首页 > 最新文献

International Journal of Robotics Research最新文献

英文 中文
Supervised Bayesian specification inference from demonstrations 从演示中进行监督贝叶斯规范推断
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-10-04 DOI: 10.1177/02783649231204659
Ankit J. Shah, Pritish Kamath, Shen Li, Patrick L. Craven, Kevin J. Landers, Kevin Oden, Julie Shah
When observing task demonstrations, human apprentices are able to identify whether a given task is executed correctly long before they gain expertise in actually performing that task. Prior research into learning from demonstrations (LfD) has failed to capture this notion of the acceptability of a task’s execution; meanwhile, temporal logics provide a flexible language for expressing task specifications. Inspired by this, we present Bayesian specification inference, a probabilistic model for inferring task specification as a temporal logic formula. We incorporate methods from probabilistic programming to define our priors, along with a domain-independent likelihood function to enable sampling-based inference. We demonstrate the efficacy of our model for inferring specifications, with over 90% similarity observed between the inferred specification and the ground truth—both within a synthetic domain and during a real-world table setting task.
当观察任务演示时,人类学徒能够在获得实际执行任务的专业知识之前很久就识别出给定任务是否正确执行。先前对从演示中学习(LfD)的研究未能捕捉到任务执行的可接受性这一概念;同时,时态逻辑为表达任务规范提供了一种灵活的语言。受此启发,我们提出了贝叶斯规范推理,这是一种将任务规范推断为时间逻辑公式的概率模型。我们结合了概率编程的方法来定义我们的先验,以及一个独立于域的似然函数来实现基于抽样的推理。我们证明了我们的模型在推断规范方面的有效性,在推断的规范和基本事实之间观察到超过90%的相似性——无论是在合成域内还是在真实世界的表设置任务期间。
{"title":"Supervised Bayesian specification inference from demonstrations","authors":"Ankit J. Shah, Pritish Kamath, Shen Li, Patrick L. Craven, Kevin J. Landers, Kevin Oden, Julie Shah","doi":"10.1177/02783649231204659","DOIUrl":"https://doi.org/10.1177/02783649231204659","url":null,"abstract":"When observing task demonstrations, human apprentices are able to identify whether a given task is executed correctly long before they gain expertise in actually performing that task. Prior research into learning from demonstrations (LfD) has failed to capture this notion of the acceptability of a task’s execution; meanwhile, temporal logics provide a flexible language for expressing task specifications. Inspired by this, we present Bayesian specification inference, a probabilistic model for inferring task specification as a temporal logic formula. We incorporate methods from probabilistic programming to define our priors, along with a domain-independent likelihood function to enable sampling-based inference. We demonstrate the efficacy of our model for inferring specifications, with over 90% similarity observed between the inferred specification and the ground truth—both within a synthetic domain and during a real-world table setting task.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable nullspace adaptive parameter identification of 6 degree-of-freedom plant and actuator models for underactuated vehicles: Theory and experimental evaluation 欠驱动车辆六自由度装置和执行器模型的稳定零空间自适应参数辨识:理论与实验评估
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-10-01 DOI: 10.1177/02783649231191184
Zachary J. Harris, Annie M. Mao, Tyler M. Paine, Louis L. Whitcomb
Model-based approaches to navigation, control, and fault detection that utilize precise nonlinear models of vehicle plant dynamics will enable more accurate control and navigation, assured autonomy, and more complex missions for such vehicles. This paper reports novel theoretical and experimental results addressing the problem of parameter estimation of plant and actuator models for underactuated underwater vehicles operating in 6 degrees-of-freedom (DOF) whose dynamics are modeled by finite-dimensional Newton-Euler equations. This paper reports the first theoretical approach and experimental validation to identify simultaneously plant-model parameters (parameters such as mass, added mass, hydrodynamic drag, and buoyancy) and control-actuator parameters (control-surface models and thruster models) in 6-DOF. Most previously reported studies on parameter identification assume that the control-actuator parameters are known a priori. Moreover, this paper reports the first proof of convergence of the parameter estimates to the true set of parameters for this class of vehicles under a persistence of excitation condition. The reported adaptive identification (AID) algorithm does not require instrumentation of 6-DOF vehicle acceleration, which is required by conventional approaches to parameter estimation such as least squares. Additionally, the reported AID algorithm is applicable under any arbitrary open-loop or closed-loop control law. We report simulation and experimental results for identifying the plant-model and control-actuator parameters for an L3 OceanServer Iver3 autonomous underwater vehicle. We believe this general approach to AID could be extended to apply to other classes of machines and other classes of marine, land, aerial, and space vehicles.
