Pub Date : 2023-10-01Epub Date: 2023-09-01DOI: 10.1007/s10709-023-00194-w
Horacio Naveira, Verónica Rojo, Iván Gómez-Seoane, Malcolm A Ferguson-Smith, Jorge C Pereira, Andrés Martínez-Lage
This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta monticola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean species of this genus, which included several biarmed metacentrics and a Z1Z2W multiple sex-chromosome system. With the possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the W chromosome in Lacertini.
{"title":"Chromosome evolution in Iberolacerta, a genus that deviates from the standard karyotype formula of Lacertidae.","authors":"Horacio Naveira, Verónica Rojo, Iván Gómez-Seoane, Malcolm A Ferguson-Smith, Jorge C Pereira, Andrés Martínez-Lage","doi":"10.1007/s10709-023-00194-w","DOIUrl":"10.1007/s10709-023-00194-w","url":null,"abstract":"<p><p>This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta monticola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean species of this genus, which included several biarmed metacentrics and a Z<sub>1</sub>Z<sub>2</sub>W multiple sex-chromosome system. With the possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the W chromosome in Lacertini.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"267-279"},"PeriodicalIF":1.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00188-8
Jinhang Lv, Yue Xu, Xuming Dan, Yuchen Yang, Chunli Mao, Xixi Ma, Jie Zhu, Min Sun, Yarong Jin, Linkai Huang
In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.
{"title":"Genomic survey of MYB gene family in six pearl millet (Pennisetum glaucum) varieties and their response to abiotic stresses.","authors":"Jinhang Lv, Yue Xu, Xuming Dan, Yuchen Yang, Chunli Mao, Xixi Ma, Jie Zhu, Min Sun, Yarong Jin, Linkai Huang","doi":"10.1007/s10709-023-00188-8","DOIUrl":"https://doi.org/10.1007/s10709-023-00188-8","url":null,"abstract":"<p><p>In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"251-265"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-04-03DOI: 10.1007/s12308-023-00543-w
Gerald C Tiu, Yasodha Natkunam, Sebastian Fernandez-Pol
{"title":"SATB2 expression in hematolymphoid neoplasms.","authors":"Gerald C Tiu, Yasodha Natkunam, Sebastian Fernandez-Pol","doi":"10.1007/s12308-023-00543-w","DOIUrl":"10.1007/s12308-023-00543-w","url":null,"abstract":"","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"115 1","pages":"119-122"},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79034814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00189-7
Qinwen Xia, Kaleem Tariq, Daniel A Hahn, Alfred M Handler
The sterile insect technique (SIT) is a highly effective biologically-based method for the population suppression of highly invasive insect pests of medical and agricultural importance. The efficacy of SIT could be significantly enhanced, however, by improved methods of male sterilization that avoid the fitness costs of irradiation. An alternative sterilization method is possible by gene-editing that targets genes essential for sperm maturation and motility, rendering them nonfunctional, similar to the CRISPR-Cas9 targeting of β2-tubulin in the genetic model system, Drosophila melanogaster. However, since genetic strategies for sterility are susceptible to breakdown or resistance in mass-reared populations, alternative targets for sterility are important for redundancy or strain replacement. Here we have identified and characterized the sequence and transcriptional expression of two genes in a Florida strain of Drosophila suzukii, that are cognates of the D. melanogaster spermatocyte-specific genes wampa and Prosalpha6T. Wampa encodes a coiled-coil dynein subunit required for axonemal assembly, and the proteasome subunit gene, Prosalpha6T, is required for spermatid individualization and nuclear maturation. The reading frames of these genes differed from their NCBI database entries derived from a D. suzukii California strain by 44 and 8 nucleotide substitutions/polymorphisms, respectively, though all substitutions were synonymous resulting in identical peptide sequences. Expression of both genes is predominant in the male testis, and they share similar transcriptional profiles in adult males with β2-tubulin. Their amino acid sequences are highly conserved in dipteran species, including pest species subject to SIT control, supporting their potential use in targeted male sterilization strategies.
