首页 > 最新文献

IEEE Transactions on Electromagnetic Compatibility最新文献

英文 中文
Modeling and Suppression of Common-Mode Voltage Resonance in a Three-Level Inverter With Middle Line 带中线的三电平逆变器共模电压谐振建模与抑制
IF 2.5 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-08 DOI: 10.1109/TEMC.2025.3601240
Zhaocheng Zhong;Junhao Chang;Yikun Jiang;Henglin Chen
In a high-power three-level inverter, a middle line is connected between an ac neutral point and a dc neutral point to construct a common-mode (CM) loop, which could reduce low-frequency electromagnetic interference (EMI). However, the stray inductance of the middle line may lead to CM voltage resonance, causing a new EMI problem. To address this challenge, this letter proposes an EMI model of the three-level inverter, which fully considers the neutral point to ground voltage fluctuation and the influence of the middle line stray inductance on resonance. Then, based on the EMI model, sensitivity analysis is performed to identify the primary CM resonance parameters, and the CM resonance mechanism is analyzed. According to the proposed EMI model, a new suppression method is developed. A capacitor is connected between the dc neutral point and the ground to eliminate the resonance, which could significantly reduce the size and cost of EMI filters. Both the accuracy of the EMI model and the effectiveness of the suppression method are validated through simulation and measurement.
在大功率三电平逆变器中,在交流中性点和直流中性点之间连接一条中线,构成共模(CM)环,可以降低低频电磁干扰(EMI)。然而,中线的杂散电感可能导致CM电压谐振,从而产生新的电磁干扰问题。为了解决这一挑战,本文提出了一个三电平逆变器的电磁干扰模型,该模型充分考虑了中性点对地电压波动和中线杂散电感对谐振的影响。然后,基于电磁干扰模型,进行灵敏度分析,确定了CM谐振的主要参数,并分析了CM谐振的机理。根据提出的电磁干扰模型,提出了一种新的抑制方法。在直流中性点和地之间连接电容以消除谐振,这可以显着减小EMI滤波器的尺寸和成本。通过仿真和测量验证了电磁干扰模型的准确性和抑制方法的有效性。
{"title":"Modeling and Suppression of Common-Mode Voltage Resonance in a Three-Level Inverter With Middle Line","authors":"Zhaocheng Zhong;Junhao Chang;Yikun Jiang;Henglin Chen","doi":"10.1109/TEMC.2025.3601240","DOIUrl":"10.1109/TEMC.2025.3601240","url":null,"abstract":"In a high-power three-level inverter, a middle line is connected between an ac neutral point and a dc neutral point to construct a common-mode (CM) loop, which could reduce low-frequency electromagnetic interference (EMI). However, the stray inductance of the middle line may lead to CM voltage resonance, causing a new EMI problem. To address this challenge, this letter proposes an EMI model of the three-level inverter, which fully considers the neutral point to ground voltage fluctuation and the influence of the middle line stray inductance on resonance. Then, based on the EMI model, sensitivity analysis is performed to identify the primary CM resonance parameters, and the CM resonance mechanism is analyzed. According to the proposed EMI model, a new suppression method is developed. A capacitor is connected between the dc neutral point and the ground to eliminate the resonance, which could significantly reduce the size and cost of EMI filters. Both the accuracy of the EMI model and the effectiveness of the suppression method are validated through simulation and measurement.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 5","pages":"1639-1643"},"PeriodicalIF":2.5,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145017659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of 10 kV Insulators and Metal-Oxide Arresters Excited by MV-Level Transient Electromagnetic Disturbance 10kv绝缘子和金属氧化物避雷器在mv级瞬变电磁干扰下的响应
IF 2.1 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-05 DOI: 10.1109/temc.2025.3602822
Yi Zhou, Yan-Zhao Xie, Hao-Ming Sun, Wei-Hua Zhao