基于模型的导航、控制和故障检测方法,利用精确的车辆动态非线性模型,将为此类车辆提供更精确的控制和导航,确保自主性,以及更复杂的任务。本文报道了基于有限维牛顿-欧拉方程的六自由度欠驱动水下航行器的装置和执行器模型参数估计问题的理论和实验结果。本文报道了第一个同时识别六自由度植物模型参数(如质量、附加质量、水动力阻力和浮力等参数)和控制执行器参数(控制面模型和推进器模型)的理论方法和实验验证。大多数先前报道的参数识别研究假设控制执行器参数是先验已知的。此外,本文还首次证明了该类车辆在持续激励条件下参数估计对真参数集的收敛性。所报道的自适应识别(AID)算法不需要测量六自由度车辆加速度,而传统的参数估计方法(如最小二乘法)需要测量六自由度车辆加速度。此外,本文提出的AID算法适用于任意开环或闭环控制律。我们报告了L3 OceanServer Iver3自主水下航行器的工厂模型和控制执行器参数识别的仿真和实验结果。我们认为,这种对援助的一般做法可以扩大到适用于其他种类的机器和其他种类的海洋、陆地、空中和空间交通工具。
{"title":"Stable nullspace adaptive parameter identification of 6 degree-of-freedom plant and actuator models for underactuated vehicles: Theory and experimental evaluation","authors":"Zachary J. Harris, Annie M. Mao, Tyler M. Paine, Louis L. Whitcomb","doi":"10.1177/02783649231191184","DOIUrl":"https://doi.org/10.1177/02783649231191184","url":null,"abstract":"Model-based approaches to navigation, control, and fault detection that utilize precise nonlinear models of vehicle plant dynamics will enable more accurate control and navigation, assured autonomy, and more complex missions for such vehicles. This paper reports novel theoretical and experimental results addressing the problem of parameter estimation of plant and actuator models for underactuated underwater vehicles operating in 6 degrees-of-freedom (DOF) whose dynamics are modeled by finite-dimensional Newton-Euler equations. This paper reports the first theoretical approach and experimental validation to identify simultaneously plant-model parameters (parameters such as mass, added mass, hydrodynamic drag, and buoyancy) and control-actuator parameters (control-surface models and thruster models) in 6-DOF. Most previously reported studies on parameter identification assume that the control-actuator parameters are known a priori. Moreover, this paper reports the first proof of convergence of the parameter estimates to the true set of parameters for this class of vehicles under a persistence of excitation condition. The reported adaptive identification (AID) algorithm does not require instrumentation of 6-DOF vehicle acceleration, which is required by conventional approaches to parameter estimation such as least squares. Additionally, the reported AID algorithm is applicable under any arbitrary open-loop or closed-loop control law. We report simulation and experimental results for identifying the plant-model and control-actuator parameters for an L3 OceanServer Iver3 autonomous underwater vehicle. We believe this general approach to AID could be extended to apply to other classes of machines and other classes of marine, land, aerial, and space vehicles.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136247626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel-GPA: A globally optimal solution to deformable SLAM in closed-form 核- gpa:可变形SLAM的全局最优解
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-29 DOI: 10.1177/02783649231195380
Fang Bai, Kanzhi Wu, Adrien Bartoli
We study the generalized Procrustes analysis (GPA), as a minimal formulation to the simultaneous localization and mapping (SLAM) problem. We propose KernelGPA, a novel global registration technique to solve SLAM in the deformable environment. We propose the concept of deformable transformation which encodes the entangled pose and deformation. We define deformable transformations using a kernel method, and show that both the deformable transformations and the environment map can be solved globally in closed-form, up to global scale ambiguities. We solve the scale ambiguities by an optimization formulation that maximizes rigidity. We demonstrate KernelGPA using the Gaussian kernel, and validate the superiority of KernelGPA with various datasets. Code and data are available at url{https://bitbucket.org/FangBai/deformableprocrustes}.
