首页 > 最新文献

International Journal of Robotics Research最新文献

英文 中文
Survey of maps of dynamics for mobile robots 移动机器人动力学图综述
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-08-03 DOI: 10.1177/02783649231190428
T. Kucner, Martin Magnusson, Sariah Mghames, Luigi Palmieri, Francesco Verdoja, Chittaranjan Srinivas Swaminathan, T. Krajník, E. Schaffernicht, N. Bellotto, Marc Hanheide, A. Lilienthal
Robotic mapping provides spatial information for autonomous agents. Depending on the tasks they seek to enable, the maps created range from simple 2D representations of the environment geometry to complex, multilayered semantic maps. This survey article is about maps of dynamics (MoDs), which store semantic information about typical motion patterns in a given environment. Some MoDs use trajectories as input, and some can be built from short, disconnected observations of motion. Robots can use MoDs, for example, for global motion planning, improved localization, or human motion prediction. Accounting for the increasing importance of maps of dynamics, we present a comprehensive survey that organizes the knowledge accumulated in the field and identifies promising directions for future work. Specifically, we introduce field-specific vocabulary, summarize existing work according to a novel taxonomy, and describe possible applications and open research problems. We conclude that the field is mature enough, and we expect that maps of dynamics will be increasingly used to improve robot performance in real-world use cases. At the same time, the field is still in a phase of rapid development where novel contributions could significantly impact this research area.
机器人映射为自主代理提供空间信息。根据他们寻求实现的任务,创建的地图范围从环境几何的简单2D表示到复杂的多层语义地图。这篇调查文章是关于动态地图(MoDs),它存储了给定环境中典型运动模式的语义信息。有些mod使用轨迹作为输入,有些可以通过对运动的短暂、不连贯的观察来构建。例如,机器人可以使用mod进行全局运动规划、改进定位或人类运动预测。考虑到动态图的重要性日益增加,我们提出了一项全面的调查,组织了该领域积累的知识,并确定了未来工作的有希望的方向。具体而言,我们介绍了特定领域的词汇,根据新的分类法总结了现有的工作,并描述了可能的应用和开放的研究问题。我们得出的结论是,该领域已经足够成熟,我们预计动态地图将越来越多地用于改善现实世界用例中的机器人性能。与此同时,该领域仍处于快速发展阶段,新的贡献可能会对该研究领域产生重大影响。
{"title":"Survey of maps of dynamics for mobile robots","authors":"T. Kucner, Martin Magnusson, Sariah Mghames, Luigi Palmieri, Francesco Verdoja, Chittaranjan Srinivas Swaminathan, T. Krajník, E. Schaffernicht, N. Bellotto, Marc Hanheide, A. Lilienthal","doi":"10.1177/02783649231190428","DOIUrl":"https://doi.org/10.1177/02783649231190428","url":null,"abstract":"Robotic mapping provides spatial information for autonomous agents. Depending on the tasks they seek to enable, the maps created range from simple 2D representations of the environment geometry to complex, multilayered semantic maps. This survey article is about maps of dynamics (MoDs), which store semantic information about typical motion patterns in a given environment. Some MoDs use trajectories as input, and some can be built from short, disconnected observations of motion. Robots can use MoDs, for example, for global motion planning, improved localization, or human motion prediction. Accounting for the increasing importance of maps of dynamics, we present a comprehensive survey that organizes the knowledge accumulated in the field and identifies promising directions for future work. Specifically, we introduce field-specific vocabulary, summarize existing work according to a novel taxonomy, and describe possible applications and open research problems. We conclude that the field is mature enough, and we expect that maps of dynamics will be increasingly used to improve robot performance in real-world use cases. At the same time, the field is still in a phase of rapid development where novel contributions could significantly impact this research area.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42978612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BED-BPP: Benchmarking dataset for robotic bin packing problems BED-BPP:机器人装箱问题的基准数据集
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-08-02 DOI: 10.1177/02783649231193048
Florian Kagerer, Maximilian Beinhofer, Stefan Stricker, A. Nüchter
Many algorithms that were developed for solving three-dimensional bin packing problems use generic data for either experiments or evaluation. However, none of these datasets became accepted for benchmarking 3D bin packing algorithms throughout the community. To close this gap, this paper presents the benchmarking dataset for robotic bin packing problems (BED-BPP), which is based on realistic data. We show the variety of the dataset by elaborating an n-gram analysis. Besides, we propose an evaluation function, which contains a stability check that uses rigid body simulation. We demonstrated the application of our dataset on four different approaches, which we integrated in our software environment.
