Qionglin Li, Chen Zheng, Shuming Liu, Shuangyin Dai, Bo Zhang, Yuzheng Tang, Yi Wang
Conventional methods for identifying voltage sag sources are difficult to categorize accurately due to the complexity of transmission lines and the influence of noise. In order to solve the problem of difficulty in recognizing voltage sag sources of transmission lines under different locations, this paper proposes a new method for transmission line fault diagnosis based on modified wavelet denoising and multi-location information convolution transformer. The improved wavelet denoising method proposed in this paper solves the problems of discontinuity and bias of the traditional wavelet denoising method, and is able to better reconstruct the original voltage signal in a strong noise environment. In addition, multi-location information convolution transformer adopts a new model combining multi-location information convolution and multi-scale convolution transformer, which realizes the combination of global information and local context information capturing ability under multi-location faults. This paper validates the method through simulation experiments and practical situations, and the results show that the method can well classify and identify the type and location of voltage sag sources in transmission lines.
{"title":"Identification of transmission line voltage sag sources based on multi-location information convolutional transformer","authors":"Qionglin Li, Chen Zheng, Shuming Liu, Shuangyin Dai, Bo Zhang, Yuzheng Tang, Yi Wang","doi":"10.1049/rpg2.13092","DOIUrl":"https://doi.org/10.1049/rpg2.13092","url":null,"abstract":"<p>Conventional methods for identifying voltage sag sources are difficult to categorize accurately due to the complexity of transmission lines and the influence of noise. In order to solve the problem of difficulty in recognizing voltage sag sources of transmission lines under different locations, this paper proposes a new method for transmission line fault diagnosis based on modified wavelet denoising and multi-location information convolution transformer. The improved wavelet denoising method proposed in this paper solves the problems of discontinuity and bias of the traditional wavelet denoising method, and is able to better reconstruct the original voltage signal in a strong noise environment. In addition, multi-location information convolution transformer adopts a new model combining multi-location information convolution and multi-scale convolution transformer, which realizes the combination of global information and local context information capturing ability under multi-location faults. This paper validates the method through simulation experiments and practical situations, and the results show that the method can well classify and identify the type and location of voltage sag sources in transmission lines.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3239-3252"},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The harmonic problems caused by non-linear factors of the grid connected inverter (GCI) system are more complicated, including both non-characteristic harmonics emitted by the dead-time and the changes in harmonic impedance characteristics. Harmonics interact with the changing impedance, and even cause harmonic amplification and resonance. The harmonic deterioration of the multiple GCIs system is serious. To analyse the mechanism and way of harmonic deterioration in grid-connected system caused by nonlinear factors, the active impedance models of single inverter and multiple GCIs system including dead-time effect and digital control delay are established first. In view of this, the influence mechanism of non-linear factors on system stability is explored. The improved modal analysis method is used to traverse the network series parallel resonance caused by nonlinear factors. The results show that both the dead-time effect and digital control delay reduce phase margin of the system, resulting in the resonant frequency shift and the resonant peak increase. When the harmonic excitation source interacts with the complex network under the influence of nonlinear factors, it will lead to further deterioration of harmonics. Finally, based on the MATLAB and RT-LAB hardware-in-the-loop simulation platforms, a multiple GCIs system model is built to verify the correctness of the established active impedance model and harmonic deterioration analysis.