我们研究了广义Procrustes分析(GPA),作为同时定位和映射(SLAM)问题的最小化表述。我们提出了一种新的全局配准技术KernelGPA来解决可变形环境下的SLAM问题。提出了对纠缠位姿和变形进行编码的可变形变换概念。我们使用核方法定义了可变形变换,并证明了可变形变换和环境映射都可以以封闭形式全局求解,直至全局范围的模糊。我们通过最大化刚性的优化公式来解决尺度歧义。我们使用高斯核证明了KernelGPA,并在各种数据集上验证了KernelGPA的优越性。代码和数据可在url{https://bitbucket.org/FangBai/deformableprocrustes}上获得。
{"title":"Kernel-GPA: A globally optimal solution to deformable SLAM in closed-form","authors":"Fang Bai, Kanzhi Wu, Adrien Bartoli","doi":"10.1177/02783649231195380","DOIUrl":"https://doi.org/10.1177/02783649231195380","url":null,"abstract":"We study the generalized Procrustes analysis (GPA), as a minimal formulation to the simultaneous localization and mapping (SLAM) problem. We propose KernelGPA, a novel global registration technique to solve SLAM in the deformable environment. We propose the concept of deformable transformation which encodes the entangled pose and deformation. We define deformable transformations using a kernel method, and show that both the deformable transformations and the environment map can be solved globally in closed-form, up to global scale ambiguities. We solve the scale ambiguities by an optimization formulation that maximizes rigidity. We demonstrate KernelGPA using the Gaussian kernel, and validate the superiority of KernelGPA with various datasets. Code and data are available at url{https://bitbucket.org/FangBai/deformableprocrustes}.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic movement primitives in robotics: A tutorial survey 机器人中的动态运动原语:教学调查
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-23 DOI: 10.1177/02783649231201196
Matteo Saveriano, Fares J. Abu-Dakka, Aljaz Kramberger, Luka Peternel
Biological systems, including human beings, have the innate ability to perform complex tasks in a versatile and agile manner. Researchers in sensorimotor control have aimed to comprehend and formally define this innate characteristic. The idea, supported by several experimental findings, that biological systems are able to combine and adapt basic units of motion into complex tasks finally leads to the formulation of the motor primitives’ theory. In this respect, Dynamic Movement Primitives (DMPs) represent an elegant mathematical formulation of the motor primitives as stable dynamical systems and are well suited to generate motor commands for artificial systems like robots. In the last decades, DMPs have inspired researchers in different robotic fields including imitation and reinforcement learning, optimal control, physical interaction, and human–robot co-working, resulting in a considerable amount of published papers. The goal of this tutorial survey is two-fold. On one side, we present the existing DMP formulations in rigorous mathematical terms and discuss the advantages and limitations of each approach as well as practical implementation details. In the tutorial vein, we also search for existing implementations of presented approaches and release several others. On the other side, we provide a systematic and comprehensive review of existing literature and categorize state-of-the-art work on DMP. The paper concludes with a discussion on the limitations of DMPs and an outline of possible research directions.
生物系统,包括人类,具有以灵活多样的方式执行复杂任务的天生能力。感觉运动控制的研究人员一直致力于理解和正式定义这种先天特征。生物系统能够将基本的运动单位组合并适应于复杂的任务,这一观点得到了几个实验结果的支持,最终导致了运动原语理论的形成。在这方面,动态运动原语(Dynamic Movement Primitives, dmp)代表了一种优雅的数学公式,将运动原语作为稳定的动力系统,非常适合为机器人等人工系统生成运动命令。在过去的几十年里,dmp启发了不同机器人领域的研究人员,包括模仿和强化学习、最优控制、物理交互和人机协同工作,并发表了大量论文。本教程调查的目的有两个。一方面,我们用严格的数学术语介绍了现有的DMP公式,并讨论了每种方法的优点和局限性以及实际实现细节。在本教程中,我们还搜索了所提供方法的现有实现,并发布了其他一些实现。另一方面,我们对现有文献进行了系统和全面的回顾,并对DMP的最新工作进行了分类。本文最后讨论了DMPs的局限性,并概述了可能的研究方向。
{"title":"Dynamic movement primitives in robotics: A tutorial survey","authors":"Matteo Saveriano, Fares J. Abu-Dakka, Aljaz Kramberger, Luka Peternel","doi":"10.1177/02783649231201196","DOIUrl":"https://doi.org/10.1177/02783649231201196","url":null,"abstract":"Biological systems, including human beings, have the innate ability to perform complex tasks in a versatile and agile manner. Researchers in sensorimotor control have aimed to comprehend and formally define this innate characteristic. The idea, supported by several experimental findings, that biological systems are able to combine and adapt basic units of motion into complex tasks finally leads to the formulation of the motor primitives’ theory. In this respect, Dynamic Movement Primitives (DMPs) represent an elegant mathematical formulation of the motor primitives as stable dynamical systems and are well suited to generate motor commands for artificial systems like robots. In the last decades, DMPs have inspired researchers in different robotic fields including imitation and reinforcement learning, optimal control, physical interaction, and human–robot co-working, resulting in a considerable amount of published papers. The goal of this tutorial survey is two-fold. On one side, we present the existing DMP formulations in rigorous mathematical terms and discuss the advantages and limitations of each approach as well as practical implementation details. In the tutorial vein, we also search for existing implementations of presented approaches and release several others. On the other side, we provide a systematic and comprehensive review of existing literature and categorize state-of-the-art work on DMP. The paper concludes with a discussion on the limitations of DMPs and an outline of possible research directions.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135957920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 66
A mathematical characterization of minimally sufficient robot brains 机器人大脑的数学表征
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-19 DOI: 10.1177/02783649231198898
Basak Sakcak, Kalle G Timperi, Vadim Weinstein, Steven M LaValle
This paper addresses the lower limits of encoding and processing the information acquired through interactions between an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of action and observation histories. Both are modeled as transition systems. We want to know the weakest internal system that is sufficient for achieving passive (filtering) and active (planning) tasks. We introduce the notion of an information transition system (ITS) for the internal system which is a transition system over a space of information states that reflect a robot’s or other observer’s perspective based on limited sensing, memory, computation, and actuation. An ITS is viewed as a filter and a policy or plan is viewed as a function that labels the states of this ITS. Regardless of whether internal systems are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. We establish, in a general setting, that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for modeling a system given input-output relations.