许多为解决三维装箱问题而开发的算法使用通用数据进行实验或评估。然而,这些数据集都没有被整个社区接受用于基准测试3D装箱算法。为了缩小这一差距,本文提出了基于实际数据的机器人装箱问题基准数据集(BED-BPP)。我们通过详细的n-gram分析来展示数据集的多样性。此外,我们提出了一个评估函数,其中包含使用刚体模拟的稳定性检查。我们展示了数据集在四种不同方法上的应用,并将其集成到软件环境中。
{"title":"BED-BPP: Benchmarking dataset for robotic bin packing problems","authors":"Florian Kagerer, Maximilian Beinhofer, Stefan Stricker, A. Nüchter","doi":"10.1177/02783649231193048","DOIUrl":"https://doi.org/10.1177/02783649231193048","url":null,"abstract":"Many algorithms that were developed for solving three-dimensional bin packing problems use generic data for either experiments or evaluation. However, none of these datasets became accepted for benchmarking 3D bin packing algorithms throughout the community. To close this gap, this paper presents the benchmarking dataset for robotic bin packing problems (BED-BPP), which is based on realistic data. We show the variety of the dataset by elaborating an n-gram analysis. Besides, we propose an evaluation function, which contains a stability check that uses rigid body simulation. We demonstrated the application of our dataset on four different approaches, which we integrated in our software environment.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":" ","pages":""},"PeriodicalIF":9.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43744369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust feedback motion planning via contraction theory 基于收缩理论的鲁棒反馈运动规划
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-08-01 DOI: 10.1177/02783649231186165
Sumeet Singh, Benoit Landry, Anirudha Majumdar, J. Slotine, M. Pavone
We present a framework for online generation of robust motion plans for robotic systems with nonlinear dynamics subject to bounded disturbances, control constraints, and online state constraints such as obstacles. In an offline phase, one computes the structure of a feedback controller that can be efficiently implemented online to track any feasible nominal trajectory. The offline phase leverages contraction theory, specifically, Control Contraction Metrics, and convex optimization to characterize a fixed-size “tube” that the state is guaranteed to remain within while tracking a nominal trajectory (representing the center of the tube). In the online phase, when the robot is faced with obstacles, a motion planner uses such a tube as a robustness margin for collision checking, yielding nominal trajectories that can be safely executed, that is, tracked without collisions under disturbances. In contrast to recent work on robust online planning using funnel libraries, our approach is not restricted to a fixed library of maneuvers computed offline and is thus particularly well-suited to applications such as UAV flight in densely cluttered environments where complex maneuvers may be required to reach a goal. We demonstrate our approach through numerical simulations of planar and 3D quadrotors, and hardware results on a quadrotor platform navigating a complex obstacle environment while subject to aerodynamic disturbances. The results demonstrate the ability of our approach to jointly balance motion safety and efficiency for agile robotic systems.
我们提出了一个在线生成具有非线性动力学的机器人系统鲁棒运动计划的框架,该系统受有界扰动、控制约束和在线状态约束(如障碍物)的影响。在离线阶段,计算反馈控制器的结构,该反馈控制器可以有效地在线实现以跟踪任何可行的标称轨迹。离线阶段利用收缩理论,特别是控制收缩度量和凸优化来表征固定尺寸的“管”,在跟踪标称轨迹(代表管的中心)时,状态保证保持在该“管”内。在在线阶段,当机器人面临障碍物时,运动规划器使用这样的管作为碰撞检查的鲁棒性裕度,产生可以安全执行的标称轨迹,即在扰动下跟踪而不会发生碰撞。与最近使用漏斗库进行稳健在线规划的工作相比,我们的方法并不局限于离线计算的固定机动库,因此特别适合无人机在密集杂乱环境中飞行等应用,在这些环境中可能需要复杂的机动才能达到目标。我们通过平面和三维四旋翼机的数值模拟,以及四旋翼机平台在受到空气动力学扰动的情况下在复杂障碍物环境中导航的硬件结果,展示了我们的方法。结果证明了我们的方法能够共同平衡敏捷机器人系统的运动安全性和效率。
{"title":"Robust feedback motion planning via contraction theory","authors":"Sumeet Singh, Benoit Landry, Anirudha Majumdar, J. Slotine, M. Pavone","doi":"10.1177/02783649231186165","DOIUrl":"https://doi.org/10.1177/02783649231186165","url":null,"abstract":"We present a framework for online generation of robust motion plans for robotic systems with nonlinear dynamics subject to bounded disturbances, control constraints, and online state constraints such as obstacles. In an offline phase, one computes the structure of a feedback controller that can be efficiently implemented online to track any feasible nominal trajectory. The offline phase leverages contraction theory, specifically, Control Contraction Metrics, and convex optimization to characterize a fixed-size “tube” that the state is guaranteed to remain within while tracking a nominal trajectory (representing