Pub Date : 2023-04-01DOI: 10.1007/s10709-023-00182-0
Afef Najjari, Ayoub Boussetta, Noha Youssef, Javier A Linares-Pastén, Mouna Mahjoubi, Rahma Belloum, Haitham Sghaier, Ameur Cherif, Hadda Imene Ouzari
Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.
{"title":"Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert.","authors":"Afef Najjari, Ayoub Boussetta, Noha Youssef, Javier A Linares-Pastén, Mouna Mahjoubi, Rahma Belloum, Haitham Sghaier, Ameur Cherif, Hadda Imene Ouzari","doi":"10.1007/s10709-023-00182-0","DOIUrl":"https://doi.org/10.1007/s10709-023-00182-0","url":null,"abstract":"<p><p>Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m<sup>2</sup> to UV-C radiation, and at 50 mM of H<sub>2</sub>O<sub>2</sub>, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 2","pages":"133-152"},"PeriodicalIF":1.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9084478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10709-022-00166-6
Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva, Anna Vladimirovna Popinako
Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.
{"title":"Germline mutations directions are different between introns of the same gene: case study of the gene coding for amyloid-beta precursor protein.","authors":"Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva, Anna Vladimirovna Popinako","doi":"10.1007/s10709-022-00166-6","DOIUrl":"https://doi.org/10.1007/s10709-022-00166-6","url":null,"abstract":"<p><p>Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 1","pages":"61-73"},"PeriodicalIF":1.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9189834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10709-022-00177-3
Maryam Pasandideh Arjmand, Habibollah Samizadeh Lahiji, Mohammad Mohsenzadeh Golfazani, Mohammad Hassan Biglouei
Drought stress is complex abiotic stress that seriously affects crop productivity and yield. Many genes with various functions are induced in response to drought stress. The present study aimed to identify drought-responsive hub genes and their related regulation network in Arabidopsis thaliana under drought stress. In this study, RNA-sequencing data of well-watered and drought treatment samples of Arabidopsis were analyzed, and differential expression genes were identified. The gene ontology enrichment and protein-protein interaction network analyses were performed for differential expression genes. Then, the most important hub genes, gene ontology enrichment, co-expression network, and prediction of related miRNAs of hub genes were investigated by in silico approaches. A total of 2462 genes were expressed differentially, of which 1926 transcripts were up-regulated under drought stress, and the rest were down-regulated. WRKY33, WRKY40, AT1G19020, STZ, SYP122, CNI1, CML37, BCS1, AT3G02840, and AT5G54490 were identified as hub genes in drought stress. The gene ontology analysis showed that hub genes significantly enriched in response to hypoxia, chitin, wounding, and salicylic acid-mediated signaling pathway. The hub genes were co-expressed with important drought-responsive genes such as WRKY46, WRKY60, CML38, ERF6, ERF104, and ERF1A. They were regulated by many stress-responsive miRNAs, such as ath-miR5021, miR413, miR5998, and miR162, that could be used as candidate miRNAs for regulating key genes under drought stress. It seems that the regulation network was involved in signaling pathways and protein degradation under drought stress, and it consists of several important genes and miRNAs that are potential candidates for plant improvement and breeding programs.
{"title":"New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana.","authors":"Maryam Pasandideh Arjmand, Habibollah Samizadeh Lahiji, Mohammad Mohsenzadeh Golfazani, Mohammad Hassan Biglouei","doi":"10.1007/s10709-022-00177-3","DOIUrl":"https://doi.org/10.1007/s10709-022-00177-3","url":null,"abstract":"<p><p>Drought stress is complex abiotic stress that seriously affects crop productivity and yield. Many genes with various functions are induced in response to drought stress. The present study aimed to identify drought-responsive hub genes and their related regulation network in Arabidopsis thaliana under drought stress. In this study, RNA-sequencing data of well-watered and drought treatment samples of Arabidopsis were analyzed, and differential expression genes were identified. The gene ontology enrichment and protein-protein interaction network analyses were performed for differential expression genes. Then, the most important hub genes, gene ontology enrichment, co-expression network, and prediction of related miRNAs of hub genes were investigated by in silico approaches. A total of 2462 genes were expressed differentially, of which 1926 transcripts were up-regulated under drought stress, and the rest were down-regulated. WRKY33, WRKY40, AT1G19020, STZ, SYP122, CNI1, CML37, BCS1, AT3G02840, and AT5G54490 were identified as hub genes in drought stress. The gene ontology analysis showed that hub genes significantly enriched in response to hypoxia, chitin, wounding, and salicylic acid-mediated signaling pathway. The hub genes were co-expressed with important drought-responsive genes such as WRKY46, WRKY60, CML38, ERF6, ERF104, and ERF1A. They were regulated by many stress-responsive miRNAs, such as ath-miR5021, miR413, miR5998, and miR162, that could be used as candidate miRNAs for regulating key genes under drought stress. It seems that the regulation network was involved in signaling pathways and protein degradation under drought stress, and it consists of several important genes and miRNAs that are potential candidates for plant improvement and breeding programs.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 1","pages":"29-45"},"PeriodicalIF":1.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9190483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10709-022-00168-4