本文讨论了编码和处理通过内部系统(机器人算法或软件)和外部系统(机器人身体及其环境)在行动和观察历史方面的相互作用获得的信息的下限。两者都被建模为转换系统。我们想知道最弱的内部系统,它足以实现被动(过滤)和主动(计划)任务。我们为内部系统引入了信息转换系统(ITS)的概念,这是一个基于有限感知、记忆、计算和驱动的反映机器人或其他观察者视角的信息状态空间的转换系统。将ITS视为过滤器,将策略或计划视为标记该ITS状态的功能。无论内部系统是通过学习算法、规划算法还是人类洞察力获得的,我们都想知道给定机器人硬件和任务的可行性极限。在一般情况下,我们建立了最小信息转换系统(ITSs)在合理的等价假设下存在,并且在某些一般条件下是唯一的。然后,我们应用该理论对几个问题产生新的见解,包括最优传感器融合/滤波,解决基本规划任务,以及为给定输入输出关系的系统建模找到最小表示。
{"title":"A mathematical characterization of minimally sufficient robot brains","authors":"Basak Sakcak, Kalle G Timperi, Vadim Weinstein, Steven M LaValle","doi":"10.1177/02783649231198898","DOIUrl":"https://doi.org/10.1177/02783649231198898","url":null,"abstract":"This paper addresses the lower limits of encoding and processing the information acquired through interactions between an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of action and observation histories. Both are modeled as transition systems. We want to know the weakest internal system that is sufficient for achieving passive (filtering) and active (planning) tasks. We introduce the notion of an information transition system (ITS) for the internal system which is a transition system over a space of information states that reflect a robot’s or other observer’s perspective based on limited sensing, memory, computation, and actuation. An ITS is viewed as a filter and a policy or plan is viewed as a function that labels the states of this ITS. Regardless of whether internal systems are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. We establish, in a general setting, that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for modeling a system given input-output relations.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135061052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tac2Pose: Tactile object pose estimation from the first touch Tac2Pose:从第一次触摸开始的触觉对象姿态估计
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-11 DOI: 10.1177/02783649231196925
Maria Bauza, Antonia Bronars, Alberto Rodriguez
In this paper, we present Tac2Pose, an object-specific approach to tactile pose estimation from the first touch for known objects. Given the object geometry, we learn a tailored perception model in simulation that estimates a probability distribution over possible object poses given a tactile observation. To do so, we simulate the contact shapes that a dense set of object poses would produce on the sensor. Then, given a new contact shape obtained from the sensor, we match it against the pre-computed set using an object-specific embedding learned using contrastive learning. We obtain contact shapes from the sensor with an object-agnostic calibration step that maps RGB (red, green, blue) tactile observations to binary contact shapes. This mapping, which can be reused across object and sensor instances, is the only step trained with real sensor data. This results in a perception model that localizes objects from the first real tactile observation. Importantly, it produces pose distributions and can incorporate additional pose constraints coming from other perception systems, multiple contacts, or priors. We provide quantitative results for 20 objects. Tac2Pose provides high accuracy pose estimations from distinctive tactile observations while regressing meaningful pose distributions to account for those contact shapes that could result from different object poses. We extend and test Tac2Pose in multi-contact scenarios where two tactile sensors are simultaneously in contact with the object, as during a grasp with a parallel jaw gripper. We further show that when the output pose distribution is filtered with a prior on the object pose, Tac2Pose is often able to improve significantly on the prior. This suggests synergistic use of Tac2Pose with additional sensing modalities (e.g., vision) even in cases where the tactile observation from a grasp is not sufficiently discriminative. Given a coarse estimate of an object’s pose, even ambiguous contacts can be used to determine an object’s pose precisely. We also test Tac2Pose on object models reconstructed from a 3D scanner, to evaluate the robustness to uncertainty in the object model. We show that even in the presence of model uncertainty, Tac2Pose is able to achieve fine accuracy comparable to when the object model is the manufacturer’s CAD (computer-aided design) model. Finally, we demonstrate the advantages of Tac2Pose compared with three baseline methods for tactile pose estimation: directly regressing the object pose with a neural network, matching an observed contact to a set of possible contacts using a standard classification neural network, and direct pixel comparison of an observed contact with a set of possible contacts. Website: mcube.mit.edu/research/tac2pose.html
在本文中,我们提出了Tac2Pose,这是一种特定于物体的方法,从已知物体的第一次触摸开始进行触觉姿态估计。给定物体的几何形状,我们在模拟中学习了一个定制的感知模型,该模型可以根据触觉观察估计物体可能姿势的概率分布。为了做到这一点,我们模拟了一组密集的物体姿势在传感器上产生的接触形状。然后,给定从传感器获得的新接触形状,我们使用使用对比学习学习的特定对象嵌入将其与预先计算的集合进行匹配。我们通过一个与物体无关的校准步骤从传感器获得接触形状,该步骤将RGB(红、绿、蓝)触觉观察映射到二进制接触形状。这种映射可以跨对象和传感器实例重用,是唯一使用真实传感器数据训练的步骤。这就产生了一个感知模型,它可以根据第一次真实的触觉观察来定位物体。重要的是,它产生姿势分布,并可以结合来自其他感知系统、多个接触或先验的额外姿势约束。我们提供了20个对象的定量结果。Tac2Pose从不同的触觉观察中提供高精度的姿势估计,同时回归有意义的姿势分布,以解释不同物体姿势可能导致的接触形状。我们在多接触场景中扩展和测试了Tac2Pose,在多接触场景中,两个触觉传感器同时与物体接触,就像在用平行颚爪抓取时一样。我们进一步表明,当用物体姿态的先验滤波输出姿态分布时,Tac2Pose通常能够显著改善先验。这表明Tac2Pose与其他传感模式(例如视觉)的协同使用,即使在抓取的触觉观察不够区分的情况下也是如此。给定物体姿态的粗略估计,即使是模糊的接触也可以用来精确地确定物体的姿态。我们还在3D扫描仪重建的对象模型上测试了Tac2Pose,以评估对象模型对不确定性的鲁棒性。我们表明,即使在存在模型不确定性的情况下,Tac2Pose也能够达到与对象模型是制造商的CAD(计算机辅助设计)模型时相当的精度。最后,我们展示了Tac2Pose与三种触觉姿态估计基线方法的优势:使用神经网络直接回归物体姿态,使用标准分类神经网络将观察到的接触与一组可能的接触进行匹配,以及将观察到的接触与一组可能的接触进行直接的像素比较。网站:mcube.mit.edu/research/tac2pose.html
