首页 > 最新文献

International Journal of Robotics Research最新文献

英文 中文
A mathematical characterization of minimally sufficient robot brains 机器人大脑的数学表征
1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-19 DOI: 10.1177/02783649231198898
Basak Sakcak, Kalle G Timperi, Vadim Weinstein, Steven M LaValle
This paper addresses the lower limits of encoding and processing the information acquired through interactions between an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of action and observation histories. Both are modeled as transition systems. We want to know the weakest internal system that is sufficient for achieving passive (filtering) and active (planning) tasks. We introduce the notion of an information transition system (ITS) for the internal system which is a transition system over a space of information states that reflect a robot’s or other observer’s perspective based on limited sensing, memory, computation, and actuation. An ITS is viewed as a filter and a policy or plan is viewed as a function that labels the states of this ITS. Regardless of whether internal systems are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. We establish, in a general setting, that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for modeling a system given input-output relations.
本文讨论了编码和处理通过内部系统(机器人算法或软件)和外部系统(机器人身体及其环境)在行动和观察历史方面的相互作用获得的信息的下限。两者都被建模为转换系统。我们想知道最弱的内部系统,它足以实现被动(过滤)和主动(计划)任务。我们为内部系统引入了信息转换系统(ITS)的概念,这是一个基于有限感知、记忆、计算和驱动的反映机器人或其他观察者视角的信息状态空间的转换系统。将ITS视为过滤器,将策略或计划视为标记该ITS状态的功能。无论内部系统是通过学习算法、规划算法还是人类洞察力获得的,我们都想知道给定机器人硬件和任务的可行性极限。在一般情况下,我们建立了最小信息转换系统(ITSs)在合理的等价假设下存在,并且在某些一般条件下是唯一的。然后,我们应用该理论对几个问题产生新的见解,包括最优传感器融合/滤波,解决基本规划任务,以及为给定输入输出关系的系统建模找到最小表示。
{"title":"A mathematical characterization of minimally sufficient robot brains","authors":"Basak Sakcak, Kalle G Timperi, Vadim Weinstein, Steven M LaValle","doi":"10.1177/02783649231198898","DOIUrl":"https://doi.org/10.1177/02783649231198898","url":null,"abstract":"This paper addresses the lower limits of encoding and processing the information acquired through interactions between an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of action and observation histories. Both are modeled as transition systems. We want to know the weakest internal system that is sufficient for achieving passive (filtering) and active (planning) tasks. We introduce the notion of an information transition system (ITS) for the internal system which is a transition system over a space of information states that reflect a robot’s or other observer’s perspective based on limited sensing, memory, computation, and actuation. An ITS is viewed as a filter and a policy or plan is viewed as a function that labels the states of this ITS. Regardless of whether internal systems are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. We establish, in a general setting, that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for modeling a system given input-output relations.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135061052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tac2Pose: Tactile object pose estimation from the first touch Tac2Pose:从第一次触摸开始的触觉对象姿态估计
1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-11 DOI: 10.1177/02783649231196925
Maria Bauza, Antonia Bronars, Alberto Rodriguez
In this paper, we present Tac2Pose, an object-specific approach to tactile pose estimation from the first touch for known objects. Given the object geometry, we learn a tailored perception model in simulation that estimates a probability distribution over possible object poses given a tactile observation. To do so, we simulate the contact shapes that a dense set of object poses would produce on the sensor. Then, given a new contact shape obtained from the sensor, we match it against the pre-computed set using an object-specific embedding learned using contrastive learning. We obtain contact shapes from the sensor with an object-agnostic calibration step that maps RGB (red, green, blue) tactile observations to binary contact shapes. This mapping, which can be reused across object and sensor instances, is the only step trained with real sensor data. This results in a perception model that localizes objects from the first real tactile observation. Importantly, it produces pose distributions and can incorporate additional pose constraints coming from other perception systems, multiple contacts, or priors. We provide quantitative results for 20 objects. Tac2Pose provides high accuracy pose estimations from distinctive tactile observations while regressing meaningful pose distributions to account for those contact shapes that could result from different object poses. We extend and test Tac2Pose in multi-contact scenarios where two tactile sensors are simultaneously in contact with the object, as during a grasp with a parallel jaw gripper. We further show that when the output pose distribution is filtered with a prior on the object pose, Tac2Pose is often able to improve significantly on the prior. This suggests synergistic use of Tac2Pose with additional sensing modalities (e.g., vision) even in cases where the tactile observation from a grasp is not sufficiently discriminative. Given a coarse estimate of an object’s pose, even ambiguous contacts can be used to determine an object’s pose precisely. We also test Tac2Pose on object models reconstructed from a 3D scanner, to evaluate the robustness to uncertainty in the object model. We show that even in the presence of model uncertainty, Tac2Pose is able to achieve fine accuracy comparable to when the object model is the manufacturer’s CAD (computer-aided design) model. Finally, we demonstrate the advantages of Tac2Pose compared with three baseline methods for tactile pose estimation: directly regressing the object pose with a neural network, matching an observed contact to a set of possible contacts using a standard classification neural network, and direct pixel comparison of an observed contact with a set of possible contacts. Website: mcube.mit.edu/research/tac2pose.html