{"title":"Response of 10 kV Insulators and Metal-Oxide Arresters Excited by MV-Level Transient Electromagnetic Disturbance","authors":"Yi Zhou, Yan-Zhao Xie, Hao-Ming Sun, Wei-Hua Zhao","doi":"10.1109/temc.2025.3602822","DOIUrl":"https://doi.org/10.1109/temc.2025.3602822","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"103 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145002814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Characterization of Near-Field Coupling Between Components and Harnesses in Presence of Ground Planes: A Case Study 在地面存在下组件和线束之间近场耦合的建模和表征:一个案例研究
IF 2.5 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-03 DOI: 10.1109/TEMC.2025.3601209
Martin Humeau;Mohsen Koohestani;David Boudikian;Mohamed Ramdani
This article presents an extension of an analytical model designed to predict electromagnetic (EM) near-field coupling in automotive electronic systems. It incorporates a printed circuit board (PCB) into the modeling framework to better reflect real-world configurations and accurately account for EM interactions and signal integrity. The noise source is modeled as a single-turn metallic loop above a PCB ground plane, while the victim is represented by a wire positioned near the noise source. The proposed analytical method takes into account transmission line equations and the Biot–Savart law to calculate mutual inductance while optimizing computational efficiency. A detailed evaluation of the required number of wire sections and image loops ensures accurate modeling of magnetic field interactions. The analytical model was validated through full-wave simulations in Ansys HFSS and a measurement campaign. Results demonstrated good agreement between analytical predictions, simulations, and measurements across a frequency range of 1 MHz to 1 GHz, with deviations limited to acceptable margins. A key advantage of this approach is its computational efficiency, achieving results in seconds compared to hours required by full-wave simulations for the same number of frequencies. This optimization is particularly valuable in industrial contexts, where rapid design iteration is essential. By bridging the gap between analytical simplicity and real-world complexity, this study demonstrates the potential of the developed analytical model as a robust and time-efficient alternative for EM compatibility analysis.
本文提出了一个用于预测汽车电子系统中电磁(EM)近场耦合的分析模型的扩展。它将印刷电路板(PCB)集成到建模框架中,以更好地反映现实世界的配置,并准确地考虑电磁相互作用和信号完整性。噪声源被建模为PCB接平面上方的单匝金属环,而受害者则由位于噪声源附近的导线表示。该分析方法在优化计算效率的同时,考虑了传输线方程和Biot-Savart定律来计算互感。对所需导线截面和图像回路数量的详细评估确保了磁场相互作用的准确建模。分析模型通过Ansys HFSS全波仿真和测量活动进行了验证。结果表明,在1mhz至1ghz的频率范围内,分析预测、模拟和测量结果之间具有良好的一致性,偏差限制在可接受的范围内。这种方法的一个关键优势是它的计算效率,与相同频率数量的全波模拟所需的数小时相比,它可以在几秒钟内获得结果。这种优化在工业环境中特别有价值,因为快速设计迭代是必不可少的。通过弥合分析的简单性和现实世界的复杂性之间的差距,本研究证明了开发的分析模型作为EM兼容性分析的鲁棒性和时间效率替代方案的潜力。
{"title":"Modeling and Characterization of Near-Field Coupling Between Components and Harnesses in Presence of Ground Planes: A Case Study","authors":"Martin Humeau;Mohsen Koohestani;David Boudikian;Mohamed Ramdani","doi":"10.1109/TEMC.2025.3601209","DOIUrl":"10.1109/TEMC.2025.3601209","url":null,"abstract":"This article presents an extension of an analytical model designed to predict electromagnetic (EM) near-field coupling in automotive electronic systems. It incorporates a printed circuit board (PCB) into the modeling framework to better reflect real-world configurations and accurately account for EM interactions and signal integrity. The noise source is modeled as a single-turn metallic loop above a PCB ground plane, while the victim is represented by a wire positioned near the noise source. The proposed analytical method takes into account transmission line equations and the