{"title":"Analysis of active impedance characteristics and harmonic deterioration of multiple grid connected inverters considering nonlinear factors","authors":"Jianwen Li, Shanshan Song, Rong Li, Wei Sun","doi":"10.1049/rpg2.13147","DOIUrl":"https://doi.org/10.1049/rpg2.13147","url":null,"abstract":"<p>The harmonic problems caused by non-linear factors of the grid connected inverter (GCI) system are more complicated, including both non-characteristic harmonics emitted by the dead-time and the changes in harmonic impedance characteristics. Harmonics interact with the changing impedance, and even cause harmonic amplification and resonance. The harmonic deterioration of the multiple GCIs system is serious. To analyse the mechanism and way of harmonic deterioration in grid-connected system caused by nonlinear factors, the active impedance models of single inverter and multiple GCIs system including dead-time effect and digital control delay are established first. In view of this, the influence mechanism of non-linear factors on system stability is explored. The improved modal analysis method is used to traverse the network series parallel resonance caused by nonlinear factors. The results show that both the dead-time effect and digital control delay reduce phase margin of the system, resulting in the resonant frequency shift and the resonant peak increase. When the harmonic excitation source interacts with the complex network under the influence of nonlinear factors, it will lead to further deterioration of harmonics. Finally, based on the MATLAB and RT-LAB hardware-in-the-loop simulation platforms, a multiple GCIs system model is built to verify the correctness of the established active impedance model and harmonic deterioration analysis.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3429-3442"},"PeriodicalIF":2.6,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyyed Mostafa Nosratabadi, Ali Peivand, Amin Saadat
This paper addresses essential aspects of decision-making and management in energy resources. To achieve this, a tri-objective model is proposed that seeks to find the best solution within the basic constraints framework of the optimization problem so that all three proposed objective functions can approach their ideal point. The uncertainty is used for the photovoltaic and wind power plants’ output in the proposed multi-objective optimization problem as a scenario-based stochastic approach. The proposed objective functions are realizing the operating cost, the amount of emission produced by generation resources, the amount of load-shedding, and the maximum participation of responsive demands in the management program. The idea of employing plug-in electric vehicle (PHEV) units in the form of intelligent parking lots within the network is also included in the proposed study, which can increase network flexibility and help improve the main features of the network. A modified IEEE 83-bus test system is used to ensure the accuracy and effectiveness of the proposed model. The properties of PHEVs significantly affect the simulation results and compensate for the uncertainty associated with renewable energy sources. Randomly considering the parameters of PHEVs can also realistically bring the results of power management more realistic. In addition, the multi-objective problem defined for each scenario is solved by the augmented epsilon-constraint method with the correlation coefficient concept for the network under study, and the Pareto front curves are obtained separately and the best solution is extracted by a proper decision-making method.
{"title":"Intelligent parking lot power management: Augmented epsilon-constraint concept with correlation analysis","authors":"Seyyed Mostafa Nosratabadi, Ali Peivand, Amin Saadat","doi":"10.1049/rpg2.13143","DOIUrl":"https://doi.org/10.1049/rpg2.13143","url":null,"abstract":"<p>This paper addresses essential aspects of decision-making and management in energy resources. To achieve this, a tri-objective model is proposed that seeks to find the best solution within the basic constraints framework of the optimization problem so that all three proposed objective functions can approach their ideal point. The uncertainty is used for the photovoltaic and wind power plants’ output in the proposed multi-objective optimization problem as a scenario-based stochastic approach. The proposed objective functions are realizing the operating cost, the amount of emission produced by generation resources, the amount of load-shedding, and the maximum participation of responsive demands in the management program. The idea of employing plug-in electric vehicle (PHEV) units in the form of intelligent parking lots within the network is also included in the proposed study, which can increase network flexibility and help improve the main features of the network. A modified IEEE 83-bus test system is used to ensure the accuracy and effectiveness of the proposed model. The properties of PHEVs significantly affect the simulation results and compensate for the uncertainty associated with renewable energy sources. Randomly considering the parameters of PHEVs can also realistically bring the results of power management more realistic. In addition, the multi-objective problem defined for each scenario is solved by the augmented epsilon-constraint method with the correlation coefficient concept for the network under study, and the Pareto front curves are obtained separately and the best solution is extracted by a proper decision-making method.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3378-3404"},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Distributed cooperative control strategies for DC microgrids have been rapidly evolving in recent years. However, introducing a cyber layer to enhance robustness, scalability, and reliability also exposes the system to potential cyber-attacks. The damage inflicted by such attacks on the system performance can be catastrophic, reaching a point where it may devastate the system normal operation. By using model reference adaptive control (MRAC), this article proposes a resilient approach that does not require an accurate model of the system and despite the uncertainties for detecting false data injections into the reference DC voltage and simultaneously mitigating their adverse effects on the system stability and performance. The proposed technique employs an observer to detect possible false data injections in an online manner. By emulating the behavior of an ideal reference model, the MRAC ensures adaptive adjustments of the control parameters over time to mitigate the negative effects of potential attacks effectively and despite non-idealities such as measurement noise, parameter variations, and environmental changes in DC microgrids, the MRAC effectively manages false data injection attacks. Simulation studies are conducted using diverse scenarios involving a three-node DC microgrid to show the effectiveness of the proposed method.