在本文中,我们提出了Tac2Pose,这是一种特定于物体的方法,从已知物体的第一次触摸开始进行触觉姿态估计。给定物体的几何形状,我们在模拟中学习了一个定制的感知模型,该模型可以根据触觉观察估计物体可能姿势的概率分布。为了做到这一点,我们模拟了一组密集的物体姿势在传感器上产生的接触形状。然后,给定从传感器获得的新接触形状,我们使用使用对比学习学习的特定对象嵌入将其与预先计算的集合进行匹配。我们通过一个与物体无关的校准步骤从传感器获得接触形状,该步骤将RGB(红、绿、蓝)触觉观察映射到二进制接触形状。这种映射可以跨对象和传感器实例重用,是唯一使用真实传感器数据训练的步骤。这就产生了一个感知模型,它可以根据第一次真实的触觉观察来定位物体。重要的是,它产生姿势分布,并可以结合来自其他感知系统、多个接触或先验的额外姿势约束。我们提供了20个对象的定量结果。Tac2Pose从不同的触觉观察中提供高精度的姿势估计,同时回归有意义的姿势分布,以解释不同物体姿势可能导致的接触形状。我们在多接触场景中扩展和测试了Tac2Pose,在多接触场景中,两个触觉传感器同时与物体接触,就像在用平行颚爪抓取时一样。我们进一步表明,当用物体姿态的先验滤波输出姿态分布时,Tac2Pose通常能够显著改善先验。这表明Tac2Pose与其他传感模式(例如视觉)的协同使用,即使在抓取的触觉观察不够区分的情况下也是如此。给定物体姿态的粗略估计,即使是模糊的接触也可以用来精确地确定物体的姿态。我们还在3D扫描仪重建的对象模型上测试了Tac2Pose,以评估对象模型对不确定性的鲁棒性。我们表明,即使在存在模型不确定性的情况下,Tac2Pose也能够达到与对象模型是制造商的CAD(计算机辅助设计)模型时相当的精度。最后,我们展示了Tac2Pose与三种触觉姿态估计基线方法的优势:使用神经网络直接回归物体姿态,使用标准分类神经网络将观察到的接触与一组可能的接触进行匹配,以及将观察到的接触与一组可能的接触进行直接的像素比较。网站:mcube.mit.edu/research/tac2pose.html
{"title":"Tac2Pose: Tactile object pose estimation from the first touch","authors":"Maria Bauza, Antonia Bronars, Alberto Rodriguez","doi":"10.1177/02783649231196925","DOIUrl":"https://doi.org/10.1177/02783649231196925","url":null,"abstract":"In this paper, we present Tac2Pose, an object-specific approach to tactile pose estimation from the first touch for known objects. Given the object geometry, we learn a tailored perception model in simulation that estimates a probability distribution over possible object poses given a tactile observation. To do so, we simulate the contact shapes that a dense set of object poses would produce on the sensor. Then, given a new contact shape obtained from the sensor, we match it against the pre-computed set using an object-specific embedding learned using contrastive learning. We obtain contact shapes from the sensor with an object-agnostic calibration step that maps RGB (red, green, blue) tactile observations to binary contact shapes. This mapping, which can be reused across object and sensor instances, is the only step trained with real sensor data. This results in a perception model that localizes objects from the first real tactile observation. Importantly, it produces pose distributions and can incorporate additional pose constraints coming from other perception systems, multiple contacts, or priors. We provide quantitative results for 20 objects. Tac2Pose provides high accuracy pose estimations from distinctive tactile observations while regressing meaningful pose distributions to account for those contact shapes that could result from different object poses. We extend and test Tac2Pose in multi-contact scenarios where two tactile sensors are simultaneously in contact with the object, as during a grasp with a parallel jaw gripper. We further show that when the output pose distribution is filtered with a prior on the object pose, Tac2Pose is often able to improve significantly on the prior. This suggests synergistic use of Tac2Pose with additional sensing modalities (e.g., vision) even in cases where the tactile observation from a grasp is not sufficiently discriminative. Given a coarse estimate of an object’s pose, even ambiguous contacts can be used to determine an object’s pose precisely. We also test Tac2Pose on object models reconstructed from a 3D scanner, to evaluate the robustness to uncertainty in the object model. We show that even in the presence of model uncertainty, Tac2Pose is able to achieve fine accuracy comparable to when the object model is the manufacturer’s CAD (computer-aided design) model. Finally, we demonstrate the advantages of Tac2Pose compared with three baseline methods for tactile pose estimation: directly regressing the object pose with a neural network, matching an observed contact to a set of possible contacts using a standard classification neural network, and direct pixel comparison of an observed contact with a set of possible contacts. Website: mcube.mit.edu/research/tac2pose.html","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Abstracting road traffic via topological braids: Applications to traffic flow analysis and distributed control 通过拓扑辫提取道路交通:在交通流分析和分布式控制中的应用
IF 9.2 1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-08 DOI: 10.1177/02783649231188740
Christoforos Mavrogiannis, Jonathan DeCastro, S. Srinivasa
Despite the structure of road environments, imposed via geometry and rules, traffic flows exhibit complex multiagent dynamics. Reasoning about such dynamics is challenging due to the high dimensionality of possible behavior, the heterogeneity of agents, and the stochasticity of their decision-making. Modeling approaches learning associations in Euclidean spaces are often limited by their high sample complexity and the sparseness of available datasets. Our key insight is that the structure of traffic behavior could be effectively captured by lower-dimensional abstractions that emphasize critical interaction relationships. In this article, we abstract the space of behavior in traffic scenes into a discrete set of interaction modes, described in interpretable, symbolic form using topological braids. First, through a case study across real-world datasets, we show that braids can describe a wide range of complex behavior and uncover insights about the interactivity of vehicles. For instance, we find that high vehicle density does not always map to rich mixing patterns among them. Further, we show that our representation can effectively guide decision-making in traffic scenes. We describe a mechanism that probabilistically maps vehicles’ past behavior to modes of future interaction. We integrate this mechanism into a control algorithm that treats navigation as minimization of uncertainty over interaction modes, and investigate its performance on the task of traversing uncontrolled intersections in simulation. We show that our algorithm enables agents to coordinate significantly safer traversals for similar efficiency compared to baselines explicitly reasoning in the space of trajectories across a series of challenging scenarios.
