Pub Date : 2024-02-01Epub Date: 2024-02-15DOI: 10.1007/s10709-024-00203-6
Sergey V Mezhzherin, Svyatoslav Yu Morozov-Leonov, Olga V Rostovska
Reproduction of water frog hybrids Pelophylax esculentus (Pelophylax ridibundus x Pelophylax lessonae) is associated with hemiclonal reproduction and backcrossing. The hemiclonal mode of reproduction occurs within P. esculentus allodiploids. In this case, the unrecombined genome of one parental species is transmitted to the offspring after premeiotic elimination of the chromosome set of the second parental species. Usually, the chromosome set of P. lessonae is eliminated, and the altered genome of P. ridibundus is passed on to the progeny. The hemiclonal inheritance within diploid Pelophylax esculentus hybrids may be accompanied by certain aberrations of premeiotic elimination. As a result, the formation of P. ridibundus specimens with introgressions of the P. lessonae genetic material, or the formation of recombinant hybrids occurs, depending on which of the parental species backcrossing takes place. The aim of our study is to describe the aberration of premeiotic elimination within the water frog P. esculentus complex detected by the nuclear gene Ldh-B inheritance, with an attempt to find out the causes of this phenomenon. It has been established that aberrations of premeiotic elimination are widespread, but only within populations of water frog from the river system of Upper Dnieper within Ukraine. The highest level of introgression takes place in the water frog populations within Kiev metropolis under conditions of expressed anthropogenization, while the maximum frequency of recombinants was detected within populations from the basin of Desna River, that has preserved native ecosystems. It was demonstrated that the frequency of premeiotic aberrations does not correlate with the intensity of interspecific water frog hybridization. Populations with introgressions are more common than populations with recombinants, however, within the latter, the frequency of recombination events is higher. The primary factor of gametogenesis aberrations, most likely, is the genetic characteristics of the local populations of parental species, since unambiguous explanations of this phenomenon based on the action of environmental stress (pollution of water systems) are not obvious.
水蛙杂交种Pelophylax esculentus(Pelophylax ridibundus x Pelophylax lessonae)的繁殖与半克隆繁殖和回交有关。半克隆生殖模式发生在 P. esculentus 异源二倍体中。在这种情况下,一个亲本物种的未组合基因组在减数分裂前消除了第二个亲本物种的染色体组后传给后代。通常情况下,P. lessonae 的染色体组会被消除,而 P. ridibundus 的改变基因组则会传给后代。在二倍体 Pelophylax esculentus 杂交种中,半克隆遗传可能伴随着某些减数分裂前淘汰的畸变。因此,根据亲本物种的回交情况,会形成带有 P. lessonae 遗传物质的 P. ridibundus 标本,或形成重组杂交种。我们的研究旨在描述通过核基因 Ldh-B 遗传检测到的水蛙 P. esculentus 复合物中减数分裂前的畸变现象,并试图找出这一现象的原因。研究结果表明,雌前淘汰的畸变现象很普遍,但只存在于乌克兰上第聂伯河水系的水蛙种群中。基辅大都市内的水蛙种群在明显人类化的条件下发生了最高程度的引种,而在保留了原生生态系统的德斯纳河流域的种群中则检测到了最高频率的重组。研究表明,减数分裂前畸变的频率与水蛙种间杂交的强度无关。有引种的种群比有重组的种群更常见,但在后者中,重组事件的频率更高。配子发生畸变的主要因素很可能是亲本物种当地种群的遗传特征,因为基于环境压力(水系污染)的作用对这一现象的解释并不明确。
{"title":"Nuclear gene introgressions in hybrid populations of water frog Pelophylax esculentus complex: geographical analysis of the phenomenon and its interpretation.","authors":"Sergey V Mezhzherin, Svyatoslav Yu Morozov-Leonov, Olga V Rostovska","doi":"10.1007/s10709-024-00203-6","DOIUrl":"10.1007/s10709-024-00203-6","url":null,"abstract":"<p><p>Reproduction of water frog hybrids Pelophylax esculentus (Pelophylax ridibundus x Pelophylax lessonae) is associated with hemiclonal reproduction and backcrossing. The hemiclonal mode of reproduction occurs within P. esculentus allodiploids. In this case, the unrecombined genome of one parental species is transmitted to the offspring after premeiotic elimination of the chromosome set of the second parental species. Usually, the chromosome set of P. lessonae is eliminated, and the altered genome of P. ridibundus is passed on to the progeny. The hemiclonal inheritance within diploid Pelophylax esculentus hybrids may be accompanied by certain aberrations of premeiotic elimination. As a result, the formation of P. ridibundus specimens with introgressions of the P. lessonae genetic material, or the formation of recombinant hybrids occurs, depending on which of the parental species backcrossing takes place. The aim of our study is to describe the aberration of premeiotic elimination within the water frog P. esculentus complex detected by the nuclear gene Ldh-B inheritance, with an attempt