the center of the tube). In the online phase, when the robot is faced with obstacles, a motion planner uses such a tube as a robustness margin for collision checking, yielding nominal trajectories that can be safely executed, that is, tracked without collisions under disturbances. In contrast to recent work on robust online planning using funnel libraries, our approach is not restricted to a fixed library of maneuvers computed offline and is thus particularly well-suited to applications such as UAV flight in densely cluttered environments where complex maneuvers may be required to reach a goal. We demonstrate our approach through numerical simulations of planar and 3D quadrotors, and hardware results on a quadrotor platform navigating a complex obstacle environment while subject to aerodynamic disturbances. The results demonstrate the ability of our approach to jointly balance motion safety and efficiency for agile robotic systems.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"655 - 688"},"PeriodicalIF":9.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46116013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Convex risk-bounded continuous-time trajectory planning and tube design in uncertain nonconvex environments 不确定非凸环境下凸风险有界连续时间轨迹规划与管道设计
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-07-31 DOI: 10.1177/02783649231183458
Ashkan Jasour, Weiqiao Han, Brian C. Williams
In this paper, we address the trajectory planning problem in uncertain nonconvex static and dynamic environments that contain obstacles with probabilistic location, size, and geometry. To address this problem, we provide a risk-bounded trajectory planning method that looks for continuous-time trajectories with guaranteed bounded risk over the planning time horizon. Risk is defined as the probability of collision with uncertain obstacles. Existing approaches to address risk-bounded trajectory planning problems either are limited to Gaussian uncertainties and convex obstacles or rely on sampling-based methods that need uncertainty samples and time discretization. To address the risk-bounded trajectory planning problem, we leverage the notion of risk contours to transform the risk-bounded planning problem into a deterministic optimization problem. Risk contours are the set of all points in the uncertain environment with guaranteed bounded risk. The obtained deterministic optimization is, in general, nonlinear and nonconvex time-varying optimization. We provide convex methods based on sum-of-squares optimization to efficiently solve the obtained nonconvex time-varying optimization problem and obtain the continuous-time risk-bounded trajectories without time discretization. The provided approach deals with arbitrary (and known) probabilistic uncertainties, nonconvex and nonlinear, static and dynamic obstacles, and is suitable for online trajectory planning problems. In addition, we provide convex methods based on sum-of-squares optimization to build the max-sized tube with respect to its parameterization along the trajectory so that any state inside the tube is guaranteed to have bounded risk.
在本文中,我们解决了不确定的非凸静态和动态环境中的轨迹规划问题,其中包含具有概率位置,大小和几何形状的障碍物。为了解决这个问题,我们提供了一种风险有界轨迹规划方法,该方法在规划时间范围内寻找具有保证有界风险的连续时间轨迹。风险被定义为与不确定障碍物碰撞的概率。现有的解决风险有界轨迹规划问题的方法要么局限于高斯不确定性和凸障碍,要么依赖于需要不确定性样本和时间离散化的基于采样的方法。为了解决风险有界轨迹规划问题,我们利用风险轮廓的概念将风险有界规划问题转化为确定性优化问题。风险等值线是不确定环境中具有有界风险保证的所有点的集合。所得到的确定性优化一般是非线性、非凸时变优化。提出了基于平方和优化的凸方法,有效地求解得到的非凸时变优化问题,得到了不需要时间离散化的连续时间风险有界轨迹。该方法可处理任意(和已知)概率不确定性、非凸和非线性、静态和动态障碍物,适用于在线轨迹规划问题。此外,我们还提供了基于平方和优化的凸方法,根据其沿轨迹的参数化来构建最大尺寸的管道,从而保证管道内的任何状态都具有有界风险。
{"title":"Convex risk-bounded continuous-time trajectory planning and tube design in uncertain nonconvex environments","authors":"Ashkan Jasour, Weiqiao Han, Brian C. Williams","doi":"10.1177/02783649231183458","DOIUrl":"https://doi.org/10.1177/02783649231183458","url":null,"abstract":"In this paper, we address the trajectory planning problem in uncertain nonconvex static and dynamic environments that contain obstacles with probabilistic location, size, and geometry. To address this problem, we provide a risk-bounded trajectory planning method that looks for continuous-time trajectories with guaranteed bounded risk over the planning time horizon. Risk is defined as the probability of collision with uncertain obstacles. Existing approaches to address risk-bounded trajectory planning problems either are limited to Gaussian uncertainties and convex obstacles or rely on