尽管道路环境的结构是通过几何形状和规则强加的,但交通流表现出复杂的多智能体动力学。由于可能行为的高维性、主体的异质性以及决策的随机性,对这种动力学进行推理是具有挑战性的。欧几里得空间中学习关联的建模方法通常受到其高样本复杂性和可用数据集稀疏性的限制。我们的关键见解是,流量行为的结构可以通过强调关键交互关系的低维抽象有效地捕捉。在本文中,我们将交通场景中的行为空间抽象为一组离散的交互模式,并使用拓扑辫以可解释的符号形式进行描述。首先,通过对真实世界数据集的案例研究,我们表明辫子可以描述广泛的复杂行为,并揭示有关车辆互动性的见解。例如,我们发现高车辆密度并不总是映射到它们之间丰富的混合模式。此外,我们还证明了我们的表示可以有效地指导交通场景中的决策。我们描述了一种将车辆过去的行为概率映射到未来交互模式的机制。我们将这一机制集成到一种控制算法中,该算法将导航视为交互模式下不确定性的最小化,并在模拟中研究其在穿越非受控交叉口任务中的性能。我们表明,与在一系列具有挑战性的场景中在轨迹空间中进行显式推理的基线相比,我们的算法使代理能够协调明显更安全的遍历,以获得类似的效率。
{"title":"Abstracting road traffic via topological braids: Applications to traffic flow analysis and distributed control","authors":"Christoforos Mavrogiannis, Jonathan DeCastro, S. Srinivasa","doi":"10.1177/02783649231188740","DOIUrl":"https://doi.org/10.1177/02783649231188740","url":null,"abstract":"Despite the structure of road environments, imposed via geometry and rules, traffic flows exhibit complex multiagent dynamics. Reasoning about such dynamics is challenging due to the high dimensionality of possible behavior, the heterogeneity of agents, and the stochasticity of their decision-making. Modeling approaches learning associations in Euclidean spaces are often limited by their high sample complexity and the sparseness of available datasets. Our key insight is that the structure of traffic behavior could be effectively captured by lower-dimensional abstractions that emphasize critical interaction relationships. In this article, we abstract the space of behavior in traffic scenes into a discrete set of interaction modes, described in interpretable, symbolic form using topological braids. First, through a case study across real-world datasets, we show that braids can describe a wide range of complex behavior and uncover insights about the interactivity of vehicles. For instance, we find that high vehicle density does not always map to rich mixing patterns among them. Further, we show that our representation can effectively guide decision-making in traffic scenes. We describe a mechanism that probabilistically maps vehicles’ past behavior to modes of future interaction. We integrate this mechanism into a control algorithm that treats navigation as minimization of uncertainty over interaction modes, and investigate its performance on the task of traversing uncontrolled intersections in simulation. We show that our algorithm enables agents to coordinate significantly safer traversals for similar efficiency compared to baselines explicitly reasoning in the space of trajectories across a series of challenging scenarios.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48199767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iterative residual policy: For goal-conditioned dynamic manipulation of deformable objects 迭代残差策略:用于可变形对象的目标条件动态操作
1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-07 DOI: 10.1177/02783649231201201
Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, Shuran Song
This paper tackles the task of goal-conditioned dynamic manipulation of deformable objects. This task is highly challenging due to its complex dynamics (introduced by object deformation and high-speed action) and strict task requirements (defined by a precise goal specification). To address these challenges, we present Iterative Residual Policy (IRP), a general learning framework applicable to repeatable tasks with complex dynamics. IRP learns an implicit policy via delta dynamics—instead of modeling the entire dynamical system and inferring actions from that model, IRP learns delta dynamics that predict the effects of delta action on the previously observed trajectory. When combined with adaptive action sampling, the system can quickly optimize its actions online to reach a specified goal. We demonstrate the effectiveness of IRP on two tasks: whipping a rope to hit a target point and swinging a cloth to reach a target pose. Despite being trained only in simulation on a fixed robot setup, IRP is able to efficiently generalize to noisy real-world dynamics, new objects with unseen physical properties, and even different robot hardware embodiments, demonstrating its excellent generalization capability relative to alternative approaches.