{"title":"On adaptive resilient secondary control for DC microgrids under false data injection attacks","authors":"Shahab Tawan, Yazdan Batmani, Qobad Shafiee, Charalambos Konstantinou","doi":"10.1049/rpg2.13144","DOIUrl":"https://doi.org/10.1049/rpg2.13144","url":null,"abstract":"<p>Distributed cooperative control strategies for DC microgrids have been rapidly evolving in recent years. However, introducing a cyber layer to enhance robustness, scalability, and reliability also exposes the system to potential cyber-attacks. The damage inflicted by such attacks on the system performance can be catastrophic, reaching a point where it may devastate the system normal operation. By using model reference adaptive control (MRAC), this article proposes a resilient approach that does not require an accurate model of the system and despite the uncertainties for detecting false data injections into the reference DC voltage and simultaneously mitigating their adverse effects on the system stability and performance. The proposed technique employs an observer to detect possible false data injections in an online manner. By emulating the behavior of an ideal reference model, the MRAC ensures adaptive adjustments of the control parameters over time to mitigate the negative effects of potential attacks effectively and despite non-idealities such as measurement noise, parameter variations, and environmental changes in DC microgrids, the MRAC effectively manages false data injection attacks. Simulation studies are conducted using diverse scenarios involving a three-node DC microgrid to show the effectiveness of the proposed method.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3405-3415"},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cascaded H-bridge multi-level converter is the main topology of high-voltage and high-capacity converter in renewable energy power generation, energy storage system and reactive power compensation equipment. The parameter design of cascaded H-bridge multi-level converters directly determines the material cost and performance. Taking the output current distortion rate and the ripple voltage of the capacitor of the cascaded H-bridge multi-level converter as the constraint conditions, this paper proposes an overall parameter optimal design method of the cascaded H-bridge multi-level converter based on the optimization of the total material cost. Finally, the effectiveness of the proposed parameter design method is verified by the simulation result.
级联 H 桥多电平变流器是可再生能源发电、储能系统和无功补偿设备中高压大容量变流器的主要拓扑结构。级联 H 桥多电平变换器的参数设计直接决定了材料成本和性能。本文以级联 H 桥多电平变换器的输出电流畸变率和电容器纹波电压为约束条件,提出了一种基于材料总成本优化的级联 H 桥多电平变换器整体参数优化设计方法。最后,通过仿真结果验证了所提参数设计方法的有效性。
{"title":"An optimal parameter design method for cascaded H-bridge multi-level converter in wind farm","authors":"Huagen Xiao, Yongxi Zhang","doi":"10.1049/rpg2.13148","DOIUrl":"https://doi.org/10.1049/rpg2.13148","url":null,"abstract":"<p>The cascaded H-bridge multi-level converter is the main topology of high-voltage and high-capacity converter in renewable energy power generation, energy storage system and reactive power compensation equipment. The parameter design of cascaded H-bridge multi-level converters directly determines the material cost and performance. Taking the output current distortion rate and the ripple voltage of the capacitor of the cascaded H-bridge multi-level converter as the constraint conditions, this paper proposes an overall parameter optimal design method of the cascaded H-bridge multi-level converter based on the optimization of the total material cost. Finally, the effectiveness of the proposed parameter design method is verified by the simulation result.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3443-3451"},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziqian Zhang, Robert Schuerhuber, Lothar Fickert, Guochu Chen
This study explores the optimal balance between grid-forming (GFM) and grid-following (GFL) converter capacities within power stations to ensure stable operations. The investigation introduces a novel, generic modelling approach for analysing multiple converter systems in the wind and photovoltaic power plants. The method aims to elucidate the dynamic characteristics of the converters in power plants, particularly focusing on the continuity and existence of the equilibrium manifolds and their impact on system stability. Findings reveal a pronounced difference in the recovery capabilities of GFM and GFL following synchronization losses, highlighting an asymmetry in their abilities. Specifically, GFL converters exhibit more effectiveness in reinstating synchrony after synchronization losses caused by GFM. Conversely, GFM demonstrates a lesser capacity to recover from synchronization losses induced by GFL. Furthermore, analysis indicates that when the capacity ratio of GFL to the system's short-circuit capacity significantly exceeds that of GFM (exceeding a 1:5 ratio), the system experiences an absence of a stable equilibrium point, thereby affecting the synchronization stability of GFM. These conclusions have been validated through joint controller hardware-in-the-loop testing.