Biot–Savart law to calculate mutual inductance while optimizing computational efficiency. A detailed evaluation of the required number of wire sections and image loops ensures accurate modeling of magnetic field interactions. The analytical model was validated through full-wave simulations in Ansys HFSS and a measurement campaign. Results demonstrated good agreement between analytical predictions, simulations, and measurements across a frequency range of 1 MHz to 1 GHz, with deviations limited to acceptable margins. A key advantage of this approach is its computational efficiency, achieving results in seconds compared to hours required by full-wave simulations for the same number of frequencies. This optimization is particularly valuable in industrial contexts, where rapid design iteration is essential. By bridging the gap between analytical simplicity and real-world complexity, this study demonstrates the potential of the developed analytical model as a robust and time-efficient alternative for EM compatibility analysis.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 5","pages":"1605-1613"},"PeriodicalIF":2.5,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144987693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstructing Radiation Model of Chip in SiP Based on Magnetic Amplitude from Near-Field Scanning Measurements 基于近场扫描磁幅值重建SiP芯片辐射模型
IF 2.1 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-03 DOI: 10.1109/temc.2025.3600686
Yaya Liang, Wei Zhang, Pan Ren, Kaijin Wang, Xiaojie Li, Pingan Du
{"title":"Reconstructing Radiation Model of Chip in SiP Based on Magnetic Amplitude from Near-Field Scanning Measurements","authors":"Yaya Liang, Wei Zhang, Pan Ren, Kaijin Wang, Xiaojie Li, Pingan Du","doi":"10.1109/temc.2025.3600686","DOIUrl":"https://doi.org/10.1109/temc.2025.3600686","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"28 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144987590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on “New Methodology for Representing Soil Ionization in FDTD Simulations of Grounding Electrodes” 对“接地电极时域有限差分模拟中表征土壤电离的新方法”的评论
IF 2.5 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-29 DOI: 10.1109/TEMC.2025.3594106
José A. Brandão Faria
This article comments on a recent IEEE Trans. EMC paper titled “New methodology for representing soil ionization in FDTD simulations of grounding electrodes,” where the Liew–Darveniza algorithm (1974) is used. We show that the assumption of cylinder-hemisphere equipotential patterns is not physically sound and propose an alternative that uses confocal hemi-ellipsoidal equipotential patterns.
这篇文章评论了最近的IEEE翻译。EMC论文题为“在接地电极的时域有限差分模拟中表示土壤电离的新方法”,其中使用了liow - darveniza算法(1974)。我们证明了圆柱-半球等势模式的假设在物理上是不合理的,并提出了一种使用共焦半椭球等势模式的替代方法。
{"title":"Comments on “New Methodology for Representing Soil Ionization in FDTD Simulations of Grounding Electrodes”","authors":"José A. Brandão Faria","doi":"10.1109/TEMC.2025.3594106","DOIUrl":"10.1109/TEMC.2025.3594106","url":null,"abstract":"This article comments on a recent IEEE Trans. EMC paper titled “New methodology for representing soil ionization in FDTD simulations of grounding electrodes,” where the Liew–Darveniza algorithm (1974) is used. We show that the assumption of cylinder-hemisphere equipotential patterns is not physically sound and propose an alternative that uses confocal hemi-ellipsoidal equipotential patterns.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 5","pages":"1644-1646"},"PeriodicalIF":2.5,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144919234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of Lightning Response of Grounding Grids in Horizontal Multilayered Soils Based on Time-Domain Galerkin’s Moment Method 基于时域伽辽金矩法的水平多层土中接地网雷电响应模拟