sampling-based methods that need uncertainty samples and time discretization. To address the risk-bounded trajectory planning problem, we leverage the notion of risk contours to transform the risk-bounded planning problem into a deterministic optimization problem. Risk contours are the set of all points in the uncertain environment with guaranteed bounded risk. The obtained deterministic optimization is, in general, nonlinear and nonconvex time-varying optimization. We provide convex methods based on sum-of-squares optimization to efficiently solve the obtained nonconvex time-varying optimization problem and obtain the continuous-time risk-bounded trajectories without time discretization. The provided approach deals with arbitrary (and known) probabilistic uncertainties, nonconvex and nonlinear, static and dynamic obstacles, and is suitable for online trajectory planning problems. In addition, we provide convex methods based on sum-of-squares optimization to build the max-sized tube with respect to its parameterization along the trajectory so that any state inside the tube is guaranteed to have bounded risk.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135155125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Action-conditional implicit visual dynamics for deformable object manipulation 用于可变形对象操作的动作条件隐式视觉动力学
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-07-28 DOI: 10.1177/02783649231191222
Bokui Shen, Zhenyu Jiang, Christopher Choy, Silvio Savarese, Leonidas J. Guibas, Anima Anandkumar, Yuke Zhu
Manipulating volumetric deformable objects in the real world, like plush toys and pizza dough, brings substantial challenges due to infinite shape variations, non-rigid motions, and partial observability. We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects based on structured implicit neural representations. ACID integrates two new techniques: implicit representations for action-conditional dynamics and geodesics-based contrastive learning. To represent deformable dynamics from partial RGB-D observations, we learn implicit representations of occupancy and flow-based forward dynamics. To accurately identify state change under large non-rigid deformations, we learn a correspondence embedding field through a novel geodesics-based contrastive loss. To evaluate our approach, we develop a simulation framework for manipulating complex deformable shapes in realistic scenes and a benchmark containing over 17,000 action trajectories with six types of plush toys and 78 variants. Our model achieves the best performance in geometry, correspondence, and dynamics predictions over existing approaches. The ACID dynamics models are successfully employed for goal-conditioned deformable manipulation tasks, resulting in a 30% increase in task success rate over the strongest baseline. Furthermore, we apply the simulation-trained ACID model directly to real-world objects and show success in manipulating them into target configurations. https://b0ku1.github.io/acid/
在现实世界中操纵体积可变形的物体,如毛绒玩具和披萨面团,由于无限的形状变化、非刚性运动和部分可观察性,带来了巨大的挑战。我们介绍了基于结构化隐式神经表征的动作条件视觉动态模型ACID。ACID集成了两种新技术:用于动作条件动力学的隐式表示和基于测地线的对比学习。为了表示来自部分RGB-D观测的可变形动力学,我们学习了占用和基于流的前向动力学的隐式表示。为了准确识别大非刚性变形下的状态变化,我们通过一种新的基于测地线的对比损失来学习对应嵌入场。为了评估我们的方法,我们开发了一个模拟框架,用于在现实场景中操纵复杂的可变形形状,以及一个包含超过17,000个动作轨迹的基准,其中包含六种类型的毛绒玩具和78种变体。与现有方法相比,我们的模型在几何、对应和动态预测方面实现了最佳性能。ACID动力学模型成功地应用于目标条件下的可变形操作任务,使任务成功率比最强基线提高了30%。此外,我们将模拟训练的ACID模型直接应用于现实世界的对象,并成功地将它们操纵成目标配置。https://b0ku1.github.io/acid/
{"title":"Action-conditional implicit visual dynamics for deformable object manipulation","authors":"Bokui Shen, Zhenyu Jiang, Christopher Choy, Silvio Savarese, Leonidas J. Guibas, Anima Anandkumar, Yuke Zhu","doi":"10.1177/02783649231191222","DOIUrl":"https://doi.org/10.1177/02783649231191222","url":null,"abstract":"Manipulating volumetric deformable objects in the real world, like plush toys and pizza dough, brings substantial challenges due to infinite shape variations, non-rigid motions, and partial observability. We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects based on structured implicit neural representations. ACID integrates two new techniques: implicit representations for action-conditional dynamics and geodesics-based contrastive learning. To represent deformable dynamics from partial RGB-D observations, we learn implicit representations of occupancy and flow-based forward dynamics. To accurately identify state change under large non-rigid deformations, we