{"title":"Dynamic modelling and equilibrium manifold of multi-converter systems: A study on grid-forming and grid-following converters in renewable energy power plants","authors":"Ziqian Zhang, Robert Schuerhuber, Lothar Fickert, Guochu Chen","doi":"10.1049/rpg2.13103","DOIUrl":"https://doi.org/10.1049/rpg2.13103","url":null,"abstract":"<p>This study explores the optimal balance between grid-forming (GFM) and grid-following (GFL) converter capacities within power stations to ensure stable operations. The investigation introduces a novel, generic modelling approach for analysing multiple converter systems in the wind and photovoltaic power plants. The method aims to elucidate the dynamic characteristics of the converters in power plants, particularly focusing on the continuity and existence of the equilibrium manifolds and their impact on system stability. Findings reveal a pronounced difference in the recovery capabilities of GFM and GFL following synchronization losses, highlighting an asymmetry in their abilities. Specifically, GFL converters exhibit more effectiveness in reinstating synchrony after synchronization losses caused by GFM. Conversely, GFM demonstrates a lesser capacity to recover from synchronization losses induced by GFL. Furthermore, analysis indicates that when the capacity ratio of GFL to the system's short-circuit capacity significantly exceeds that of GFM (exceeding a 1:5 ratio), the system experiences an absence of a stable equilibrium point, thereby affecting the synchronization stability of GFM. These conclusions have been validated through joint controller hardware-in-the-loop testing.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3253-3267"},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bizhan Nemati, Seyed Mohammad Hassan Hosseini, Hassan Siahkali
With the growth of the load in the electricity networks, sufficient investment in the generation and lines expansion should be made in order to provide the energy needed by consumers with the lowest possible investment and operation costs. This issue is especially important in distribution networks, which are faced with the uncertainties of renewable energy generation and the development of microgrids and related issues.
In this article, the planning of generation and lines expansion has been modeled with the aim of minimizing the total costs of microgrids, based on the cooperative approach. For this purpose, a bi-level model has been developed; on the upper level, microgrids make investment decisions with a cooperative approach, and a constrained stochastic formulation has been developed with considering operational uncertainties on the lower level. Also, in this article, in order to ensure the supply of critical loads in island conditions, the self-sufficiency index is defined. Three case studies have been considered to ensure the effectiveness of the developed model. In case 1, each microgrid will be able to supply its load only by generating of its units and purchasing from the retail market. In case 2, the possibility of trading with other microgrids in a non-cooperative approach will also be available to the microgrids operators, and in case 3, microgrids can exchange energy with other microgrids in a cooperative manner. The simulation results showed that due to the possibility of using nearby microgrid resources, the cost of microgrid load supply in case 2 was reduced by 4.84% compared to case 1. Also, this cost in case 3 was reduced by 5.23% and 0.38%, respectively, compared to cases 1 and 2, due to the use of a cooperative manner in microgrid load providing.