{"title":"Tac2Pose: Tactile object pose estimation from the first touch","authors":"Maria Bauza, Antonia Bronars, Alberto Rodriguez","doi":"10.1177/02783649231196925","DOIUrl":"https://doi.org/10.1177/02783649231196925","url":null,"abstract":"In this paper, we present Tac2Pose, an object-specific approach to tactile pose estimation from the first touch for known objects. Given the object geometry, we learn a tailored perception model in simulation that estimates a probability distribution over possible object poses given a tactile observation. To do so, we simulate the contact shapes that a dense set of object poses would produce on the sensor. Then, given a new contact shape obtained from the sensor, we match it against the pre-computed set using an object-specific embedding learned using contrastive learning. We obtain contact shapes from the sensor with an object-agnostic calibration step that maps RGB (red, green, blue) tactile observations to binary contact shapes. This mapping, which can be reused across object and sensor instances, is the only step trained with real sensor data. This results in a perception model that localizes objects from the first real tactile observation. Importantly, it produces pose distributions and can incorporate additional pose constraints coming from other perception systems, multiple contacts, or priors. We provide quantitative results for 20 objects. Tac2Pose provides high accuracy pose estimations from distinctive tactile observations while regressing meaningful pose distributions to account for those contact shapes that could result from different object poses. We extend and test Tac2Pose in multi-contact scenarios where two tactile sensors are simultaneously in contact with the object, as during a grasp with a parallel jaw gripper. We further show that when the output pose distribution is filtered with a prior on the object pose, Tac2Pose is often able to improve significantly on the prior. This suggests synergistic use of Tac2Pose with additional sensing modalities (e.g., vision) even in cases where the tactile observation from a grasp is not sufficiently discriminative. Given a coarse estimate of an object’s pose, even ambiguous contacts can be used to determine an object’s pose precisely. We also test Tac2Pose on object models reconstructed from a 3D scanner, to evaluate the robustness to uncertainty in the object model. We show that even in the presence of model uncertainty, Tac2Pose is able to achieve fine accuracy comparable to when the object model is the manufacturer’s CAD (computer-aided design) model. Finally, we demonstrate the advantages of Tac2Pose compared with three baseline methods for tactile pose estimation: directly regressing the object pose with a neural network, matching an observed contact to a set of possible contacts using a standard classification neural network, and direct pixel comparison of an observed contact with a set of possible contacts. Website: mcube.mit.edu/research/tac2pose.html","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Abstracting road traffic via topological braids: Applications to traffic flow analysis and distributed control 通过拓扑辫提取道路交通:在交通流分析和分布式控制中的应用
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-08 DOI: 10.1177/02783649231188740
Christoforos Mavrogiannis, Jonathan DeCastro, S. Srinivasa
Despite the structure of road environments, imposed via geometry and rules, traffic flows exhibit complex multiagent dynamics. Reasoning about such dynamics is challenging due to the high dimensionality of possible behavior, the heterogeneity of agents, and the stochasticity of their decision-making. Modeling approaches learning associations in Euclidean spaces are often limited by their high sample complexity and the sparseness of available datasets. Our key insight is that the structure of traffic behavior could be effectively captured by lower-dimensional abstractions that emphasize critical interaction relationships. In this article, we abstract the space of behavior in traffic scenes into a discrete set of interaction modes, described in interpretable, symbolic form using topological braids. First, through a case study across real-world datasets, we show that braids can describe a wide range of complex behavior and uncover insights about the interactivity of vehicles. For instance, we find that high vehicle density does not always map to rich mixing patterns among them. Further, we show that our representation can effectively guide decision-making in traffic scenes. We describe a mechanism that probabilistically maps vehicles’ past behavior to modes of future interaction. We integrate this mechanism into a control algorithm that treats navigation as minimization of uncertainty over interaction modes, and investigate its performance on the task of traversing uncontrolled intersections in simulation. We show that our algorithm enables agents to coordinate significantly safer traversals for similar efficiency compared to baselines explicitly reasoning in the space of trajectories across a series of challenging scenarios.
