Pub Date : 2024-02-01Epub Date: 2024-02-13DOI: 10.1007/s10709-024-00204-5
Tiago Ribeiro, Emanuelle Vasconcelos, José Roseno de Mendonça Filho, Shusei Sato, Daniela de Argollo Marques, Ana Christina Brasileiro-Vidal
Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.
{"title":"Differential amplification of the subtelomeric satellite DNA JcSAT1 in the genus Jatropha L. (Euphorbiaceae).","authors":"Tiago Ribeiro, Emanuelle Vasconcelos, José Roseno de Mendonça Filho, Shusei Sato, Daniela de Argollo Marques, Ana Christina Brasileiro-Vidal","doi":"10.1007/s10709-024-00204-5","DOIUrl":"10.1007/s10709-024-00204-5","url":null,"abstract":"<p><p>Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"43-49"},"PeriodicalIF":1.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1007/s10709-023-00201-0
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
{"title":"Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae)","authors":"","doi":"10.1007/s10709-023-00201-0","DOIUrl":"https://doi.org/10.1007/s10709-023-00201-0","url":null,"abstract":"<h3>Abstract</h3> <p>Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in <em>Drosophila melanogaster</em> and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"13 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1007/s10709-023-00202-z
Soon-Sen Leow, Jia-Shiun Khoo, Siuk-Mun Ng, Wei-Kang Lee, Chee-Choong Hoh, Syed Fairus, Ravigadevi Sambanthamurthi, K. C. Hayes
The African grass or Nile rat (NR) (Arvicanthis niloticus) is a herbivorous diurnal rodent which is used as a biological model for research on type 2 diabetes mellitus (T2DM) and the circadian rhythm. Similar to humans, male NRs develop T2DM with high-carbohydrate diets. The NR thus provides a unique opportunity to identify the nutritional and underlying genetic factors that characterise human T2DM, as well as the effects of potential anti-diabetic phytochemicals such as Water-Soluble Palm Fruit Extract. Whole genome sequencing (WGS) could help identify possible genetic causes why NRs spontaneously develop T2DM in captivity. In this study, we performed WGS on a hepatic deoxyribonucleic acid (DNA) sample isolated from a male NR using PacBio high-fidelity long-read sequencing. The WGS data obtained were then de novo assembled and annotated using PacBio HiFi isoform sequencing (Iso-Seq) data as well as previous Illumina RNA sequencing (RNA-Seq) data. Genes related to insulin and circadian rhythm pathways were present in the NR genome, similar to orthologues in the rat, mouse and human genomes. T2DM development in the NR is thus most likely not attributable to structural differences in these genes when compared to other biological models. Further studies are warranted to gain additional insights on the genetic-environmental factors which underlie the genetic permissiveness of NRs to develop T2DM.
非洲草鼠或尼罗河鼠(NR)(Arvicanthis niloticus)是一种草食性昼行啮齿动物,被用作研究 2 型糖尿病(T2DM)和昼夜节律的生物模型。与人类类似,雄性 NR 也会在高碳水化合物饮食中患上 T2DM。因此,NR 提供了一个独特的机会来确定人类 T2DM 的营养和潜在遗传因素,以及潜在抗糖尿病植物化学物质(如水溶性棕榈果提取物)的作用。全基因组测序(WGS)可帮助确定人工饲养的 NR 自发患 T2DM 的可能遗传原因。在本研究中,我们使用 PacBio 高保真长读数测序技术对从雄性 NR 分离出来的肝脏脱氧核糖核酸(DNA)样本进行了 WGS 测序。然后利用 PacBio HiFi 异构体测序(Iso-Seq)数据和之前的 Illumina RNA 测序(RNA-Seq)数据对获得的 WGS 数据进行了全新的组装和注释。NR基因组中存在与胰岛素和昼夜节律通路相关的基因,这与大鼠、小鼠和人类基因组中的同源基因相似。因此,与其他生物模型相比,T2DM 在 NR 中的发生很可能不是由于这些基因的结构差异造成的。为了进一步了解导致 NR 发生 T2DM 的遗传易感性的遗传环境因素,我们有必要开展进一步的研究。
{"title":"Insulin and circadian rhythm genes of the Nile rat (Arvicanthis niloticus) are conserved and orthologous to those in the rat, mouse and human","authors":"Soon-Sen Leow, Jia-Shiun Khoo, Siuk-Mun Ng, Wei-Kang Lee, Chee-Choong Hoh, Syed Fairus, Ravigadevi Sambanthamurthi, K. C. Hayes","doi":"10.1007/s10709-023-00202-z","DOIUrl":"https://doi.org/10.1007/s10709-023-00202-z","url":null,"abstract":"<p>The African grass or Nile rat (NR) (<i>Arvicanthis niloticus</i>) is a herbivorous diurnal rodent which is used as a biological model for research on type 2 diabetes mellitus (T2DM) and the circadian rhythm. Similar to humans, male NRs develop T2DM with high-carbohydrate diets. The NR thus provides a unique opportunity to identify the nutritional and underlying genetic factors that characterise human T2DM, as well as the effects of potential anti-diabetic phytochemicals such as Water-Soluble Palm Fruit Extract. Whole genome sequencing (WGS) could help identify possible genetic causes why NRs spontaneously develop T2DM in captivity. In this study, we performed WGS on a hepatic deoxyribonucleic acid (DNA) sample isolated from a male