IF 2.1 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-29 DOI: 10.1109/temc.2025.3595604
Jian-Bin Fan, Zhong-Xin Li
{"title":"Simulation of Lightning Response of Grounding Grids in Horizontal Multilayered Soils Based on Time-Domain Galerkin’s Moment Method","authors":"Jian-Bin Fan, Zhong-Xin Li","doi":"10.1109/temc.2025.3595604","DOIUrl":"https://doi.org/10.1109/temc.2025.3595604","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"23 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144919235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Sparse Polynomial Chaos Expansion for Electromagnetic Compatibility Uncertainty Quantification Problems 电磁兼容不确定性量化问题的改进稀疏多项式混沌展开
IF 2.1 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-26 DOI: 10.1109/temc.2025.3598999
Haolin Jiang, Francesco Ferranti, Giulio Antonini
{"title":"Enhanced Sparse Polynomial Chaos Expansion for Electromagnetic Compatibility Uncertainty Quantification Problems","authors":"Haolin Jiang, Francesco Ferranti, Giulio Antonini","doi":"10.1109/temc.2025.3598999","DOIUrl":"https://doi.org/10.1109/temc.2025.3598999","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"32 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144905905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conducted Emission Study of a Grid-Connected Single-Phase Bidirectional AC–DC Converter for Grid to Vehicle Applications 并网单相双向交直流变换器的发射特性研究
IF 2.1 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-26 DOI: 10.1109/temc.2025.3596686
Nur Sarma, Secil Genc, Burcu Mantar Gundogdu, Kubra Nur Akpinar, Cenk Gezegin, Okan Ozgonenel
{"title":"Conducted Emission Study of a Grid-Connected Single-Phase Bidirectional AC–DC Converter for Grid to Vehicle Applications","authors":"Nur Sarma, Secil Genc, Burcu Mantar Gundogdu, Kubra Nur Akpinar, Cenk Gezegin, Okan Ozgonenel","doi":"10.1109/temc.2025.3596686","DOIUrl":"https://doi.org/10.1109/temc.2025.3596686","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"3 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144905904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Ground-Return Parameters of Submarine Cables Buried in the Seabed” 对“深埋海底电缆地面返回参数”的修正
IF 2.5 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-21 DOI: 10.1109/TEMC.2025.3557925
Gianfranco Di Lorenzo;Erika Stracqualursi;Massimo Marzinotto;Jose Brandão Faria;Rodolfo Araneo
In [1], (5b) has a typo; the correct formula is as follows: begin{equation*} Delta _{6}^{mathrm{QT}} = int nolimits _{0}^{infty } frac{{mathrm{e}}^{-2 alpha _{2} h_{ij}}}{alpha _{1}+alpha _{2}}frac{1}{alpha _{2}^{2}} cos left(q_{ij}lambda right) ,{mathrm{{d}}}lambda ;. tag{1} end{equation*} In (34), the term $G_{mathrm{b}} (lambda)$ is missing of the denominator; the correct formula is as follows: begin{equation*} begin{aligned} G_{mathrm{b}} left(lambda right) = & =& frac{2 mu _{1} mu _{2} alpha _{2} {mathrm{e}}^{-alpha _{2} left(h_{1}+h_{2}-2h_{mathrm{s}} right) }}{ left(A_{10}A_{21}+Delta _{10}Delta _{21}{mathrm{e}}^{-2alpha _{1}h_{mathrm{s}}} right) left(s_{10}s_{21}-d_{10}d_{21}{mathrm{e}}^{-2alpha _{1} h_{mathrm{s}}} right) } cdot & !!! leftlbrace phantom{int }{kern-10.0pt} left(gamma _{2}^{2} !- gamma _{1}^{2} right) left( s_{10} A_{10} !-! d_{10}Delta _{10} {mathrm{e}}^{-4 alpha _{1} h_{mathrm{s}}} right) !-! 2 mu _{0} mu _{1} {mathrm{e}}^{-2 alpha _{1} h_{mathrm{s}}} right. cdot & !!! left. left[ alpha _{0}^{2} gamma _{1}^{2} left(gamma _{2}^{2} - gamma _{1}^{2} right) + alpha _{1}^{2} gamma _{0}^{2} left(gamma _{2}^{2} + gamma _{1}^{2} right) - 2 alpha _{1}^{2} gamma _{1}^{2} gamma _{2}^{2} right] phantom{int }{kern-10.0pt} rightrbrace , end{aligned} tag{2} end{equation*}