learn a correspondence embedding field through a novel geodesics-based contrastive loss. To evaluate our approach, we develop a simulation framework for manipulating complex deformable shapes in realistic scenes and a benchmark containing over 17,000 action trajectories with six types of plush toys and 78 variants. Our model achieves the best performance in geometry, correspondence, and dynamics predictions over existing approaches. The ACID dynamics models are successfully employed for goal-conditioned deformable manipulation tasks, resulting in a 30% increase in task success rate over the strongest baseline. Furthermore, we apply the simulation-trained ACID model directly to real-world objects and show success in manipulating them into target configurations. https://b0ku1.github.io/acid/","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135557263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic drilling for the Chinese Chang’E 5 lunar sample-return mission 中国嫦娥五号月球样本返回任务的机器人钻探
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-07-01 DOI: 10.1177/02783649231187918
Zhang Tao, Yong Pang, Ting Zeng, Guoxing Wang, Shen Yin, Kun Xu, Guidong Mo, Xingwang Zhang, Lusi Wang, Shuai Yang, Zengzeng Zhao, Junjie Qin, Junshan Gong, Zhongxiang Zhao, Xuefeng Tong, Zhongwang Yin, Haiyuan Wang, Fan Zhao, Yanhong Zheng, Xiangjin Deng, Bin Wang, Jinchang Xu, Wei Wang, Shuangfei Yu, Xiaoming Lai, Xilun Ding
On December 2, 2020, a 2-m class robotic drill onboard the Chinese Chang’E 5 lunar lander successfully penetrated 1 m into the lunar regolith and collected 259.72 g of samples. This paper presents the design and development, terrestrial tests, and lunar sampling results of the robotic drill. First, the system design of the robotic drill, including its engineering objectives, drill configuration, drilling and coring methods, and rotational speed determination, was studied. Subsequently, a control strategy was proposed to address the geological uncertainty and complexity of the lunar surface. Terrestrial tests were conducted to assess the sampling performance of the robotic drill under both atmospheric and vacuum conditions. Finally, the results of drilling on the lunar surface were obtained, and the complex geological conditions encountered were analyzed. The success of the Chinese Chang’E 5 lunar sample-return mission demonstrates the feasibility of the proposed robotic drill. This study can serve as an important reference for future extraterrestrial robotic regolith-sampling missions.
2020年12月2日,中国“嫦娥五号”月球着陆器上的一个2米级机器人钻头成功深入月球表层1米,采集了259.72克样本。本文介绍了机器人钻机的设计与研制、地面试验和月球取样结果。首先,对机器人钻机的系统设计进行了研究,包括工程目标、钻机配置、钻进取芯方法、转速确定等。随后,针对月球表面地质的不确定性和复杂性,提出了一种控制策略。进行了地面测试,以评估机器人钻机在大气和真空条件下的取样性能。最后,给出了在月球表面钻探的结果,并对所遇到的复杂地质条件进行了分析。中国嫦娥五号月球样本返回任务的成功证明了机器人演练的可行性。该研究可为未来的地外机器人风化层取样任务提供重要参考。
{"title":"Robotic drilling for the Chinese Chang’E 5 lunar sample-return mission","authors":"Zhang Tao, Yong Pang, Ting Zeng, Guoxing Wang, Shen Yin, Kun Xu, Guidong Mo, Xingwang Zhang, Lusi Wang, Shuai Yang, Zengzeng Zhao, Junjie Qin, Junshan Gong, Zhongxiang Zhao, Xuefeng Tong, Zhongwang Yin, Haiyuan Wang, Fan Zhao, Yanhong Zheng, Xiangjin Deng, Bin Wang, Jinchang Xu, Wei Wang, Shuangfei Yu, Xiaoming Lai, Xilun Ding","doi":"10.1177/02783649231187918","DOIUrl":"https://doi.org/10.1177/02783649231187918","url":null,"abstract":"On December 2, 2020, a 2-m class robotic drill onboard the Chinese Chang’E 5 lunar lander successfully penetrated 1 m into the lunar regolith and collected 259.72 g of samples. This paper presents the design and development, terrestrial tests, and lunar sampling results of the robotic drill. First, the system design of the robotic drill, including its engineering objectives, drill configuration, drilling and coring methods, and rotational speed determination, was studied. Subsequently, a control strategy was proposed to address the geological uncertainty and complexity of the lunar surface. Terrestrial tests were conducted to assess the sampling performance of the robotic drill under both atmospheric and vacuum conditions. Finally, the results of drilling on the lunar surface were obtained, and the complex geological conditions encountered were analyzed. The success of the Chinese Chang’E 5 lunar sample-return mission demonstrates the feasibility of the proposed robotic drill. This study can serve as an important reference for future extraterrestrial robotic regolith-sampling missions.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"586 - 613"},"PeriodicalIF":9.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41882942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ViF-GTAD: A new automotive dataset with ground truth for ADAS/AD development, testing, and validation ViF GTAD:一个新的汽车数据集,具有ADAS/AD开发、测试和验证的基本事实