Volodymyr Yu Strashnyuk, Lyubov A Shakina, Daria A Skorobagatko
Polyteny is an effective mechanism for accelerating growth and enhancing gene expression in eukaryotes. The purpose of investigation was to study the genetic variability of polyteny degree of giant chromosomes in the salivary glands of Drosophila melanogaster Meig. in relation to the differential fitness of different genotypes. 16 strains, lines and hybrids of fruit flies were studied. This study demonstrates the significant influence of hereditary factors on the level of polytenization of giant chromosomes in Drosophila. This is manifested in the differences between strains and lines, the effect of inbreeding, chromosome isogenization, hybridization, adaptively significant selection, sexual differences, and varying degrees of individual variability of a trait in different strains, lines, and hybrids. The genetic component in the variability of the degree of chromosome polyteny in Drosophila salivary glands was 45.3%, the effect of sex was 9.5%. It has been shown that genetic distances during inbreeding, outbreeding or hybridization, which largely determine the selective value of different genotypes, also affect polyteny patterns. Genetic, humoral, and epigenetic aspects of endocycle regulation, which may underlie the variations in the degree of chromosome polyteny, as well as the biological significance of the phenomenon of endopolyploidy, are discussed.
{"title":"Variability of polyteny of giant chromosomes in Drosophila melanogaster salivary glands.","authors":"Volodymyr Yu Strashnyuk, Lyubov A Shakina, Daria A Skorobagatko","doi":"10.1007/s10709-022-00168-4","DOIUrl":"https://doi.org/10.1007/s10709-022-00168-4","url":null,"abstract":"<p><p>Polyteny is an effective mechanism for accelerating growth and enhancing gene expression in eukaryotes. The purpose of investigation was to study the genetic variability of polyteny degree of giant chromosomes in the salivary glands of Drosophila melanogaster Meig. in relation to the differential fitness of different genotypes. 16 strains, lines and hybrids of fruit flies were studied. This study demonstrates the significant influence of hereditary factors on the level of polytenization of giant chromosomes in Drosophila. This is manifested in the differences between strains and lines, the effect of inbreeding, chromosome isogenization, hybridization, adaptively significant selection, sexual differences, and varying degrees of individual variability of a trait in different strains, lines, and hybrids. The genetic component in the variability of the degree of chromosome polyteny in Drosophila salivary glands was 45.3%, the effect of sex was 9.5%. It has been shown that genetic distances during inbreeding, outbreeding or hybridization, which largely determine the selective value of different genotypes, also affect polyteny patterns. Genetic, humoral, and epigenetic aspects of endocycle regulation, which may underlie the variations in the degree of chromosome polyteny, as well as the biological significance of the phenomenon of endopolyploidy, are discussed.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 1","pages":"75-86"},"PeriodicalIF":1.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10636098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10709-022-00175-5
Cantekin Dursun, Nurhayat Özdemir, Serkan Gül
The geographic range of a species is crucial for obtaining information on the exact distribution of the species. The geographic data are important for delimiting distinct species or exploring the degree of differentiation among different populations of a species. The local details of species boundaries facilitate the study of the importance of phylogeographic background, secondary contacts, and hybrid zones, along with the relations between the species and its extrinsic environmental factors. In the present study, the range boundaries of Bufo bufo and Bufo verrucosissimus in the north-eastern region of Türkiye were delineated using an integrative taxonomic approach that utilized a combination of molecular and morphological data. According to the mtDNA results of the present study, B. bufo inhabits a single distribution from İyidere town to Çayeli town in Rize, while B. verrucosissimus is distributed from Şavşat town of Artvin to Ardeşen town in Rize. In addition, the two species coexist in Pazar, Hemşin, and Çamlıhemşin towns in Rize. The demographic analyses indicated a distinct population expansion for the B. verrucosissimus species after the Last Glacial Maximum, while the same did not occur for B. bufo. The univariate and multivariate statistical analyses conducted for the morphological data of the two species corroborated the presence of a putative contact zone between B. bufo and B. verrucosissimus. In summary, the present study resolved the non-distinct geographic boundaries between B. bufo and B. verrucosissimus species and also revealed the easternmost distribution of B. bufo in Türkiye. In addition, important evidence on the putative contact zone between the two species was indicated using an integrative taxonomic approach.