本文主要研究可变形物体的目标条件动态操纵问题。由于其复杂的动力学(由物体变形和高速动作引入)和严格的任务要求(由精确的目标规范定义),该任务具有很高的挑战性。为了解决这些挑战,我们提出了迭代残差策略(IRP),这是一个适用于具有复杂动态的可重复任务的通用学习框架。IRP通过delta动力学学习隐式策略,而不是对整个动力系统建模并从该模型推断动作,IRP学习delta动力学,预测delta作用对先前观察到的轨迹的影响。当与自适应动作采样相结合时,系统可以快速在线优化其动作以达到指定目标。我们在两个任务上展示了IRP的有效性:鞭打绳子以击中目标点和摆动布料以达到目标姿势。尽管仅在固定机器人设置的模拟中进行训练,但IRP能够有效地推广到嘈杂的现实世界动态,具有未见物理特性的新对象,甚至不同的机器人硬件实施例,证明其相对于替代方法的出色泛化能力。
{"title":"Iterative residual policy: For goal-conditioned dynamic manipulation of deformable objects","authors":"Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, Shuran Song","doi":"10.1177/02783649231201201","DOIUrl":"https://doi.org/10.1177/02783649231201201","url":null,"abstract":"This paper tackles the task of goal-conditioned dynamic manipulation of deformable objects. This task is highly challenging due to its complex dynamics (introduced by object deformation and high-speed action) and strict task requirements (defined by a precise goal specification). To address these challenges, we present Iterative Residual Policy (IRP), a general learning framework applicable to repeatable tasks with complex dynamics. IRP learns an implicit policy via delta dynamics—instead of modeling the entire dynamical system and inferring actions from that model, IRP learns delta dynamics that predict the effects of delta action on the previously observed trajectory. When combined with adaptive action sampling, the system can quickly optimize its actions online to reach a specified goal. We demonstrate the effectiveness of IRP on two tasks: whipping a rope to hit a target point and swinging a cloth to reach a target pose. Despite being trained only in simulation on a fixed robot setup, IRP is able to efficiently generalize to noisy real-world dynamics, new objects with unseen physical properties, and even different robot hardware embodiments, demonstrating its excellent generalization capability relative to alternative approaches.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135048632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential Monte Carlo localization in topometric appearance maps 地形图外观图的顺序蒙特卡罗定位
IF 9.2 1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-05 DOI: 10.1177/02783649231197723
Alberto Jaenal, Francisco-Angel Moreno, J. Gonzalez-Jimenez
Representing the scene appearance by a global image descriptor (BoW, NetVLAD, etc.) is a widely adopted choice to address Visual Place Recognition (VPR). The main reasons are that appearance descriptors can be effectively provided with radiometric and perspective invariances as well as they can deal with large environments because of their compactness. However, addressing metric localization with such descriptors (a problem called Appearance-based Localization or AbL) achieves much poorer accuracy than those techniques exploiting the observation of 3D landmarks, which represent the standard for visual localization. In this paper, we propose ALLOM (Appearance-based Localization with Local Observation Models) which addresses AbL by leveraging the topological location of a robot within a map to achieve accurate metric estimations. This topology-assisted metric localization is implemented with a sequential Monte Carlo Bayesian filter that applies a specific observation model for each different place of the environment, thus taking advantage of the local correlation between the pose and the appearance descriptor within each region. ALLOM also benefits from the topological structure of the map to detect eventual robot loss-of-tracking and to effectively cope with its relocalization by applying VPR. Our proposal demonstrates superior metric localization capability compared to different state-of-the-art AbL methods under a wide range of situations.