尽管道路环境的结构是通过几何形状和规则强加的,但交通流表现出复杂的多智能体动力学。由于可能行为的高维性、主体的异质性以及决策的随机性,对这种动力学进行推理是具有挑战性的。欧几里得空间中学习关联的建模方法通常受到其高样本复杂性和可用数据集稀疏性的限制。我们的关键见解是,流量行为的结构可以通过强调关键交互关系的低维抽象有效地捕捉。在本文中,我们将交通场景中的行为空间抽象为一组离散的交互模式,并使用拓扑辫以可解释的符号形式进行描述。首先,通过对真实世界数据集的案例研究,我们表明辫子可以描述广泛的复杂行为,并揭示有关车辆互动性的见解。例如,我们发现高车辆密度并不总是映射到它们之间丰富的混合模式。此外,我们还证明了我们的表示可以有效地指导交通场景中的决策。我们描述了一种将车辆过去的行为概率映射到未来交互模式的机制。我们将这一机制集成到一种控制算法中,该算法将导航视为交互模式下不确定性的最小化,并在模拟中研究其在穿越非受控交叉口任务中的性能。我们表明,与在一系列具有挑战性的场景中在轨迹空间中进行显式推理的基线相比,我们的算法使代理能够协调明显更安全的遍历,以获得类似的效率。
{"title":"Abstracting road traffic via topological braids: Applications to traffic flow analysis and distributed control","authors":"Christoforos Mavrogiannis, Jonathan DeCastro, S. Srinivasa","doi":"10.1177/02783649231188740","DOIUrl":"https://doi.org/10.1177/02783649231188740","url":null,"abstract":"Despite the structure of road environments, imposed via geometry and rules, traffic flows exhibit complex multiagent dynamics. Reasoning about such dynamics is challenging due to the high dimensionality of possible behavior, the heterogeneity of agents, and the stochasticity of their decision-making. Modeling approaches learning associations in Euclidean spaces are often limited by their high sample complexity and the sparseness of available datasets. Our key insight is that the structure of traffic behavior could be effectively captured by lower-dimensional abstractions that emphasize critical interaction relationships. In this article, we abstract the space of behavior in traffic scenes into a discrete set of interaction modes, described in interpretable, symbolic form using topological braids. First, through a case study across real-world datasets, we show that braids can describe a wide range of complex behavior and uncover insights about the interactivity of vehicles. For instance, we find that high vehicle density does not always map to rich mixing patterns among them. Further, we show that our representation can effectively guide decision-making in traffic scenes. We describe a mechanism that probabilistically maps vehicles’ past behavior to modes of future interaction. We integrate this mechanism into a control algorithm that treats navigation as minimization of uncertainty over interaction modes, and investigate its performance on the task of traversing uncontrolled intersections in simulation. We show that our algorithm enables agents to coordinate significantly safer traversals for similar efficiency compared to baselines explicitly reasoning in the space of trajectories across a series of challenging scenarios.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48199767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iterative residual policy: For goal-conditioned dynamic manipulation of deformable objects 迭代残差策略:用于可变形对象的目标条件动态操作
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-07 DOI: 10.1177/02783649231201201
Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, Shuran Song
This paper tackles the task of goal-conditioned dynamic manipulation of deformable objects. This task is highly challenging due to its complex dynamics (introduced by object deformation and high-speed action) and strict task requirements (defined by a precise goal specification). To address these challenges, we present Iterative Residual Policy (IRP), a general learning framework applicable to repeatable tasks with complex dynamics. IRP learns an implicit policy via delta dynamics—instead of modeling the entire dynamical system and inferring actions from that model, IRP learns delta dynamics that predict the effects of delta action on the previously observed trajectory. When combined with adaptive action sampling, the system can quickly optimize its actions online to reach a specified goal. We demonstrate the effectiveness of IRP on two tasks: whipping a rope to hit a target point and swinging a cloth to reach a target pose. Despite being trained only in simulation on a fixed robot setup, IRP is able to efficiently generalize to noisy real-world dynamics, new objects with unseen physical properties, and even different robot hardware embodiments, demonstrating its excellent generalization capability relative to alternative approaches.