NR using PacBio high-fidelity long-read sequencing. The WGS data obtained were then <i>de novo</i> assembled and annotated using PacBio HiFi isoform sequencing (Iso-Seq) data as well as previous Illumina RNA sequencing (RNA-Seq) data. Genes related to insulin and circadian rhythm pathways were present in the NR genome, similar to orthologues in the rat, mouse and human genomes. T2DM development in the NR is thus most likely not attributable to structural differences in these genes when compared to other biological models. Further studies are warranted to gain additional insights on the genetic-environmental factors which underlie the <i>genetic permissiveness</i> of NRs to develop T2DM.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"85 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-27DOI: 10.1007/s10709-023-00200-1
Qi Zheng
The fluctuation experiment, devised by Luria and Delbrück in 1943, remains the method of choice for measuring microbial mutation rates in the laboratory. While most inference problems commonly encountered in a fluctuation experiment can be tackled by existing standard algorithms, investigators from time to time run into nonstandard problems not amenable to any existing algorithms. A major obstacle to solving these nonstandard problems is the construction of confidence intervals for mutation rates. This note describes methods for two important categories of nonstandard problems, namely, pooling data from separate experiments and analyzing grouped mutant count data, focusing on the construction of likelihood ratio confidence intervals. In addition to illustrative examples using real-world data, simulation results are presented to help assess the proposed methods.
{"title":"Methods for two nonstandard problems arising from the Luria-Delbrück experiment.","authors":"Qi Zheng","doi":"10.1007/s10709-023-00200-1","DOIUrl":"10.1007/s10709-023-00200-1","url":null,"abstract":"<p><p>The fluctuation experiment, devised by Luria and Delbrück in 1943, remains the method of choice for measuring microbial mutation rates in the laboratory. While most inference problems commonly encountered in a fluctuation experiment can be tackled by existing standard algorithms, investigators from time to time run into nonstandard problems not amenable to any existing algorithms. A major obstacle to solving these nonstandard problems is the construction of confidence intervals for mutation rates. This note describes methods for two important categories of nonstandard problems, namely, pooling data from separate experiments and analyzing grouped mutant count data, focusing on the construction of likelihood ratio confidence intervals. In addition to illustrative examples using real-world data, simulation results are presented to help assess the proposed methods.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"369-373"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-03DOI: 10.1007/s10709-023-00199-5
Jacqueline Souza Lima, Rosane Garcia Collevatti, Leciane Kárita de Oliveira, Lázaro José Chaves, Ronaldo Veloso Naves, Thannya Nascimento Soares, José Alexandre Felizola Diniz Filho, Mariana Pires de Campos Telles
There has been a continuous interest in understanding the patterns of genetic diversity in natural populations because of the role of intraspecific genetic diversity as the basis of all evolutionary change and thus, its potential effects on population persistence when facing environmental changes. Here, we provided the first description of genetic diversity distribution and population structure of Anacardium occidentale L. (cashew) from the Brazilian Cerrado, one of the most economically important tropical crops in the world. We applied Bayesian clustering approaches (STRUCTURE and POPS) that allow predicting the effects of future climatic changes on the population genetic structure of A. occidentale. We identified distinct genetic groups corresponding to the southwestern, central, and northern regions of the species' range. The characterized genetic clusters will disappear under future climate change scenarios, leading to a homogenization of genetic variability across the landscape. Our findings suggest a high likelihood for the loss of genetic diversity, which in turn will reduce the evolutionary potential of the species to cope with predicted future climatic changes. Results from this study may help develop management strategies to conserve the genetic diversity and structure of natural cashew populations.