用全局图像描述符(BoW, NetVLAD等)表示场景外观是解决视觉位置识别(VPR)的一种广泛采用的选择。主要原因是外观描述符可以有效地提供辐射和透视不变性,并且由于它们的紧凑性,它们可以处理大型环境。然而,使用这种描述符(一个称为基于外观的定位或AbL的问题)解决度量定位的准确性远远低于那些利用3D地标观察的技术,后者代表了视觉定位的标准。在本文中,我们提出了allm(基于局部观测模型的基于外观的定位),它通过利用机器人在地图中的拓扑位置来实现精确的度量估计来解决AbL问题。这种拓扑辅助度量定位是通过顺序蒙特卡罗贝叶斯滤波器实现的,该滤波器对环境的每个不同位置应用特定的观测模型,从而利用每个区域内姿态和外观描述符之间的局部相关性。allm还受益于地图的拓扑结构来检测机器人最终的丢失跟踪,并通过应用VPR有效地处理其重新定位。与不同的最先进的AbL方法相比,我们的方案在广泛的情况下展示了优越的度量定位能力。
{"title":"Sequential Monte Carlo localization in topometric appearance maps","authors":"Alberto Jaenal, Francisco-Angel Moreno, J. Gonzalez-Jimenez","doi":"10.1177/02783649231197723","DOIUrl":"https://doi.org/10.1177/02783649231197723","url":null,"abstract":"Representing the scene appearance by a global image descriptor (BoW, NetVLAD, etc.) is a widely adopted choice to address Visual Place Recognition (VPR). The main reasons are that appearance descriptors can be effectively provided with radiometric and perspective invariances as well as they can deal with large environments because of their compactness. However, addressing metric localization with such descriptors (a problem called Appearance-based Localization or AbL) achieves much poorer accuracy than those techniques exploiting the observation of 3D landmarks, which represent the standard for visual localization. In this paper, we propose ALLOM (Appearance-based Localization with Local Observation Models) which addresses AbL by leveraging the topological location of a robot within a map to achieve accurate metric estimations. This topology-assisted metric localization is implemented with a sequential Monte Carlo Bayesian filter that applies a specific observation model for each different place of the environment, thus taking advantage of the local correlation between the pose and the appearance descriptor within each region. ALLOM also benefits from the topological structure of the map to detect eventual robot loss-of-tracking and to effectively cope with its relocalization by applying VPR. Our proposal demonstrates superior metric localization capability compared to different state-of-the-art AbL methods under a wide range of situations.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47074445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modal-graph 3D shape servoing of deformable objects with raw point clouds 具有原始点云的可变形物体的模态图三维形状伺服
1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-04 DOI: 10.1177/02783649231198900
Bohan Yang, Congying Sui, Fangxun Zhong, Yun-Hui Liu
Deformable object manipulation (DOM) with point clouds has great potential as nonrigid 3D shapes can be measured without detecting and tracking image features. However, robotic shape control of deformable objects with point clouds is challenging due to: the unknown point correspondences and the noisy partial observability of raw point clouds; the modeling difficulties of the relationship between point clouds and robot motions. To tackle these challenges, this paper introduces a novel modal-graph framework for the model-free shape servoing of deformable objects with raw point clouds. Unlike the existing works studying the object’s geometry structure, we propose a modal graph to describe the low-frequency deformation structure of the DOM system, which is robust to the measurement irregularities. The modal graph enables us to directly extract low-dimensional deformation features from raw point clouds without extra processing of registrations, refinements, and occlusion removal. It also preserves the spatial structure of the DOM system to inverse the feature changes into robot motions. Moreover, as the framework is built with unknown physical and geometric object models, we design an adaptive robust controller to deform the object toward the desired shape while tackling the modeling uncertainties, noises, and disturbances online. The system is proved to be input-to-state stable (ISS) using Lyapunov-based methods. Extensive experiments are conducted to validate our method using linear, planar, tubular, and volumetric objects under different settings.
基于点云的可变形对象操作(DOM)具有很大的潜力,可以在不检测和跟踪图像特征的情况下测量非刚性三维形状。然而,具有点云的可变形物体的机器人形状控制具有挑战性,因为:未知的点对应和原始点云的噪声部分可观测性;点云和机器人运动关系的建模难点。为了解决这些问题,本文引入了一种新的模态图框架,用于具有原始点云的可变形物体的无模型形状伺服。与现有研究对象几何结构的工作不同,我们提出了一种模态图来描述DOM系统的低频变形结构,该模态图对测量不规则性具有鲁棒性。模态图使我们能够直接从原始点云中提取低维变形特征,而无需额外处理配准,细化和遮挡去除。它还保留了DOM系统的空间结构,将特征变化逆化为机器人运动。此外,由于该框架是用未知的物理和几何对象模型构建的,我们设计了一个自适应鲁棒控制器,在处理建模不确定性、噪声和在线干扰的同时,将对象变形到所需的形状。利用基于李亚普诺夫的方法证明了该系统是输入到状态稳定的。广泛的实验进行了验证我们的方法使用线性,平面,管状和体积物体在不同的设置。
{"title":"Modal-graph 3D shape servoing of deformable objects with raw point clouds","authors":"Bohan Yang, Congying Sui, Fangxun Zhong, Yun-Hui Liu","doi":"10.1177/02783649231198900","DOIUrl":"https://doi.org/10.1177/02783649231198900","url":null,"abstract":"Deformable object manipulation (DOM) with point clouds has great potential as nonrigid 3D shapes can be measured without detecting and tracking image features. However, robotic shape control of deformable objects with point clouds is challenging due to: the unknown point correspondences and the noisy partial observability of raw point clouds; the modeling difficulties of the relationship between point clouds and robot motions. To tackle these challenges, this paper introduces a novel modal-graph framework for the model-free shape servoing of deformable objects with raw point clouds. Unlike the existing works studying the object’s geometry structure, we propose a modal graph to describe the low-frequency deformation structure of the DOM system, which is robust to the measurement irregularities. The modal graph enables us to directly extract low-dimensional deformation features from raw point clouds without extra processing of registrations, refinements, and occlusion removal. It also preserves the spatial structure of the DOM system to inverse the feature changes into robot motions. Moreover, as the framework is built with unknown physical and geometric object models, we design an adaptive robust controller to deform the object toward the desired shape while tackling the modeling uncertainties, noises, and disturbances online. The system is proved to be input-to-state stable (ISS) using Lyapunov-based methods. Extensive experiments are conducted to validate our method using linear, planar, tubular, and volumetric objects under different settings.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135403222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward certifiable optimal motion planning for medical steerable needles. 可认证的医用可操纵针头最佳运动规划
IF 9.2 1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-01 Epub Date: 2023-05-20 DOI: 10.1177/02783649231165818
Mengyu Fu, Kiril Solovey, Oren Salzman, Ron Alterovitz

Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and result in higher quality plans.