{"title":"Easternmost distribution of Bufo bufo (Linnaeus, 1758) in Türkiye: implications for the putative contact zone between B. bufo and B. verrucosissimus.","authors":"Cantekin Dursun, Nurhayat Özdemir, Serkan Gül","doi":"10.1007/s10709-022-00175-5","DOIUrl":"https://doi.org/10.1007/s10709-022-00175-5","url":null,"abstract":"<p><p>The geographic range of a species is crucial for obtaining information on the exact distribution of the species. The geographic data are important for delimiting distinct species or exploring the degree of differentiation among different populations of a species. The local details of species boundaries facilitate the study of the importance of phylogeographic background, secondary contacts, and hybrid zones, along with the relations between the species and its extrinsic environmental factors. In the present study, the range boundaries of Bufo bufo and Bufo verrucosissimus in the north-eastern region of Türkiye were delineated using an integrative taxonomic approach that utilized a combination of molecular and morphological data. According to the mtDNA results of the present study, B. bufo inhabits a single distribution from İyidere town to Çayeli town in Rize, while B. verrucosissimus is distributed from Şavşat town of Artvin to Ardeşen town in Rize. In addition, the two species coexist in Pazar, Hemşin, and Çamlıhemşin towns in Rize. The demographic analyses indicated a distinct population expansion for the B. verrucosissimus species after the Last Glacial Maximum, while the same did not occur for B. bufo. The univariate and multivariate statistical analyses conducted for the morphological data of the two species corroborated the presence of a putative contact zone between B. bufo and B. verrucosissimus. In summary, the present study resolved the non-distinct geographic boundaries between B. bufo and B. verrucosissimus species and also revealed the easternmost distribution of B. bufo in Türkiye. In addition, important evidence on the putative contact zone between the two species was indicated using an integrative taxonomic approach.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 1","pages":"11-27"},"PeriodicalIF":1.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10637122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Identifying cold-related genes can provide insights into the cold adaptation mechanism of weeping forsythia. In this study, we compared the changes in gene expressions and physiological and biochemical indices under short-term cold stimulation with the changes in gene sequences under a long-term heterogeneous environment to investigate the cold adaptation mechanism in weeping forsythia. The data of adaptive gene sequence changes, e.g., single nucleotide polymorphisms, were obtained from previous landscape genomics studies. The physiological and biochemical indicators and transcriptome results showed that weeping forsythia initiated a series of programs, including increasing cell osmotic pressures, scavenging ROS, activating the defense mechanism that crosses with pathogen infection, and upregulating CBF/DREB1 transcription factor 1, to cope with short-term cold stress. A reanalysis of landscape genomic data suggested that weeping forsythia responded to long-term heterogeneous cold stress by the differentiation of genes related to synthesis of aromatic substances and adenosine triphosphate. Our results supported the hypothesis that the adaptation mechanisms of species to short-term environmental stimulation and long-term stress in heterogeneous environments are different. The differences in cold tolerance among populations are not necessarily obtained by changing cold-responsive gene sequences. This study provides new insights into the cold adaptation mechanisms of plants.
{"title":"Comparative analysis of cold-responsive genes under short-term cold stimulation and cold-adaptive genes under long-term heterogeneous environments reveals a cold adaptation mechanism in weeping forsythia.","authors":"Yong Li, Shu-Chen Wang, Qian Li, Ming-Wan Li, Run-Li Mao, He-Chen Zhang, Wang-Jun Yuan, Jine Quan","doi":"10.1007/s10709-022-00176-4","DOIUrl":"https://doi.org/10.1007/s10709-022-00176-4","url":null,"abstract":"<p><p>Identifying cold-related genes can provide insights into the cold adaptation mechanism of weeping forsythia. In this study, we compared the changes in gene expressions and physiological and biochemical indices under short-term cold stimulation with the changes in gene sequences under a long-term heterogeneous environment to investigate the cold adaptation mechanism in weeping forsythia. The data of adaptive gene sequence changes, e.g., single nucleotide polymorphisms, were obtained from previous landscape genomics studies. The physiological and biochemical indicators and transcriptome results showed that weeping forsythia initiated a series of programs, including increasing cell osmotic pressures, scavenging ROS, activating the defense mechanism that crosses with pathogen infection, and upregulating CBF/DREB1 transcription factor 1, to cope with short-term cold stress. A reanalysis of landscape genomic data suggested that weeping forsythia responded to long-term heterogeneous cold stress by the differentiation of genes related to synthesis of aromatic substances and adenosine triphosphate. Our results supported the hypothesis that the adaptation mechanisms of species to short-term environmental stimulation and long-term stress in heterogeneous environments are different. The differences in cold tolerance among populations are not necessarily obtained by changing cold-responsive gene sequences. This study provides new insights into the cold adaptation mechanisms of plants.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"151 1","pages":"47-59"},"PeriodicalIF":1.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9190467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