{"title":"Forecasting effects of climate changes on the population genetic structure of Anacardium occidentale in the Cerrado biome, Brazil.","authors":"Jacqueline Souza Lima, Rosane Garcia Collevatti, Leciane Kárita de Oliveira, Lázaro José Chaves, Ronaldo Veloso Naves, Thannya Nascimento Soares, José Alexandre Felizola Diniz Filho, Mariana Pires de Campos Telles","doi":"10.1007/s10709-023-00199-5","DOIUrl":"10.1007/s10709-023-00199-5","url":null,"abstract":"<p><p>There has been a continuous interest in understanding the patterns of genetic diversity in natural populations because of the role of intraspecific genetic diversity as the basis of all evolutionary change and thus, its potential effects on population persistence when facing environmental changes. Here, we provided the first description of genetic diversity distribution and population structure of Anacardium occidentale L. (cashew) from the Brazilian Cerrado, one of the most economically important tropical crops in the world. We applied Bayesian clustering approaches (STRUCTURE and POPS) that allow predicting the effects of future climatic changes on the population genetic structure of A. occidentale. We identified distinct genetic groups corresponding to the southwestern, central, and northern regions of the species' range. The characterized genetic clusters will disappear under future climate change scenarios, leading to a homogenization of genetic variability across the landscape. Our findings suggest a high likelihood for the loss of genetic diversity, which in turn will reduce the evolutionary potential of the species to cope with predicted future climatic changes. Results from this study may help develop management strategies to conserve the genetic diversity and structure of natural cashew populations.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"357-367"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71434930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-11DOI: 10.1007/s10709-023-00197-7
Natalia V Dorogova, Svetlana A Fedorova, Elena U Bolobolova, Elina M Baricheva
The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.
{"title":"The misregulation of mitochondria-associated genes caused by GAGA-factor lack promotes autophagic germ cell death in Drosophila testes.","authors":"Natalia V Dorogova, Svetlana A Fedorova, Elena U Bolobolova, Elina M Baricheva","doi":"10.1007/s10709-023-00197-7","DOIUrl":"10.1007/s10709-023-00197-7","url":null,"abstract":"<p><p>The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"349-355"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-10DOI: 10.1007/s10709-023-00196-8
Benjamin J Nestor, Philipp E Bayer, Cassandria G Tay Fernandez, David Edwards, Patrick M Finnegan
Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.
{"title":"Approaches to increase the validity of gene family identification using manual homology search tools.","authors":"Benjamin J Nestor, Philipp E Bayer, Cassandria G Tay Fernandez, David Edwards, Patrick M Finnegan","doi":"10.1007/s10709-023-00196-8","DOIUrl":"10.1007/s10709-023-00196-8","url":null,"abstract":"<p><p>Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"325-338"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.