医用可操纵针头可以遵循3D曲线轨迹,以避免解剖障碍,并到达人体内具有临床意义的目标。自动化可操纵针头程序可以使医生和患者最大限度地利用可操纵针头的可操纵性,安全准确地达到活检等医疗程序的目标,从而充分利用可操纵针的潜力。为了使医疗程序的自动化在临床上得到认可,从患者护理、安全和监管的角度来看,证明程序自动化中涉及的规划算法的正确性和有效性至关重要。在本文中,我们朝着创建可认证的可操纵针头最佳规划器迈出了重要一步。我们提出了一种基于多分辨率规划的高效、分辨率的可操纵针完全运动规划器。这是第一个可操纵针头的运动规划器,它保证在临床上适当的假设下,在有限时间内计算出避障计划(或通知用户不存在这样的计划)。基于该规划器,我们开发了可操纵针的第一分辨率最优运动规划器,该规划器进一步为计算的运动规划的质量提供了理论保证,即在有限时间内的全局最优性。与最先进的可操纵针头运动规划器相比,我们通过临床逼真的模拟证明,我们的规划器不仅提供了理论保证,而且具有更高的成功率、更低的计算时间和更高质量的计划。
{"title":"Toward certifiable optimal motion planning for medical steerable needles.","authors":"Mengyu Fu, Kiril Solovey, Oren Salzman, Ron Alterovitz","doi":"10.1177/02783649231165818","DOIUrl":"10.1177/02783649231165818","url":null,"abstract":"<p><p>Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and result in higher quality plans.</p>","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49316057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous latent state preintegration for inertial-aided systems 惯性辅助系统的连续潜态预积分
IF 9.2 1区 计算机科学 Q1 Mathematics Pub Date : 2023-09-01 DOI: 10.1177/02783649231199537
Cedric Le Gentil, Teresa Vidal-Calleja
Traditionally, the pose and velocity prediction of a system at time t2 given inertial measurements from a 6-DoF IMU depends on the knowledge of the system’s state at time t1. It involves a series of integration and double integration that can be computationally expensive if performed regularly, in particular in the context of inertial-aided optimisation-based state estimation. The concept of preintegration consists of creating pseudo-measurements that are independent of the system’s initial conditions (pose and velocity at t1) in order to predict the system’s state at t2. These pseudo-measurements, so-called preintegrated measurements, were originally computed numerically using the integration rectangle rule. This article presents a novel method to perform continuous preintegration using Gaussian processes (GPs) to model the system’s dynamics focusing on high accuracy. It represents the preintegrated measurement’s derivatives in a continuous latent state that is learnt/optimised according to asynchronous IMU gyroscope and accelerometer measurements. The GP models allow for analytical integration and double integration of the latent state to generate accurate preintegrated measurements called unified Gaussian preintegrated measurements (UGPMs). We show through extensive quantitative experiments that the proposed UGPMs outperform the standard preintegration method by an order of magnitude. Additionally, we demonstrate that the UGPMs can be integrated into off-the-shelf multi-modal estimation frameworks with ease based on lidar-inertial, RGBD-inertial, and visual-inertial real-world experiments.
传统上,给定6-DoF IMU的惯性测量,系统在时间t2的姿态和速度预测取决于系统在时间t1的状态的知识。它涉及一系列积分和二重积分,如果定期执行,特别是在基于惯性辅助优化的状态估计的情况下,这些积分和二重集成可能在计算上是昂贵的。预集成的概念包括创建独立于系统初始条件(t1时的姿态和速度)的伪测量,以预测t2时的系统状态。这些伪测量,即所谓的预积分测量,最初是使用积分矩形规则进行数值计算的。本文提出了一种新的方法来执行连续预集成,使用高斯过程(GP)来对系统的动力学建模,重点是高精度。它代表了根据异步IMU陀螺仪和加速度计测量学习/优化的连续潜在状态下的预集成测量的导数。GP模型允许潜在状态的分析积分和二重积分,以生成精确的预积分测量,称为统一高斯预积分测量(UGPM)。我们通过大量的定量实验表明,所提出的UGPM在一个数量级上优于标准的预集成方法。此外,我们还证明,基于激光雷达惯性、RGBD惯性和视觉惯性的真实世界实验,UGPM可以轻松地集成到现成的多模态估计框架中。
{"title":"Continuous latent state preintegration for inertial-aided systems","authors":"Cedric Le Gentil, Teresa Vidal-Calleja","doi":"10.1177/02783649231199537","DOIUrl":"https://doi.org/10.1177/02783649231199537","url":null,"abstract":"Traditionally, the pose and velocity prediction of a system at time t2 given inertial measurements from a 6-DoF IMU depends on the knowledge of the system’s state at time t1. It involves a series of integration and double integration that can be computationally expensive if performed regularly, in particular in the context of inertial-aided optimisation-based state estimation. The concept of preintegration consists of creating pseudo-measurements that are independent of the system’s initial conditions (pose and velocity at t1) in order to predict the system’s state at t2. These pseudo-measurements, so-called preintegrated measurements, were originally computed numerically using the integration rectangle rule. This article presents a novel method to perform continuous preintegration using Gaussian processes (GPs) to model the system’s dynamics focusing on high accuracy. It represents the preintegrated measurement’s derivatives in a continuous latent state that is learnt/optimised according to asynchronous IMU gyroscope and accelerometer measurements. The GP models allow for analytical integration and double integration of the latent state to generate accurate preintegrated measurements called unified Gaussian preintegrated measurements (UGPMs). We show through extensive quantitative experiments that the proposed UGPMs outperform the standard preintegration method by an order of magnitude. Additionally, we demonstrate that the UGPMs can be integrated into off-the-shelf multi-modal estimation frameworks with ease based on lidar-inertial, RGBD-inertial, and visual-inertial real-world experiments.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42681604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing contact patterns for robot locomotion via geometric mechanics 基于几何力学的机器人运动接触模式优化