本文主要研究可变形物体的目标条件动态操纵问题。由于其复杂的动力学(由物体变形和高速动作引入)和严格的任务要求(由精确的目标规范定义),该任务具有很高的挑战性。为了解决这些挑战,我们提出了迭代残差策略(IRP),这是一个适用于具有复杂动态的可重复任务的通用学习框架。IRP通过delta动力学学习隐式策略,而不是对整个动力系统建模并从该模型推断动作,IRP学习delta动力学,预测delta作用对先前观察到的轨迹的影响。当与自适应动作采样相结合时,系统可以快速在线优化其动作以达到指定目标。我们在两个任务上展示了IRP的有效性:鞭打绳子以击中目标点和摆动布料以达到目标姿势。尽管仅在固定机器人设置的模拟中进行训练,但IRP能够有效地推广到嘈杂的现实世界动态,具有未见物理特性的新对象,甚至不同的机器人硬件实施例,证明其相对于替代方法的出色泛化能力。
{"title":"Iterative residual policy: For goal-conditioned dynamic manipulation of deformable objects","authors":"Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, Shuran Song","doi":"10.1177/02783649231201201","DOIUrl":"https://doi.org/10.1177/02783649231201201","url":null,"abstract":"This paper tackles the task of goal-conditioned dynamic manipulation of deformable objects. This task is highly challenging due to its complex dynamics (introduced by object deformation and high-speed action) and strict task requirements (defined by a precise goal specification). To address these challenges, we present Iterative Residual Policy (IRP), a general learning framework applicable to repeatable tasks with complex dynamics. IRP learns an implicit policy via delta dynamics—instead of modeling the entire dynamical system and inferring actions from that model, IRP learns delta dynamics that predict the effects of delta action on the previously observed trajectory. When combined with adaptive action sampling, the system can quickly optimize its actions online to reach a specified goal. We demonstrate the effectiveness of IRP on two tasks: whipping a rope to hit a target point and swinging a cloth to reach a target pose. Despite being trained only in simulation on a fixed robot setup, IRP is able to efficiently generalize to noisy real-world dynamics, new objects with unseen physical properties, and even different robot hardware embodiments, demonstrating its excellent generalization capability relative to alternative approaches.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135048632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential Monte Carlo localization in topometric appearance maps 地形图外观图的顺序蒙特卡罗定位
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-05 DOI: 10.1177/02783649231197723
Alberto Jaenal, Francisco-Angel Moreno, J. Gonzalez-Jimenez
Representing the scene appearance by a global image descriptor (BoW, NetVLAD, etc.) is a widely adopted choice to address Visual Place Recognition (VPR). The main reasons are that appearance descriptors can be effectively provided with radiometric and perspective invariances as well as they can deal with large environments because of their compactness. However, addressing metric localization with such descriptors (a problem called Appearance-based Localization or AbL) achieves much poorer accuracy than those techniques exploiting the observation of 3D landmarks, which represent the standard for visual localization. In this paper, we propose ALLOM (Appearance-based Localization with Local Observation Models) which addresses AbL by leveraging the topological location of a robot within a map to achieve accurate metric estimations. This topology-assisted metric localization is implemented with a sequential Monte Carlo Bayesian filter that applies a specific observation model for each different place of the environment, thus taking advantage of the local correlation between the pose and the appearance descriptor within each region. ALLOM also benefits from the topological structure of the map to detect eventual robot loss-of-tracking and to effectively cope with its relocalization by applying VPR. Our proposal demonstrates superior metric localization capability compared to different state-of-the-art AbL methods under a wide range of situations.
用全局图像描述符(BoW, NetVLAD等)表示场景外观是解决视觉位置识别(VPR)的一种广泛采用的选择。主要原因是外观描述符可以有效地提供辐射和透视不变性,并且由于它们的紧凑性,它们可以处理大型环境。然而,使用这种描述符(一个称为基于外观的定位或AbL的问题)解决度量定位的准确性远远低于那些利用3D地标观察的技术,后者代表了视觉定位的标准。在本文中,我们提出了allm(基于局部观测模型的基于外观的定位),它通过利用机器人在地图中的拓扑位置来实现精确的度量估计来解决AbL问题。这种拓扑辅助度量定位是通过顺序蒙特卡罗贝叶斯滤波器实现的,该滤波器对环境的每个不同位置应用特定的观测模型,从而利用每个区域内姿态和外观描述符之间的局部相关性。allm还受益于地图的拓扑结构来检测机器人最终的丢失跟踪,并通过应用VPR有效地处理其重新定位。与不同的最先进的AbL方法相比,我们的方案在广泛的情况下展示了优越的度量定位能力。
{"title":"Sequential Monte Carlo localization in topometric appearance maps","authors":"Alberto Jaenal, Francisco-Angel Moreno, J. Gonzalez-Jimenez","doi":"10.1177/02783649231197723","DOIUrl":"https://doi.org/10.1177/02783649231197723","url":null,"abstract":"Representing the scene appearance by a global image descriptor (BoW, NetVLAD, etc.) is a widely adopted choice to address Visual Place Recognition (VPR). The main reasons are that appearance descriptors can be effectively provided with radiometric and perspective invariances as well as they can deal with large environments because of their compactness. However, addressing metric localization with such descriptors (a problem called Appearance-based Localization or AbL) achieves much poorer accuracy than those techniques exploiting the observation of 3D landmarks, which represent the standard for visual localization. In this paper, we propose ALLOM (Appearance-based Localization with Local Observation Models) which addresses AbL by leveraging the topological location of a robot within a map to achieve accurate metric estimations. This topology-assisted metric localization is implemented with a sequential Monte Carlo Bayesian filter that applies a specific observation model for each different place of the environment, thus taking advantage of the local correlation between the pose and the appearance descriptor within each region. ALLOM also benefits from the topological structure of the map to detect eventual robot loss-of-tracking and to effectively cope with its relocalization by applying VPR. Our proposal demonstrates superior metric localization capability compared to different state-of-the-art AbL methods under a wide range of situations.