IF 9.2 1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-07-01 DOI: 10.1177/02783649231188146
Sarah Haas, Selim Solmaz, Jakob Reckenzaun, Simon Genser
A new dataset for automated driving, which is the subject matter of this paper, identifies and addresses a gap in existing similar perception datasets. While most state-of-the-art perception datasets primarily focus on the provision of various onboard sensor measurements along with the semantic information under various driving conditions, the provided information is often insufficient since the object list and position data provided include unknown and time-varying errors. The current paper and the associated dataset describe the first publicly available perception measurement data that include not only the onboard sensor information from the camera, Lidar, and radar with semantically classified objects but also the high-precision ground-truth position measurements enabled by the accurate RTK-assisted GPS localization systems available on both the ego vehicle and the dynamic target objects. This paper provides insight on the capturing of the data, explicitly explaining the metadata structure and the content, as well as the potential application examples where it has been, and can potentially be, applied and implemented in relation to automated driving and environmental perception systems development, testing, and validation.
本文的主题是一个新的自动驾驶数据集,它识别并解决了现有类似感知数据集的差距。虽然大多数最先进的感知数据集主要侧重于提供各种车载传感器测量以及各种驾驶条件下的语义信息,但由于所提供的目标列表和位置数据包含未知和时变误差,因此所提供的信息通常不足。目前的论文和相关数据集描述了第一个公开可用的感知测量数据,其中不仅包括来自相机、激光雷达和雷达的车载传感器信息,以及具有语义分类对象的雷达,还包括由精确的rtk辅助GPS定位系统在ego车辆和动态目标对象上实现的高精度地面真实位置测量。本文提供了对数据捕获的见解,明确地解释了元数据的结构和内容,以及潜在的应用示例,在这些示例中,元数据已经或可能应用于自动驾驶和环境感知系统的开发、测试和验证。
{"title":"ViF-GTAD: A new automotive dataset with ground truth for ADAS/AD development, testing, and validation","authors":"Sarah Haas, Selim Solmaz, Jakob Reckenzaun, Simon Genser","doi":"10.1177/02783649231188146","DOIUrl":"https://doi.org/10.1177/02783649231188146","url":null,"abstract":"A new dataset for automated driving, which is the subject matter of this paper, identifies and addresses a gap in existing similar perception datasets. While most state-of-the-art perception datasets primarily focus on the provision of various onboard sensor measurements along with the semantic information under various driving conditions, the provided information is often insufficient since the object list and position data provided include unknown and time-varying errors. The current paper and the associated dataset describe the first publicly available perception measurement data that include not only the onboard sensor information from the camera, Lidar, and radar with semantically classified objects but also the high-precision ground-truth position measurements enabled by the accurate RTK-assisted GPS localization systems available on both the ego vehicle and the dynamic target objects. This paper provides insight on the capturing of the data, explicitly explaining the metadata structure and the content, as well as the potential application examples where it has been, and can potentially be, applied and implemented in relation to automated driving and environmental perception systems development, testing, and validation.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"614 - 630"},"PeriodicalIF":9.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43905647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adaptive Robotic Information Gathering via non-stationary Gaussian processes 基于非平稳高斯过程的自适应机器人信息采集
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-06-27 DOI: 10.1177/02783649231184498
Weizhe Chen, Roni Khardon, Lantao Liu
Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model’s prediction uncertainty to identify critical areas for informative data collection. Gaussian processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-stationary—different locations do not have the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple and robust and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations, enabling the model to characterize salient environmental features.