IF 9.2 1区 计算机科学 Q1 Mathematics Pub Date : 2023-08-11 DOI: 10.1177/02783649231188387
Baxi Chong, Tianyu Wang, Lin Bo, Shengkai Li, Pranav Muthukrishnan, Juntao He, Daniel Irvine, H. Choset, Grigoriy Blekherman, D. Goldman
Contact planning is crucial to the locomotion performance of robots: to properly self-propel forward, it is not only important to determine the sequence of internal shape changes (e.g., body bending and limb shoulder joint oscillation) but also the sequence by which contact is made and broken between the mechanism and its environment. Prior work observed that properly coupling contact patterns and shape changes allows for computationally tractable gait design and efficient gait performance. The state of the art, however, made assumptions, albeit motivated by biological observation, as to how contact and shape changes can be coupled. In this paper, we extend the geometric mechanics (GM) framework to design contact patterns. Specifically, we introduce the concept of “contact space” to the GM framework. By establishing the connection between velocities in shape and position spaces, we can estimate the benefits of each contact pattern change and therefore optimize the sequence of contact patterns. In doing so, we can also analyze how a contact pattern sequence will respond to perturbations. We apply our framework to sidewinding robots and enable (1) effective locomotion direction control and (2) robust locomotion performance as the spatial resolution decreases. We also apply our framework to a hexapod robot with two back-bending joints and show that we can simplify existing hexapod gaits by properly reducing the number of contact state switches (during a gait cycle) without significant loss of locomotion speed. We test our designed gaits with robophysical experiments, and we obtain good agreement between theory and experiments.
接触规划对机器人的运动性能至关重要:为了正确地自我推进,不仅要确定内部形状变化的顺序(如身体弯曲和肢体肩关节振荡),而且要确定机构与环境之间建立和断开接触的顺序。先前的工作观察到,适当地耦合接触模式和形状变化允许计算可处理的步态设计和有效的步态性能。然而,尽管是出于生物学观察的动机,目前的技术水平还是做出了假设,即接触和形状变化是如何耦合的。在本文中,我们将几何力学(GM)框架扩展到设计接触模式。具体来说,我们在GM框架中引入了“接触空间”的概念。通过在形状和位置空间中建立速度之间的联系,我们可以估计每次接触模式变化的好处,从而优化接触模式的顺序。这样,我们还可以分析接触模式序列如何对扰动作出反应。我们将我们的框架应用于侧绕机器人,并实现(1)有效的运动方向控制和(2)在空间分辨率降低时的稳健运动性能。我们还将我们的框架应用于具有两个后弯关节的六足机器人,并表明我们可以通过适当减少接触状态开关的数量来简化现有的六足机器人步态(在步态周期内),而不会显著降低运动速度。通过机器人物理实验对所设计的步态进行了验证,理论与实验结果吻合较好。
{"title":"Optimizing contact patterns for robot locomotion via geometric mechanics","authors":"Baxi Chong, Tianyu Wang, Lin Bo, Shengkai Li, Pranav Muthukrishnan, Juntao He, Daniel Irvine, H. Choset, Grigoriy Blekherman, D. Goldman","doi":"10.1177/02783649231188387","DOIUrl":"https://doi.org/10.1177/02783649231188387","url":null,"abstract":"Contact planning is crucial to the locomotion performance of robots: to properly self-propel forward, it is not only important to determine the sequence of internal shape changes (e.g., body bending and limb shoulder joint oscillation) but also the sequence by which contact is made and broken between the mechanism and its environment. Prior work observed that properly coupling contact patterns and shape changes allows for computationally tractable gait design and efficient gait performance. The state of the art, however, made assumptions, albeit motivated by biological observation, as to how contact and shape changes can be coupled. In this paper, we extend the geometric mechanics (GM) framework to design contact patterns. Specifically, we introduce the concept of “contact space” to the GM framework. By establishing the connection between velocities in shape and position spaces, we can estimate the benefits of each contact pattern change and therefore optimize the sequence of contact patterns. In doing so, we can also analyze how a contact pattern sequence will respond to perturbations. We apply our framework to sidewinding robots and enable (1) effective locomotion direction control and (2) robust locomotion performance as the spatial resolution decreases. We also apply our framework to a hexapod robot with two back-bending joints and show that we can simplify existing hexapod gaits by properly reducing the number of contact state switches (during a gait cycle) without significant loss of locomotion speed. We test our designed gaits with robophysical experiments, and we obtain good agreement between theory and experiments.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41922088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adaptive Discretization using Voronoi trees for continuous pOMDPs 基于Voronoi树的连续pomdp自适应离散化