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47074445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modal-graph 3D shape servoing of deformable objects with raw point clouds 具有原始点云的可变形物体的模态图三维形状伺服
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-09-04 DOI: 10.1177/02783649231198900
Bohan Yang, Congying Sui, Fangxun Zhong, Yun-Hui Liu
Deformable object manipulation (DOM) with point clouds has great potential as nonrigid 3D shapes can be measured without detecting and tracking image features. However, robotic shape control of deformable objects with point clouds is challenging due to: the unknown point correspondences and the noisy partial observability of raw point clouds; the modeling difficulties of the relationship between point clouds and robot motions. To tackle these challenges, this paper introduces a novel modal-graph framework for the model-free shape servoing of deformable objects with raw point clouds. Unlike the existing works studying the object’s geometry structure, we propose a modal graph to describe the low-frequency deformation structure of the DOM system, which is robust to the measurement irregularities. The modal graph enables us to directly extract low-dimensional deformation features from raw point clouds without extra processing of registrations, refinements, and occlusion removal. It also preserves the spatial structure of the DOM system to inverse the feature changes into robot motions. Moreover, as the framework is built with unknown physical and geometric object models, we design an adaptive robust controller to deform the object toward the desired shape while tackling the modeling uncertainties, noises, and disturbances online. The system is proved to be input-to-state stable (ISS) using Lyapunov-based methods. Extensive experiments are conducted to validate our method using linear, planar, tubular, and volumetric objects under different settings.
基于点云的可变形对象操作(DOM)具有很大的潜力,可以在不检测和跟踪图像特征的情况下测量非刚性三维形状。然而,具有点云的可变形物体的机器人形状控制具有挑战性,因为:未知的点对应和原始点云的噪声部分可观测性;点云和机器人运动关系的建模难点。为了解决这些问题,本文引入了一种新的模态图框架,用于具有原始点云的可变形物体的无模型形状伺服。与现有研究对象几何结构的工作不同,我们提出了一种模态图来描述DOM系统的低频变形结构,该模态图对测量不规则性具有鲁棒性。模态图使我们能够直接从原始点云中提取低维变形特征,而无需额外处理配准,细化和遮挡去除。它还保留了DOM系统的空间结构,将特征变化逆化为机器人运动。此外,由于该框架是用未知的物理和几何对象模型构建的,我们设计了一个自适应鲁棒控制器,在处理建模不确定性、噪声和在线干扰的同时,将对象变形到所需的形状。利用基于李亚普诺夫的方法证明了该系统是输入到状态稳定的。广泛的实验进行了验证我们的方法使用线性,平面,管状和体积物体在不同的设置。
{"title":"Modal-graph 3D shape servoing of deformable objects with raw point clouds","authors":"Bohan Yang, Congying Sui, Fangxun Zhong, Yun-Hui Liu","doi":"10.1177/02783649231198900","DOIUrl":"https://doi.org/10.1177/02783649231198900","url":null,"abstract":"Deformable object manipulation (DOM) with point clouds has great potential as nonrigid 3D shapes can be measured without detecting and tracking image features. However, robotic shape control of deformable objects with point clouds is challenging due to: the unknown point correspondences and the noisy partial observability of raw point clouds; the modeling difficulties of the relationship between point clouds and robot motions. To tackle these challenges, this paper introduces a novel modal-graph framework for the model-free shape servoing of deformable objects with raw point clouds. Unlike the existing works studying the object’s geometry structure, we propose a modal graph to describe the low-frequency deformation structure of the DOM system, which is robust to the measurement irregularities. The modal graph enables us to directly extract low-dimensional deformation features from raw point clouds without extra processing of registrations, refinements, and occlusion removal. It also preserves the spatial structure of the DOM system to inverse the feature changes into robot motions. Moreover, as the framework is built with unknown physical and geometric object models, we design an adaptive robust controller to deform the object toward the desired shape while tackling the modeling uncertainties, noises, and disturbances online. The system is proved to be input-to-state stable (ISS) using Lyapunov-based methods. Extensive experiments are conducted to validate our method using linear, planar, tubular, and volumetric objects under different settings.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135403222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Robotics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1