{"title":"Sequence and expression analysis of the spermatogenesis-specific gene cognates, wampa and Prosα6T, in Drosophila suzukii.","authors":"Qinwen Xia, Kaleem Tariq, Daniel A Hahn, Alfred M Handler","doi":"10.1007/s10709-023-00189-7","DOIUrl":"https://doi.org/10.1007/s10709-023-00189-7","url":null,"abstract":"<p><p>The sterile insect technique (SIT) is a highly effective biologically-based method for the population suppression of highly invasive insect pests of medical and agricultural importance. The efficacy of SIT could be significantly enhanced, however, by improved methods of male sterilization that avoid the fitness costs of irradiation. An alternative sterilization method is possible by gene-editing that targets genes essential for sperm maturation and motility, rendering them nonfunctional, similar to the CRISPR-Cas9 targeting of β2-tubulin in the genetic model system, Drosophila melanogaster. However, since genetic strategies for sterility are susceptible to breakdown or resistance in mass-reared populations, alternative targets for sterility are important for redundancy or strain replacement. Here we have identified and characterized the sequence and transcriptional expression of two genes in a Florida strain of Drosophila suzukii, that are cognates of the D. melanogaster spermatocyte-specific genes wampa and Prosalpha6T. Wampa encodes a coiled-coil dynein subunit required for axonemal assembly, and the proteasome subunit gene, Prosalpha6T, is required for spermatid individualization and nuclear maturation. The reading frames of these genes differed from their NCBI database entries derived from a D. suzukii California strain by 44 and 8 nucleotide substitutions/polymorphisms, respectively, though all substitutions were synonymous resulting in identical peptide sequences. Expression of both genes is predominant in the male testis, and they share similar transcriptional profiles in adult males with β2-tubulin. Their amino acid sequences are highly conserved in dipteran species, including pest species subject to SIT control, supporting their potential use in targeted male sterilization strategies.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"215-223"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9994512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00187-9
Yang Mao, Taotao Peng, Feng Shao, Qingyuan Zhao, Zuogang Peng
Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, β-globin genes of jawed vertebrates encode tetrameric ((α2β2) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean dN/dS (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the β-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.
{"title":"Molecular evolution of the hemoglobin gene family across vertebrates.","authors":"Yang Mao, Taotao Peng, Feng Shao, Qingyuan Zhao, Zuogang Peng","doi":"10.1007/s10709-023-00187-9","DOIUrl":"https://doi.org/10.1007/s10709-023-00187-9","url":null,"abstract":"<p><p>Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, β-globin genes of jawed vertebrates encode tetrameric ((α<sub>2</sub>β<sub>2</sub>) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean d<sub>N</sub>/d<sub>S</sub> (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the β-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"201-213"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AP2/ERF (APETALA2/Ethylene Response Factor) is a family of transcription factors that play essential roles in regulating gene expression in response to various environmental stimuli, including biotic and abiotic stresses, hormone signaling, and developmental processes. Pisum sativum (L.), commonly known as garden pea, is a winter crop sensitive to high temperatures and can also be affected by extreme cold and drought conditions. This study performed a genome-wide analysis of AP2/ERF genes and identified 153 AP2/ERF genes in P. sativum. Based on the conserved AP2/ERF domain and sequence homology, they were classified into AP2 (APETALA2), ERF (Ethylene Response Factor), DREB (Dehydration responsive element-binding), RAV (Related to Abscisic Acid Insensitive 3/ Viviparous 1) and Soloist subfamily. The DREB and ERF subfamily were further divided into groups A1-6 and B1-B6. Tandem and segmental duplication events were more frequent in the ERF subfamily, which can have important implications for their evolution and functional diversification. Under cold stress, the expression of DREB1A was highly induced in leaves, whereas DREB1B was suppressed. Similarly, the DREB2A, DREB2C, DREB2E, and DREB2F were induced in leaves under drought stress. The putative target genes of AP2/ERF transcription factors are highly diversified, suggesting that they play essential roles in various physiological responses in plants, including responses to biotic and abiotic stresses as well as developmental processes. Thus, this study of AP2/ERF genes and their functions provides valuable insight into how P. sativum responds to different environmental conditions, including cold and drought stresses.