{"title":"A cooperative approach for generation and lines expansion planning in microgrid-based active distribution networks","authors":"Bizhan Nemati, Seyed Mohammad Hassan Hosseini, Hassan Siahkali","doi":"10.1049/rpg2.13142","DOIUrl":"https://doi.org/10.1049/rpg2.13142","url":null,"abstract":"<p>With the growth of the load in the electricity networks, sufficient investment in the generation and lines expansion should be made in order to provide the energy needed by consumers with the lowest possible investment and operation costs. This issue is especially important in distribution networks, which are faced with the uncertainties of renewable energy generation and the development of microgrids and related issues.</p><p>In this article, the planning of generation and lines expansion has been modeled with the aim of minimizing the total costs of microgrids, based on the cooperative approach. For this purpose, a bi-level model has been developed; on the upper level, microgrids make investment decisions with a cooperative approach, and a constrained stochastic formulation has been developed with considering operational uncertainties on the lower level. Also, in this article, in order to ensure the supply of critical loads in island conditions, the self-sufficiency index is defined. Three case studies have been considered to ensure the effectiveness of the developed model. In case 1, each microgrid will be able to supply its load only by generating of its units and purchasing from the retail market. In case 2, the possibility of trading with other microgrids in a non-cooperative approach will also be available to the microgrids operators, and in case 3, microgrids can exchange energy with other microgrids in a cooperative manner. The simulation results showed that due to the possibility of using nearby microgrid resources, the cost of microgrid load supply in case 2 was reduced by 4.84% compared to case 1. Also, this cost in case 3 was reduced by 5.23% and 0.38%, respectively, compared to cases 1 and 2, due to the use of a cooperative manner in microgrid load providing.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3355-3377"},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stochastic programming is a competitive tool in power system uncertainty management. Traditionally, stochastic programming assumes uncertainties to be exogenous and independent of decisions. However, there are situations where statistical features of uncertain parameters are not constant but dependent on decisions, classifying such uncertainties as decision-dependent uncertainty (DDU). This is particularly the case with future power systems highly penetrated by multi-source uncertainties, where planning or operation decisions might exert unneglectable impacts on uncertainty features. This paper reviews the stochastic programming with DDU, especially those applied in the field of power systems. Mathematical properties of diversified types of DDU in stochastic programming are introduced, and a comprehensive review on sources and applications of DDU in power systems is presented. Then, focusing on a specific type of DDU, that is, decision-dependent probability distributions, a taxonomy of available modelling techniques and solution approaches for stochastic programming with this type of DDU and different structural features are presented and discussed. Eventually, the outlook of two-stage stochastic programming with DDU for future power system uncertainty management is explored, including both exploring the applications and developing efficient modelling and solution tools.
随机程序设计是电力系统不确定性管理的一种有效工具。传统上,随机编程假定不确定性是外生的,与决策无关。然而,在某些情况下,不确定参数的统计特征并非恒定不变,而是取决于决策,这种不确定性被归类为决策相关不确定性(DDU)。这种情况在多源不确定性高度渗透的未来电力系统中尤为突出,规划或运行决策可能会对不确定性特征产生不可忽视的影响。本文综述了 DDU 随机编程,尤其是在电力系统领域的应用。本文介绍了随机程序设计中不同类型 DDU 的数学特性,并对电力系统中 DDU 的来源和应用进行了全面评述。然后,重点介绍了一种特定类型的 DDU,即依赖决策的概率分布,并对具有这种类型的 DDU 和不同结构特征的随机程序设计的可用建模技术和求解方法进行了分类和讨论。最后,探讨了带有 DDU 的两阶段随机程序设计在未来电力系统不确定性管理中的应用前景,包括探索应用和开发高效的建模和求解工具。
{"title":"Models and applications of stochastic programming with decision-dependent uncertainty in power systems: A review","authors":"Wenqian Yin, Yunhe Hou","doi":"10.1049/rpg2.13082","DOIUrl":"https://doi.org/10.1049/rpg2.13082","url":null,"abstract":"<p>Stochastic programming is a competitive tool in power system uncertainty management. Traditionally, stochastic programming assumes uncertainties to be exogenous and independent of decisions. However, there are situations where statistical features of uncertain parameters are not constant but dependent on decisions, classifying such uncertainties as decision-dependent uncertainty (DDU). This is particularly the case with future power systems highly penetrated by multi-source uncertainties, where planning or operation decisions might exert unneglectable impacts on uncertainty features. This paper reviews the stochastic programming with DDU, especially those applied in the field of power systems. Mathematical properties of diversified types of DDU in stochastic programming are introduced, and a comprehensive review on sources and applications of DDU in power systems is presented. Then, focusing on a specific type of DDU, that is, decision-dependent probability distributions, a taxonomy of available modelling techniques and solution approaches for stochastic programming with this type of DDU and different structural features are presented and discussed. Eventually, the outlook of two-stage stochastic programming with DDU for future power system uncertainty management is explored, including both exploring the applications and developing efficient modelling and solution tools.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2819-2834"},"PeriodicalIF":2.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
State of Charge (SoC) estimation for Lithium-Iron Phosphate (LFP) batteries is challenging due to a flat Open Circuit Voltage (OCV) curve and a well-known hysteresis effect. The authors built upon a previous study, which has shown that hysteresis in LFP is not an inherent characteristic but a very slow relaxation process when compared to other battery chemistries. Distribution of Relaxation Times (DRT) is used to deconvolve Electro-Impedance Spectroscopy (EIS) measurements and model the hysteresis effect. The extracted DRT parameters show good agreement at low frequencies with previous thermodynamic studies in both fresh and aged cell conditions. The proposed model, called hystimator, integrates the hysteresis characteristics into a physics-based Electro-Chemical Model (ECM). The validation results show a significant reduction in the Root Mean Square Error (RMSE) during real-world laboratory testing. This approach holds promise for SoC estimation in LFP battery cells, especially in embedded Battery Management System (BMS).