机器人信息采集(Robotic Information Gathering, RIG)是机器人(团队)在机器人实施体约束下,如何收集信息数据以高效地建立未知目标函数的精确模型的基础研究课题。RIG有许多应用,包括但不限于自主勘探和测绘、3D重建或检查、搜索和救援以及环境监测。RIG系统依靠概率模型的预测不确定性来识别信息数据收集的关键区域。具有平稳核的高斯过程在空间建模中得到了广泛的应用。然而,现实世界的空间数据通常是非平稳的——不同的位置不具有相同程度的可变性。因此,预测不确定性不能准确地反映预测误差,限制了RIG算法的成功。我们提出了一类非平稳核,称为注意核(attention Kernel, AK),它具有简单和鲁棒性,可以将任何现有核扩展为非平稳核。我们在高程映射任务中评估了新核,其中AK比常用的平稳核和领先的非平稳核提供了更好的精度和不确定性量化。改进后的不确定性量化可以引导下游信息规划者在高误差区域周围收集更多有价值的数据,进一步提高预测精度。现场实验表明,该方法可以引导自动地面车辆(ASV)在空间变化显著的位置优先收集数据,使模型能够表征显著的环境特征。
{"title":"Adaptive Robotic Information Gathering via non-stationary Gaussian processes","authors":"Weizhe Chen, Roni Khardon, Lantao Liu","doi":"10.1177/02783649231184498","DOIUrl":"https://doi.org/10.1177/02783649231184498","url":null,"abstract":"Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model’s prediction uncertainty to identify critical areas for informative data collection. Gaussian processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-stationary—different locations do not have the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple and robust and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations, enabling the model to characterize salient environmental features.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135454366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composable energy policies for reactive motion generation and reinforcement learning 反应性运动生成和强化学习的可组合能量策略
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-06-26 DOI: 10.1177/02783649231179499
Julen Urain, Anqi Li, Puze Liu, Carlo D’Eramo, Jan Peters
In this work, we introduce composable energy policies (CEP), a novel framework for multi-objective motion generation. We frame the problem of composing multiple policy components from a probabilistic view. We consider a set of stochastic policies represented in arbitrary task spaces, where each policy represents a distribution of the actions to solve a particular task. Then, we aim to find the action in the configuration space that optimally satisfies all the policy components. The presented framework allows the fusion of motion generators from different sources: optimal control, data-driven policies, motion planning, and handcrafted policies. Classically, the problem of multi-objective motion generation is solved by the composition of a set of deterministic policies, rather than stochastic policies. However, there are common situations where different policy components have conflicting behaviors, leading to oscillations or the robot getting stuck in an undesirable state. While our approach is not directly able to solve the conflicting policies problem, we claim that modeling each policy as a stochastic policy allows more expressive representations for each component in contrast with the classical reactive motion generation approaches. In some tasks, such as reaching a target in a cluttered environment, we show experimentally that CEP additional expressivity allows us to model policies that reduce these conflicting behaviors. A field that benefits from these reactive motion generators is the one of robot reinforcement learning. Integrating these policy architectures with reinforcement learning allows us to include a set of inductive biases in the learning problem. These inductive biases guide the reinforcement learning agent towards informative regions or improve collision safety while exploring. In our work, we show how to integrate our proposed reactive motion generator as a structured policy for reinforcement learning. Combining the reinforcement learning agent exploration with the prior-based CEP, we can improve the learning performance and explore safer.