1区 计算机科学 Q1 Mathematics Pub Date : 2023-08-08 DOI: 10.1177/02783649231188984
Marcus Hoerger, Hanna Kurniawati, Dirk Kroese, Nan Ye
Solving continuous Partially Observable Markov Decision Processes (POMDPs) is challenging, particularly for high-dimensional continuous action spaces. To alleviate this difficulty, we propose a new sampling-based online POMDP solver, called A daptive D iscretization using V oronoi T rees (ADVT). It uses Monte Carlo Tree Search in combination with an adaptive discretization of the action space as well as optimistic optimization to efficiently sample high-dimensional continuous action spaces and compute the best action to perform. Specifically, we adaptively discretize the action space for each sampled belief using a hierarchical partition called Voronoi tree, which is a Binary Space Partitioning that implicitly maintains the partition of a cell as the Voronoi diagram of two points sampled from the cell. ADVT uses the estimated diameters of the cells to form an upper-confidence bound on the action value function within the cell, guiding the Monte Carlo Tree Search expansion and further discretization of the action space. This enables ADVT to better exploit local information with respect to the action value function, allowing faster identification of the most promising regions in the action space, compared to existing solvers. Voronoi trees keep the cost of partitioning and estimating the diameter of each cell low, even in high-dimensional spaces where many sampled points are required to cover the space well. ADVT additionally handles continuous observation spaces, by adopting an observation progressive widening strategy, along with a weighted particle representation of beliefs. Experimental results indicate that ADVT scales substantially better to high-dimensional continuous action spaces, compared to state-of-the-art methods.
求解连续部分可观察马尔可夫决策过程(pomdp)是一个具有挑战性的问题,特别是在高维连续动作空间中。为了缓解这一困难,我们提出了一种新的基于采样的在线POMDP求解器,称为使用V - oronoi树(ADVT)的自适应D离散化。它采用蒙特卡罗树搜索,结合自适应离散化的动作空间和乐观优化,有效地对高维连续动作空间进行采样,并计算出执行的最佳动作。具体来说,我们使用称为Voronoi树的分层划分自适应地离散每个采样信念的动作空间,这是一种二进制空间划分,它隐式地保持单元的划分为从单元中采样的两点的Voronoi图。ADVT使用估计的单元格直径形成单元格内动作值函数的上置信度界,指导蒙特卡罗树搜索扩展和动作空间的进一步离散化。这使得ADVT能够更好地利用与动作值函数相关的局部信息,与现有的求解器相比,可以更快地识别动作空间中最有希望的区域。Voronoi树保持了分区和估计每个细胞直径的成本很低,即使在高维空间中,需要许多采样点来覆盖空间。此外,ADVT处理连续的观察空间,通过采用观察渐进扩大策略,以及加权粒子表示的信念。实验结果表明,与现有方法相比,ADVT在高维连续动作空间上的可扩展性明显更好。
{"title":"Adaptive Discretization using Voronoi trees for continuous pOMDPs","authors":"Marcus Hoerger, Hanna Kurniawati, Dirk Kroese, Nan Ye","doi":"10.1177/02783649231188984","DOIUrl":"https://doi.org/10.1177/02783649231188984","url":null,"abstract":"Solving continuous Partially Observable Markov Decision Processes (POMDPs) is challenging, particularly for high-dimensional continuous action spaces. To alleviate this difficulty, we propose a new sampling-based online POMDP solver, called A daptive D iscretization using V oronoi T rees (ADVT). It uses Monte Carlo Tree Search in combination with an adaptive discretization of the action space as well as optimistic optimization to efficiently sample high-dimensional continuous action spaces and compute the best action to perform. Specifically, we adaptively discretize the action space for each sampled belief using a hierarchical partition called Voronoi tree, which is a Binary Space Partitioning that implicitly maintains the partition of a cell as the Voronoi diagram of two points sampled from the cell. ADVT uses the estimated diameters of the cells to form an upper-confidence bound on the action value function within the cell, guiding the Monte Carlo Tree Search expansion and further discretization of the action space. This enables ADVT to better exploit local information with respect to the action value function, allowing faster identification of the most promising regions in the action space, compared to existing solvers. Voronoi trees keep the cost of partitioning and estimating the diameter of each cell low, even in high-dimensional spaces where many sampled points are required to cover the space well. ADVT additionally handles continuous observation spaces, by adopting an observation progressive widening strategy, along with a weighted particle representation of beliefs. Experimental results indicate that ADVT scales substantially better to high-dimensional continuous action spaces, compared to state-of-the-art methods.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135794789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Robotics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1