{"title":"Hystimator: DRT-based hysteresis modelling for accurate SoC estimation in LFP battery cells","authors":"Guillaume Thenaisie, Claudio Brivio","doi":"10.1049/rpg2.13130","DOIUrl":"https://doi.org/10.1049/rpg2.13130","url":null,"abstract":"<p>State of Charge (SoC) estimation for Lithium-Iron Phosphate (LFP) batteries is challenging due to a flat Open Circuit Voltage (OCV) curve and a well-known hysteresis effect. The authors built upon a previous study, which has shown that hysteresis in LFP is not an inherent characteristic but a very slow relaxation process when compared to other battery chemistries. Distribution of Relaxation Times (DRT) is used to deconvolve Electro-Impedance Spectroscopy (EIS) measurements and model the hysteresis effect. The extracted DRT parameters show good agreement at low frequencies with previous thermodynamic studies in both fresh and aged cell conditions. The proposed model, called hystimator, integrates the hysteresis characteristics into a physics-based Electro-Chemical Model (ECM). The validation results show a significant reduction in the Root Mean Square Error (RMSE) during real-world laboratory testing. This approach holds promise for SoC estimation in LFP battery cells, especially in embedded Battery Management System (BMS).</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 S1","pages":"4387-4398"},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent years, the tremendous number of distributed photovoltaic are integrated into low-voltage distribution network, generating a significant amount of operational data. The centralized cloud data centre is unable to process the massive data precisely and promptly. Therefore, the operational status of distributed photovoltaic systems in low-voltage distribution network becomes difficult to predict. However, edge computing in the distribution network enable local processing of data to improve the real-time and reliability of the forecasting service. In this regard, this paper proposes a distributed photovoltaic short-term power forecasting model based on lightweight AI algorithms. Firstly, based on the Pearson correlation coefficient method, an analysis is conducted on the historical operational data in the network to extract important meteorological features that are correlated with the photovoltaic power output. Secondly, a distributed photovoltaic power forecasting model for the distribution network is constructed based on the Xception and attention mechanism. Finally, the model is trained using pruning, which involves removing redundant parts of the model, resulting in a compact and efficient forecasting model. By conducting validation on real-world datasets, the results demonstrate that the model presented in this article possesses a smaller size and higher forecasting accuracy compared to other state-of-the-art forecasting models.
{"title":"A distributed photovoltaic short-term power forecasting model based on lightweight AI for edge computing in low-voltage distribution network","authors":"Yuanliang Fan, Han Wu, Jianli Lin, Zewen Li, Lingfei Li, Xinghua Huang, Weiming Chen, Jian Zhao","doi":"10.1049/rpg2.13093","DOIUrl":"https://doi.org/10.1049/rpg2.13093","url":null,"abstract":"<p>Recent years, the tremendous number of distributed photovoltaic are integrated into low-voltage distribution network, generating a significant amount of operational data. The centralized cloud data centre is unable to process the massive data precisely and promptly. Therefore, the operational status of distributed photovoltaic systems in low-voltage distribution network becomes difficult to predict. However, edge computing in the distribution network enable local processing of data to improve the real-time and reliability of the forecasting service. In this regard, this paper proposes a distributed photovoltaic short-term power forecasting model based on lightweight AI algorithms. Firstly, based on the Pearson correlation coefficient method, an analysis is conducted on the historical operational data in the network to extract important meteorological features that are correlated with the photovoltaic power output. Secondly, a distributed photovoltaic power forecasting model for the distribution network is constructed based on the Xception and attention mechanism. Finally, the model is trained using pruning, which involves removing redundant parts of the model, resulting in a compact and efficient forecasting model. By conducting validation on real-world datasets, the results demonstrate that the model presented in this article possesses a smaller size and higher forecasting accuracy compared to other state-of-the-art forecasting models.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 16","pages":"3955-3966"},"PeriodicalIF":2.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}