{"title":"Genome-wide identification and expression analysis of the Pisum sativum (L.) APETALA2/ethylene-responsive factor (AP2/ERF) gene family reveals functions in drought and cold stresses.","authors":"Trishna Jarambasa, Preetom Regon, Sabnoor Yeasrin Jyoti, Divya Gupta, Sanjib Kumar Panda, Bhaben Tanti","doi":"10.1007/s10709-023-00190-0","DOIUrl":"10.1007/s10709-023-00190-0","url":null,"abstract":"<p><p>AP2/ERF (APETALA2/Ethylene Response Factor) is a family of transcription factors that play essential roles in regulating gene expression in response to various environmental stimuli, including biotic and abiotic stresses, hormone signaling, and developmental processes. Pisum sativum (L.), commonly known as garden pea, is a winter crop sensitive to high temperatures and can also be affected by extreme cold and drought conditions. This study performed a genome-wide analysis of AP2/ERF genes and identified 153 AP2/ERF genes in P. sativum. Based on the conserved AP2/ERF domain and sequence homology, they were classified into AP2 (APETALA2), ERF (Ethylene Response Factor), DREB (Dehydration responsive element-binding), RAV (Related to Abscisic Acid Insensitive 3/ Viviparous 1) and Soloist subfamily. The DREB and ERF subfamily were further divided into groups A1-6 and B1-B6. Tandem and segmental duplication events were more frequent in the ERF subfamily, which can have important implications for their evolution and functional diversification. Under cold stress, the expression of DREB1A was highly induced in leaves, whereas DREB1B was suppressed. Similarly, the DREB2A, DREB2C, DREB2E, and DREB2F were induced in leaves under drought stress. The putative target genes of AP2/ERF transcription factors are highly diversified, suggesting that they play essential roles in various physiological responses in plants, including responses to biotic and abiotic stresses as well as developmental processes. Thus, this study of AP2/ERF genes and their functions provides valuable insight into how P. sativum responds to different environmental conditions, including cold and drought stresses.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"225-239"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9994013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00185-x
Jules Claeys, Michael N Romanov, Darren K Griffin
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.
{"title":"Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions.","authors":"Jules Claeys, Michael N Romanov, Darren K Griffin","doi":"10.1007/s10709-023-00185-x","DOIUrl":"https://doi.org/10.1007/s10709-023-00185-x","url":null,"abstract":"<p><p>Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"167-178"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9689931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00183-z
David H Kass, Sarah Beatty, Ashlee Smith, Megan Scott, Dishita Shah, Mary Czaplicki
Retrotransposon families in the rodent family Cricetidae have been understudied in contrast to Muridae, both taxa classified within the superfamily Muroidea. Therefore, we carried out a study to advance our knowledge of the unique mys LTR-retroelement identified in Peromyscus leucopus, by incorporating intra-ORF PCR, quantitative dot blots, DNA and protein library screens, the generation of molecular phylogenies, and analyses of orthologous LTR-retroelement loci. These analyses led to the discovery of three additional related families of LTR-retroelements, which include a 2900 bp full-length element of mys-related sequences (mysRS), an 8000 bp element containing the mys ORF1 sequence (mORF1) with ERV-related sequences downstream in the reverse orientation, as well as an 1800 bp element primarily consisting of mys ORF2 (mORF2) related sequences flanked by LTRs. Our data revealed only a few full-length mys elements among genera of the Neotominae subfamily of cricetid rodents, most existing as partial copies. The mysRS and mORF1 elements are also limited to the genomes of the Neotominae subfamily, whereas mORF2 appears to be restricted to the Peromyscus genus. Molecular phylogenies demonstrating concerted evolution along with an assessment of orthologous loci in Peromyscus for the presence or absence of elements are consistent with activity of these novel LTR-retroelement families within this genus. Together with known activity of various families of non-LTR retroelements in Peromyscus species, we propose that retrotransposons have been continually contributing to the dynamics of Peromyscus genomes promoting genomic diversity and may be correlated with the evolution of more than 50 identified Peromyscus species.