在这项工作中,我们引入了可组合能量策略(CEP),这是一种新的多目标运动生成框架。我们从概率的角度来描述组合多个策略组件的问题。我们考虑在任意任务空间中表示的一组随机策略,其中每个策略表示解决特定任务的操作的分布。然后,我们的目标是在配置空间中找到最优地满足所有策略组件的操作。所提出的框架允许融合来自不同来源的运动生成器:最优控制、数据驱动策略、运动规划和手工制作策略。经典的多目标运动生成问题是通过一组确定性策略的组合来解决的,而不是随机策略。然而,通常情况下,不同的策略组件具有冲突的行为,导致振荡或机器人陷入不希望的状态。虽然我们的方法不能直接解决冲突策略问题,但我们声称,与经典的反应运动生成方法相比,将每个策略建模为随机策略可以为每个组件提供更具表现力的表示。在某些任务中,例如在混乱的环境中到达目标,我们通过实验表明,CEP额外的表现力允许我们对减少这些冲突行为的策略进行建模。从这些反应性运动发生器中受益的一个领域是机器人强化学习。将这些策略架构与强化学习集成,使我们能够在学习问题中包含一组归纳偏差。这些归纳偏差引导强化学习代理进入信息区域或在探索时提高碰撞安全性。在我们的工作中,我们展示了如何将我们提出的反应运动生成器集成为强化学习的结构化策略。将强化学习智能体探索与基于先验的CEP相结合,可以提高学习性能,更安全地进行探索。
{"title":"Composable energy policies for reactive motion generation and reinforcement learning","authors":"Julen Urain, Anqi Li, Puze Liu, Carlo D’Eramo, Jan Peters","doi":"10.1177/02783649231179499","DOIUrl":"https://doi.org/10.1177/02783649231179499","url":null,"abstract":"In this work, we introduce composable energy policies (CEP), a novel framework for multi-objective motion generation. We frame the problem of composing multiple policy components from a probabilistic view. We consider a set of stochastic policies represented in arbitrary task spaces, where each policy represents a distribution of the actions to solve a particular task. Then, we aim to find the action in the configuration space that optimally satisfies all the policy components. The presented framework allows the fusion of motion generators from different sources: optimal control, data-driven policies, motion planning, and handcrafted policies. Classically, the problem of multi-objective motion generation is solved by the composition of a set of deterministic policies, rather than stochastic policies. However, there are common situations where different policy components have conflicting behaviors, leading to oscillations or the robot getting stuck in an undesirable state. While our approach is not directly able to solve the conflicting policies problem, we claim that modeling each policy as a stochastic policy allows more expressive representations for each component in contrast with the classical reactive motion generation approaches. In some tasks, such as reaching a target in a cluttered environment, we show experimentally that CEP additional expressivity allows us to model policies that reduce these conflicting behaviors. A field that benefits from these reactive motion generators is the one of robot reinforcement learning. Integrating these policy architectures with reinforcement learning allows us to include a set of inductive biases in the learning problem. These inductive biases guide the reinforcement learning agent towards informative regions or improve collision safety while exploring. In our work, we show how to integrate our proposed reactive motion generator as a structured policy for reinforcement learning. Combining the reinforcement learning agent exploration with the prior-based CEP, we can improve the learning performance and explore safer.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135607974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Minimizing running buffers for tabletop object rearrangement: Complexity, fast algorithms, and applications 最小化桌面对象重排的运行缓冲区:复杂性、快速算法和应用程序
1区 计算机科学 Q1 ROBOTICS Pub Date : 2023-06-08 DOI: 10.1177/02783649231178565
Kai Gao, Si Wei Feng, Baichuan Huang, Jingjin Yu
For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces, or “running buffers,” are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance and show that computing MRB is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases. We further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimic real-world setups generally have fairly small MRBs. Using real robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions for the in-place rearrangement of many objects in a tight, bounded workspace.
对于重新排列桌面上的对象,可能需要将对象临时重新定位到某个缓冲区空间。这自然提出了一个问题,即需要多少同时存储空间或“运行缓冲区”才能使某些类型的桌面重排问题可行。在这项工作中,我们研究了标记和未标记设置的问题。在结构方面,我们观察到可以在从问题实例抽象的依赖图上找到最小运行缓冲区(MRB)的数量,并表明计算MRB是np困难的。然后,我们证明了在标记和未标记设置下,即使对于均匀的圆柱形对象,所需的运行缓冲区的数量也可能随着要重排的对象数量的增加而无界增长。我们进一步证明了未标记情况的界是紧的。在算法方面,我们开发了有效的精确算法,用于寻找标记和未标记桌面重排问题的MRB,在非常高的对象密度下可扩展到100多个对象。更重要的是,我们的算法还计算了一个序列,见证了计算的MRB,可用于解决对象重排任务。使用这些算法,经验评估表明,随机标记和未标记的实例,更接近于模拟现实世界的设置,通常具有相当小的mrb。通过真实的机器人实验,我们证明了运行缓冲区抽象可以为在紧密的有界工作空间中对许多对象进行就地重排提供最先进的解决方案。
{"title":"Minimizing running buffers for tabletop object rearrangement: Complexity, fast algorithms, and applications","authors":"Kai Gao, Si Wei Feng, Baichuan Huang, Jingjin Yu","doi":"10.1177/02783649231178565","DOIUrl":"https://doi.org/10.1177/02783649231178565","url":null,"abstract":"For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces, or “running buffers,” are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance and show that computing MRB is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases. We further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimic real-world setups generally have fairly small MRBs. Using real robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions for the in-place rearrangement of many objects in a tight, bounded workspace.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135268539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
International Journal of Robotics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1