在[1]中,(5b)有一个错别字;正确的公式为:begin{equation*} Delta _{6}^{mathrm{QT}} = int nolimits _{0}^{infty } frac{{mathrm{e}}^{-2 alpha _{2} h_{ij}}}{alpha _{1}+alpha _{2}}frac{1}{alpha _{2}^{2}} cos left(q_{ij}lambda right) ,{mathrm{{d}}}lambda ;. tag{1} end{equation*}(34)中,分母缺少$G_{mathrm{b}} (lambda)$项;正确的公式如下: begin{equation*} begin{aligned} G_{mathrm{b}} left(lambda right) = & =& frac{2 mu _{1} mu _{2} alpha _{2} {mathrm{e}}^{-alpha _{2} left(h_{1}+h_{2}-2h_{mathrm{s}} right) }}{ left(A_{10}A_{21}+Delta _{10}Delta _{21}{mathrm{e}}^{-2alpha _{1}h_{mathrm{s}}} right) left(s_{10}s_{21}-d_{10}d_{21}{mathrm{e}}^{-2alpha _{1} h_{mathrm{s}}} right) } cdot & !!! leftlbrace phantom{int }{kern-10.0pt} left(gamma _{2}^{2} !- gamma _{1}^{2} right) left( s_{10} A_{10} !-! d_{10}Delta _{10} {mathrm{e}}^{-4 alpha _{1} h_{mathrm{s}}} right) !-! 2 mu _{0} mu _{1} {mathrm{e}}^{-2 alpha _{1} h_{mathrm{s}}} right. cdot & !!! left. left[ alpha _{0}^{2} gamma _{1}^{2} left(gamma _{2}^{2} - gamma _{1}^{2} right) + alpha _{1}^{2} gamma _{0}^{2} left(gamma _{2}^{2} + gamma _{1}^{2} right) - 2 alpha _{1}^{2} gamma _{1}^{2} gamma _{2}^{2} right] phantom{int }{kern-10.0pt} rightrbrace , end{aligned} tag{2} end{equation*}
{"title":"Corrections to “Ground-Return Parameters of Submarine Cables Buried in the Seabed”","authors":"Gianfranco Di Lorenzo;Erika Stracqualursi;Massimo Marzinotto;Jose Brandão Faria;Rodolfo Araneo","doi":"10.1109/TEMC.2025.3557925","DOIUrl":"https://doi.org/10.1109/TEMC.2025.3557925","url":null,"abstract":"In [1], (5b) has a typo; the correct formula is as follows: begin{equation*} Delta _{6}^{mathrm{QT}} = int nolimits _{0}^{infty } frac{{mathrm{e}}^{-2 alpha _{2} h_{ij}}}{alpha _{1}+alpha _{2}}frac{1}{alpha _{2}^{2}} cos left(q_{ij}lambda right) ,{mathrm{{d}}}lambda ;. tag{1} end{equation*} In (34), the term $G_{mathrm{b}} (lambda)$ is missing of the denominator; the correct formula is as follows: begin{equation*} begin{aligned} G_{mathrm{b}} left(lambda right) = & =& frac{2 mu _{1} mu _{2} alpha _{2} {mathrm{e}}^{-alpha _{2} left(h_{1}+h_{2}-2h_{mathrm{s}} right) }}{ left(A_{10}A_{21}+Delta _{10}Delta _{21}{mathrm{e}}^{-2alpha _{1}h_{mathrm{s}}} right) left(s_{10}s_{21}-d_{10}d_{21}{mathrm{e}}^{-2alpha _{1} h_{mathrm{s}}} right) } cdot & !!! leftlbrace phantom{int }{kern-10.0pt} left(gamma _{2}^{2} !- gamma _{1}^{2} right) left( s_{10} A_{10} !-! d_{10}Delta _{10} {mathrm{e}}^{-4 alpha _{1} h_{mathrm{s}}} right) !-! 2 mu _{0} mu _{1} {mathrm{e}}^{-2 alpha _{1} h_{mathrm{s}}} right. cdot & !!! left. left[ alpha _{0}^{2} gamma _{1}^{2} left(gamma _{2}^{2} - gamma _{1}^{2} right) + alpha _{1}^{2} gamma _{0}^{2} left(gamma _{2}^{2} + gamma _{1}^{2} right) - 2 alpha _{1}^{2} gamma _{1}^{2} gamma _{2}^{2} right] phantom{int }{kern-10.0pt} rightrbrace , end{aligned} tag{2} end{equation*}","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 4","pages":"1375-1375"},"PeriodicalIF":2.5,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Institutional Listings 机构清单
IF 2.5 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-08-21 DOI: 10.1109/TEMC.2025.3591346
{"title":"Institutional Listings","authors":"","doi":"10.1109/TEMC.2025.3591346","DOIUrl":"https://doi.org/10.1109/TEMC.2025.3591346","url":null,"abstract":"","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 4","pages":"C4-C4"},"PeriodicalIF":2.5,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Electromagnetic Compatibility
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1