot be replaced by <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> for any sequence <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span>. When the right-hand side is bounded, this inequality implies a logarithmic rate of approximati
研究了L2 (μ1)中的多项式逼近问题,其中μ1 (dx) = e−|x|2dx。证明了对于任意绝对连续函数f,∑k=1∞log2(e+k) < f,对于某普适常数C>;0, Pk |≤C∫Rlog2(e+|x|)f2dμ1+∫R(f ')2dμ1,其中(Pk)k∈N是与μ1相关的正交多项式。这个不等式是紧密的,因为对于任何序列ak→∞,左边的log2(e+k)不能被aklog2(e+k)所取代。当右边是有界的时候,这个不等式意味着f的一个对数逼近率,这是由Lubinsky先前得到的。我们还通过张张化论证得到了Rd上的积测度μ1⊗d的近似速率。我们的证明依赖于与权重12cosh(πx/2)相关的标准正交多项式的生成函数的显式公式,以及复分析的工具。
{"title":"Polynomial approximation in L2 with the double-sided exponential weight via complex analysis","authors":"Pierre Bizeul ,&nbsp;Boaz Klartag","doi":"10.1016/j.jat.2025.106218","DOIUrl":"10.1016/j.jat.2025.106218","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We study the problem of polynomial approximation in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;\u0000 (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;), where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;\u0000 (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) = &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We show that for any absolutely continuous function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;munderover&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some universal constant &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are the orthonormal polynomials associated with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. This inequality is tight in the sense that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the left-hand side cannot be replaced by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for any sequence &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. When the right-hand side is bounded, this inequality implies a logarithmic rate of approximati","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106218"},"PeriodicalIF":0.6,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On positive Jacobi matrices with compact inverses 关于具有紧逆的正雅可比矩阵
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-07-30 DOI: 10.1016/j.jat.2025.106217
Pavel Šťovíček , Grzegorz Świderski
We consider positive Jacobi matrices J with compact inverses and consequently with purely discrete spectra. A number of properties of the corresponding sequence of orthogonal polynomials is studied including the convergence of their zeros, the vague convergence of the zero counting measures and of the Christoffel–Darboux kernels on the diagonal. Particularly, if the inverse of J belongs to some Schatten class, we identify the asymptotic behavior of the sequence of orthogonal polynomials and express it in terms of its regularized characteristic function. In the even more special case when the inverse of J belongs to the trace class, we derive various formulas for the orthogonality measure, eigenvectors of J as well as for the functions of the second kind and related objects. These general results are given a more explicit form in the case when J is a generator of a Birth–Death process. Among others, we provide a formula for the trace of the inverse of J. We illustrate our results by introducing and studying a modification of the q-Laguerre polynomials corresponding to a determinate moment problem.
我们考虑具有紧逆的正雅可比矩阵J,因而具有纯离散谱。研究了正交多项式相应序列的若干性质,包括其零点的收敛性、零计数测度的模糊收敛性和对角线上的克里斯托费尔-达布核的模糊收敛性。特别地,如果J的逆属于某个Schatten类,我们确定了正交多项式序列的渐近性质,并用正则化特征函数表示。在更特殊的情况下,当J的逆属于迹类时,我们推导了J的正交度、特征向量以及第二类函数和相关对象的各种公式。当−J是一个Birth-Death过程的生成器时,这些一般结果会有更明确的形式。其中,我们提供了j的逆轨迹的一个公式。我们通过引入和研究对应于一个定矩问题的q-Laguerre多项式的一个修正来说明我们的结果。
{"title":"On positive Jacobi matrices with compact inverses","authors":"Pavel Šťovíček ,&nbsp;Grzegorz Świderski","doi":"10.1016/j.jat.2025.106217","DOIUrl":"10.1016/j.jat.2025.106217","url":null,"abstract":"<div><div>We consider positive Jacobi matrices <span><math><mi>J</mi></math></span> with compact inverses and consequently with purely discrete spectra. A number of properties of the corresponding sequence of orthogonal polynomials is studied including the convergence of their zeros, the vague convergence of the zero counting measures and of the Christoffel–Darboux kernels on the diagonal. Particularly, if the inverse of <span><math><mi>J</mi></math></span> belongs to some Schatten class, we identify the asymptotic behavior of the sequence of orthogonal polynomials and express it in terms of its regularized characteristic