{"title":"Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae).","authors":"Masoumeh Bagheri, Hamzeh Alipour, Tahereh Karamzadeh, Marzieh Shahriari-Namadi, Abbasali Raz, Kourosh Azizi, Javad Dadgar Pakdel, Mohammad Djaefar Moemenbellah-Fard","doi":"10.1007/s10709-022-00164-8","DOIUrl":"https://doi.org/10.1007/s10709-022-00164-8","url":null,"abstract":"<p><p>The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 6","pages":"379-394"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33469985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-13DOI: 10.1007/s10709-022-00170-w
M A Ishihara, F M C B Domingos, S C Gomides, I A Novelli, G R Colli, S M Vargas
The Brazilian Cerrado is considered a biodiversity hotspot highly threatened by human activities. Recently, many studies have demonstrated how underestimated is Cerrado's biodiversity considering squamate species, and the identification of divergent and cryptic lineages is essential for the formulation of effective conservation strategies. The transition areas between the Cerrado and the Atlantic Forest are even less known and, consequently, often dismissed in conservation policies. As previous studies suggested the presence of cryptic diversity within E. capetinga, we investigated patterns and processes in the geographic distribution of its genealogical lineages. We used DNA sequences from individuals collected in six localities and sequences publicly available from three mitochondrial markers (CYT-B, 16S and ND4) and one nuclear marker (C-Mos). We tested if the core and ecotone regions of the Cerrado show differences in biotic and abiotic characteristics that could promote genetic structure and divergence among lineages within E. capetinga. We found evidence for divergent lineages within the species, but not congruent with our hypothesis. Similar divergent patterns were observed in other Cerrado lizards, including interspecific divergences within the Enyalius genus. Molecular characterization of field-collected individuals (previously identified as E. bilineatus), allowed us to update the geographic distribution of the species to include the ecotone between the Cerrado and the Atlantic Forest, an area where species distribution overlap.
{"title":"Genetic structure of Enyalius capetinga (Squamata, Leiosauridae) in Central Cerrado and transitional areas between the Cerrado and the Atlantic forest, with updated geographic distribution.","authors":"M A Ishihara, F M C B Domingos, S C Gomides, I A Novelli, G R Colli, S M Vargas","doi":"10.1007/s10709-022-00170-w","DOIUrl":"https://doi.org/10.1007/s10709-022-00170-w","url":null,"abstract":"<p><p>The Brazilian Cerrado is considered a biodiversity hotspot highly threatened by human activities. Recently, many studies have demonstrated how underestimated is Cerrado's biodiversity considering squamate species, and the identification of divergent and cryptic lineages is essential for the formulation of effective conservation strategies. The transition areas between the Cerrado and the Atlantic Forest are even less known and, consequently, often dismissed in conservation policies. As previous studies suggested the presence of cryptic diversity within E. capetinga, we investigated patterns and processes in the geographic distribution of its genealogical lineages. We used DNA sequences from individuals collected in six localities and sequences publicly available from three mitochondrial markers (CYT-B, 16S and ND4) and one nuclear marker (C-Mos). We tested if the core and ecotone regions of the Cerrado show differences in biotic and abiotic characteristics that could promote genetic structure and divergence among lineages within E. capetinga. We found evidence for divergent lineages within the species, but not congruent with our hypothesis. Similar divergent patterns were observed in other Cerrado lizards, including interspecific divergences within the Enyalius genus. Molecular characterization of field-collected individuals (previously identified as E. bilineatus), allowed us to update the geographic distribution of the species to include the ecotone between the Cerrado and the Atlantic Forest, an area where species distribution overlap.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 6","pages":"367-377"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33506365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-15DOI: 10.1007/s10709-022-00171-9
Amir Yassin, Nelly Gidaszewski, Vincent Debat, Jean R David
Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.
{"title":"Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup.","authors":"Amir Yassin, Nelly Gidaszewski, Vincent Debat, Jean R David","doi":"10.1007/s10709-022-00171-9","DOIUrl":"https://doi.org/10.1007/s10709-022-00171-9","url":null,"abstract":"<p><p>Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 6","pages":"343-353"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33512044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of microsatellites in coding regions provides insights into the adaptability of the giant panda, polar bear and brown bear","authors":"Meiling Cheng, Daxin Xie, Megan Price, Chuang Zhou, Xiuyue Zhang","doi":"10.1007/s10709-022-00173-7","DOIUrl":"https://doi.org/10.1007/s10709-022-00173-7","url":null,"abstract":"","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 1","pages":"355 - 366"},"PeriodicalIF":1.5,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48797236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}