{"title":"The discovery of multiple active mys-related LTR-retroelements within the Neotominae subfamily of cricetid rodents.","authors":"David H Kass, Sarah Beatty, Ashlee Smith, Megan Scott, Dishita Shah, Mary Czaplicki","doi":"10.1007/s10709-023-00183-z","DOIUrl":"https://doi.org/10.1007/s10709-023-00183-z","url":null,"abstract":"<p><p>Retrotransposon families in the rodent family Cricetidae have been understudied in contrast to Muridae, both taxa classified within the superfamily Muroidea. Therefore, we carried out a study to advance our knowledge of the unique mys LTR-retroelement identified in Peromyscus leucopus, by incorporating intra-ORF PCR, quantitative dot blots, DNA and protein library screens, the generation of molecular phylogenies, and analyses of orthologous LTR-retroelement loci. These analyses led to the discovery of three additional related families of LTR-retroelements, which include a 2900 bp full-length element of mys-related sequences (mysRS), an 8000 bp element containing the mys ORF1 sequence (mORF1) with ERV-related sequences downstream in the reverse orientation, as well as an 1800 bp element primarily consisting of mys ORF2 (mORF2) related sequences flanked by LTRs. Our data revealed only a few full-length mys elements among genera of the Neotominae subfamily of cricetid rodents, most existing as partial copies. The mysRS and mORF1 elements are also limited to the genomes of the Neotominae subfamily, whereas mORF2 appears to be restricted to the Peromyscus genus. Molecular phylogenies demonstrating concerted evolution along with an assessment of orthologous loci in Peromyscus for the presence or absence of elements are consistent with activity of these novel LTR-retroelement families within this genus. Together with known activity of various families of non-LTR retroelements in Peromyscus species, we propose that retrotransposons have been continually contributing to the dynamics of Peromyscus genomes promoting genomic diversity and may be correlated with the evolution of more than 50 identified Peromyscus species.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"179-199"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9639329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s10709-023-00186-w
M Shijili, Ravisankar Valsalan, Deepu Mathew
Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.
{"title":"Genome wide identification and characterization of MATE family genes in mangrove plants.","authors":"M Shijili, Ravisankar Valsalan, Deepu Mathew","doi":"10.1007/s10709-023-00186-w","DOIUrl":"https://doi.org/10.1007/s10709-023-00186-w","url":null,"abstract":"<p><p>Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 3","pages":"241-249"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9635466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s10709-023-00178-w
Liming Zeng, Liwang Zeng, Yu Wang, Zhengnan Xie, Minhua Zhao, Jie Chen, Xiaoxue Ye, Weiwei Tie, Meiying Li, Sang Shang, Libo Tian, Jian Zeng, Wei Hu
Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.
{"title":"Identification and expression of the CCO family during development, ripening and stress response in banana.","authors":"Liming Zeng, Liwang Zeng, Yu Wang, Zhengnan Xie, Minhua Zhao, Jie Chen, Xiaoxue Ye, Weiwei Tie, Meiying Li, Sang Shang, Libo Tian, Jian Zeng, Wei Hu","doi":"10.1007/s10709-023-00178-w","DOIUrl":"https://doi.org/10.1007/s10709-023-00178-w","url":null,"abstract":"<p><p>Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 2","pages":"87-96"},"PeriodicalIF":1.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9078951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}