function. In the even more special case when the inverse of <span><math><mi>J</mi></math></span> belongs to the trace class, we derive various formulas for the orthogonality measure, eigenvectors of <span><math><mi>J</mi></math></span> as well as for the functions of the second kind and related objects. These general results are given a more explicit form in the case when <span><math><mrow><mo>−</mo><mi>J</mi></mrow></math></span> is a generator of a Birth–Death process. Among others, we provide a formula for the trace of the inverse of <span><math><mi>J</mi></math></span>. We illustrate our results by introducing and studying a modification of the <span><math><mi>q</mi></math></span>-Laguerre polynomials corresponding to a determinate moment problem.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106217"},"PeriodicalIF":0.6,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144763703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and approximation properties of exact neural network interpolation operators activated by entire functions 全函数激活的精确神经网络插值算子的构造及逼近性质
IF 0.6 3区 数学 Q2 MATHEMATICS Pub Date : 2025-07-28 DOI: 10.1016/j.jat.2025.106215
Dansheng Yu
The construction and approximation properties of exact neural network interpolation are the important and challenging topics on approximation by neural networks. Most research on exact neural network interpolation has focused on establishing existence, with very few specifically constructed interpolation neural networks proposed. The main purpose of the present paper is to provide a method for directly constructing exact neural network interpolation operators, which has the advantages that all the components in the neural network operators are explicitly known, such as the coefficients, the weights and the thresholds. By employing some important methods in approximation theory, such as the equivalence between the Kfunctional and the modulus of continuity of the function, Berens–Lorentz Lemma, and two useful estimates of the derivatives of the operators, we establish both the direct and the converse results of approximation by the new interpolation operators, and thus obtain an equivalence characterization theorem. We also introduce a type of neural network interpolation operators with four layers and a type of max-product neural network operators, rigorously analyzing their approximation properties.
精确神经网络插值的构造和逼近性质是神经网络逼近研究中的一个重要而富有挑战性的课题。大多数关于精确神经网络插值的研究都集中在建立存在性上,很少有人提出专门构造的插值神经网络。本文的主要目的是提供一种直接构造精确神经网络插值算子的方法,该方法的优点是神经网络算子中的所有成分,如系数、权值和阈值都是明确已知的。利用近似理论中的一些重要方法,如函数的K−泛函与连续模的等价性、Berens-Lorentz引理以及算子导数的两个有用的估计,我们建立了新的插值算子近似的正反结果,从而得到了等价表征定理。介绍了一类四层神经网络插值算子和一类极大积神经网络算子,并严格分析了它们的逼近性质。
{"title":"Construction and approximation properties of exact neural network interpolation operators activated by entire functions","authors":"Dansheng Yu","doi":"10.1016/j.jat.2025.106215","DOIUrl":"10.1016/j.jat.2025.106215","url":null,"abstract":"<div><div>The construction and approximation properties of exact neural network interpolation are the important and challenging topics on approximation by neural networks. Most research on exact neural network interpolation has focused on establishing existence, with very few specifically constructed interpolation neural networks proposed. The main purpose of the present paper is to provide a method for directly constructing exact neural network interpolation operators, which has the advantages that all the components in the neural network operators are explicitly known, such as the coefficients, the weights and the thresholds. By employing some important methods in approximation theory, such as the equivalence between the <span><math><mrow><mi>K</mi><mo>−</mo></mrow></math></span>functional and the modulus of continuity of the function, Berens–Lorentz Lemma, and two useful estimates of the derivatives of the operators, we establish both the direct and the converse results of approximation by the new interpolation operators, and thus obtain an equivalence characterization theorem. We also introduce a type of neural network interpolation operators with four layers and a type of max-product neural network operators, rigorously analyzing their approximation properties.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106215"},"PeriodicalIF":0.6,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144721942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Approximation Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1