{"title":"Comparative transcriptome analysis of eyes reveals the adaptive mechanism of mantis shrimp (oratosquilla oratoria) induced by a dark environment.","authors":"Xiaoli Sun, Ling He, Bujin Ayi, Yuyang Qiu, Jiayue Xu, Wei Yu, Tinghao Yan, Ge Ding, Boping Tang, Gang Wang, Daizhen Zhang","doi":"10.1007/s10709-023-00198-6","DOIUrl":"10.1007/s10709-023-00198-6","url":null,"abstract":"<p><p>The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"339-348"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ionotropic glutamate receptors are ligand-gated nonselective cation channels that mediate neurotransmission in the central nervous system of animals. Plants possess homologous proteins called glutamate receptor-like channels (GLRs) which are involved in vital physiological processes including seed germination, long-distance signaling, chemotaxis, Ca2+ signaling etc. Till now, a comprehensive genome-wide analysis of the GLR gene family members in different economically important species of Brassica is missing. Considering the origin of allotetraploid Brassica napus from the hybridization between the diploid Brassica oleracea and Brassica rapa, we have identified 11, 27 and 65 GLR genes in B. oleracea, B. rapa and B. napus, respectively showing an expansion of this gene family in B. napus. Chromosomal locations revealed several tandemly duplicated GLR genes in all the three species. Moreover, the gene family expanded in B. napus after allopolyploidization. The phylogenetic analysis showed that the 103 GLRs are classified into three main groups. The exon-intron structures of these genes are not very conserved and showed wide variation in intron numbers. However, protein sequences are much conserved as shown by the presence of ten short amino acid sequence motifs. Predicted cis-acting elements in 1 kb promoters of GLR genes are mainly involved in light, stress and hormone responses. RNA-seq analysis showed that in B. oleracea and B. rapa, some GLRs are more tissue specific than others. In B. napus, some GLRs are downregulated under cold stress, while others are upregulated. In summary, this bioinformatic study of the GLR gene family of the three Brassica species provides evidence for the expansion of this gene family in B. napus and also provided useful information for in-depth studies of their biological functions in Brassica.
{"title":"Genome-wide analysis of glutamate receptor gene family in allopolyploid Brassica napus and its diploid progenitors.","authors":"Bidhan Chandra Roy, Nikita Shukla, Ratan Gachhui, Ashutosh Mukherjee","doi":"10.1007/s10709-023-00192-y","DOIUrl":"10.1007/s10709-023-00192-y","url":null,"abstract":"<p><p>Ionotropic glutamate receptors are ligand-gated nonselective cation channels that mediate neurotransmission in the central nervous system of animals. Plants possess homologous proteins called glutamate receptor-like channels (GLRs) which are involved in vital physiological processes including seed germination, long-distance signaling, chemotaxis, Ca<sup>2+</sup> signaling etc. Till now, a comprehensive genome-wide analysis of the GLR gene family members in different economically important species of Brassica is missing. Considering the origin of allotetraploid Brassica napus from the hybridization between the diploid Brassica oleracea and Brassica rapa, we have identified 11, 27 and 65 GLR genes in B. oleracea, B. rapa and B. napus, respectively showing an expansion of this gene family in B. napus. Chromosomal locations revealed several tandemly duplicated GLR genes in all the three species. Moreover, the gene family expanded in B. napus after allopolyploidization. The phylogenetic analysis showed that the 103 GLRs are classified into three main groups. The exon-intron structures of these genes are not very conserved and showed wide variation in intron numbers. However, protein sequences are much conserved as shown by the presence of ten short amino acid sequence motifs. Predicted cis-acting elements in 1 kb promoters of GLR genes are mainly involved in light, stress and hormone responses. RNA-seq analysis showed that in B. oleracea and B. rapa, some GLRs are more tissue specific than others. In B. napus, some GLRs are downregulated under cold stress, while others are upregulated. In summary, this bioinformatic study of the GLR gene family of the three Brassica species provides evidence for the expansion of this gene family in B. napus and also provided useful information for in-depth studies of their biological functions in Brassica.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"293-310"},"PeriodicalIF":1.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-23DOI: 10.1007/s10709-023-00193-x
Matthew L Aardema, Kari L Schmidt, George Amato
The scarlet macaw, Ara macao, is a neotropical parrot that contains two described subspecies with broadly discrete geographical distributions. One subspecies, A. m. macao, is found from South America north into southwestern Costa Rica, while the second subspecies, A. m. cyanoptera, is found from eastern Costa Rica north into central Mexico. Our previous research using mitochondrial data to examine phylogeographical divergence across the collective range of these two subspecies concluded that they represent distinct evolutionary entities, with minimal contemporary hybridization between them. Here we further examine phylogenetic relationships and patterns of genetic variation between these two subspecies using a dataset of genetic markers derived from their nuclear genomes. Our analyses show clear nuclear divergence between A. m. macao and A. m. cyanoptera in Central America. Collectively however, samples from this region appear genetically more similar to one another than they do to the examined South American (Brazilian) A. m. macao sample. This observation contradicts our previous assessments based on mitochondrial DNA analyses that A. m. macao in Central and South America represent a single phylogeographical group that is evolutionarily distinct from Central American A. m. cyanoptera. Nonetheless, in agreement with our previous findings, ongoing genetic exchange between the two subspecies appears limited. Rather, our analyses indicate that incomplete lineage sorting is the best supported explanation for cytonuclear discordance within these parrots. High-altitude regions in Central America may act as a reproductive barrier, limiting contemporary hybridization between A. m. macao and A. m. cyanoptera. The phylogeographic complexities of scarlet macaw taxa in this region highlight the need for additional evolutionary examinations of these populations.
猩红金刚鹦鹉,澳门金刚鹦鹉,是一种新热带鹦鹉,包含两个亚种,地理分布广泛分散。其中一个亚种A. m. macao分布于南美洲北部至哥斯达黎加西南部,而另一个亚种A. m. cyanoptera分布于哥斯达黎加东部至墨西哥中部。我们之前的研究使用线粒体数据来检查这两个亚种的集体范围内的系统地理差异,得出的结论是它们代表了不同的进化实体,它们之间的当代杂交最小。在这里,我们进一步研究了这两个亚种之间的系统发育关系和遗传变异模式,使用了来自它们核基因组的遗传标记数据集。我们的分析表明,在中美洲,澳门a.m.a num澳门与蓝翅a.m.a num cyanoptera之间存在明显的核分化。然而,总的来说,来自该地区的样本在基因上似乎比他们与南美(巴西)a.m.澳门样本更相似。这一观察结果与我们之前基于线粒体DNA分析的评估相矛盾,该评估认为中南美洲的澳门a.m.代表一个单一的系统地理群,在进化上与中美洲的a.m.蓝翅目不同。然而,与我们之前的发现一致,两个亚种之间正在进行的遗传交换似乎有限。相反,我们的分析表明,不完整的谱系分类是这些鹦鹉细胞核不一致的最好解释。中美洲的高海拔地区可能是繁殖障碍,限制了澳门a.m.a。该地区猩红金刚鹦鹉类群的系统地理复杂性突出了对这些种群进行额外进化检查的必要性。
{"title":"Patterns of cytonuclear discordance and divergence between subspecies of the scarlet macaw (Ara macao) in Central America.","authors":"Matthew L Aardema, Kari L Schmidt, George Amato","doi":"10.1007/s10709-023-00193-x","DOIUrl":"10.1007/s10709-023-00193-x","url":null,"abstract":"<p><p>The scarlet macaw, Ara macao, is a neotropical parrot that contains two described subspecies with broadly discrete geographical distributions. One subspecies, A. m. macao, is found from South America north into southwestern Costa Rica, while the second subspecies, A. m. cyanoptera, is found from eastern Costa Rica north into central Mexico. Our previous research using mitochondrial data to examine phylogeographical divergence across the collective range of these two subspecies concluded that they represent distinct evolutionary entities, with minimal contemporary hybridization between them. Here we further examine phylogenetic relationships and patterns of genetic variation between these two subspecies using a dataset of genetic markers derived from their nuclear genomes. Our analyses show clear nuclear divergence between A. m. macao and A. m. cyanoptera in Central America. Collectively however, samples from this region appear genetically more similar to one another than they do to the examined South American (Brazilian) A. m. macao sample. This observation contradicts our previous assessments based on mitochondrial DNA analyses that A. m. macao in Central and South America represent a single phylogeographical group that is evolutionarily distinct from Central American A. m. cyanoptera. Nonetheless, in agreement with our previous findings, ongoing genetic exchange between the two subspecies appears limited. Rather, our analyses indicate that incomplete lineage sorting is the best supported explanation for cytonuclear discordance within these parrots. High-altitude regions in Central America may act as a reproductive barrier, limiting contemporary hybridization between A. m. macao and A. m. cyanoptera. The phylogeographic complexities of scarlet macaw taxa in this region highlight the need for additional evolutionary examinations of these populations.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"281-292"},"PeriodicalIF":1.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}