to find out the causes of this phenomenon. It has been established that aberrations of premeiotic elimination are widespread, but only within populations of water frog from the river system of Upper Dnieper within Ukraine. The highest level of introgression takes place in the water frog populations within Kiev metropolis under conditions of expressed anthropogenization, while the maximum frequency of recombinants was detected within populations from the basin of Desna River, that has preserved native ecosystems. It was demonstrated that the frequency of premeiotic aberrations does not correlate with the intensity of interspecific water frog hybridization. Populations with introgressions are more common than populations with recombinants, however, within the latter, the frequency of recombination events is higher. The primary factor of gametogenesis aberrations, most likely, is the genetic characteristics of the local populations of parental species, since unambiguous explanations of this phenomenon based on the action of environmental stress (pollution of water systems) are not obvious.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"31-42"},"PeriodicalIF":1.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-21DOI: 10.1007/s10709-024-00205-4
Guilherme Tomaz Braz, Brena Van-Lume, Kátia Ferreira Marques de Resende, Felipe Pereira Cardoso, Ludmila Oliveira, Maria José Gomes de Andrade, Gustavo Souza, Giovana Augusta Torres
Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.
{"title":"Cytomolecular trends in Chamaecrista Moench (Caesalpinioideae, Leguminosae) diversification.","authors":"Guilherme Tomaz Braz, Brena Van-Lume, Kátia Ferreira Marques de Resende, Felipe Pereira Cardoso, Ludmila Oliveira, Maria José Gomes de Andrade, Gustavo Souza, Giovana Augusta Torres","doi":"10.1007/s10709-024-00205-4","DOIUrl":"10.1007/s10709-024-00205-4","url":null,"abstract":"<p><p>Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"51-61"},"PeriodicalIF":1.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139914082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-13DOI: 10.1007/s10709-024-00204-5
Tiago Ribeiro, Emanuelle Vasconcelos, José Roseno de Mendonça Filho, Shusei Sato, Daniela de Argollo Marques, Ana Christina Brasileiro-Vidal
Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.
{"title":"Differential amplification of the subtelomeric satellite DNA JcSAT1 in the genus Jatropha L. (Euphorbiaceae).","authors":"Tiago Ribeiro, Emanuelle Vasconcelos, José Roseno de Mendonça Filho, Shusei Sato, Daniela de Argollo Marques, Ana Christina Brasileiro-Vidal","doi":"10.1007/s10709-024-00204-5","DOIUrl":"10.1007/s10709-024-00204-5","url":null,"abstract":"<p><p>Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"43-49"},"PeriodicalIF":1.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1007/s10709-023-00201-0
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
{"title":"Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae)","authors":"","doi":"10.1007/s10709-023-00201-0","DOIUrl":"https://doi.org/10.1007/s10709-023-00201-0","url":null,"abstract":"<h3>Abstract</h3> <p>Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in <em>Drosophila melanogaster</em> and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"13 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1007/s10709-023-00202-z
Soon-Sen Leow, Jia-Shiun Khoo, Siuk-Mun Ng, Wei-Kang Lee, Chee-Choong Hoh, Syed Fairus, Ravigadevi Sambanthamurthi, K. C. Hayes
The African grass or Nile rat (NR) (Arvicanthis niloticus) is a herbivorous diurnal rodent which is used as a biological model for research on type 2 diabetes mellitus (T2DM) and the circadian rhythm. Similar to humans, male NRs develop T2DM with high-carbohydrate diets. The NR thus provides a unique opportunity to identify the nutritional and underlying genetic factors that characterise human T2DM, as well as the effects of potential anti-diabetic phytochemicals such as Water-Soluble Palm Fruit Extract. Whole genome sequencing (WGS) could help identify possible genetic causes why NRs spontaneously develop T2DM in captivity. In this study, we performed WGS on a hepatic deoxyribonucleic acid (DNA) sample isolated from a male NR using PacBio high-fidelity long-read sequencing. The WGS data obtained were then de novo assembled and annotated using PacBio HiFi isoform sequencing (Iso-Seq) data as well as previous Illumina RNA sequencing (RNA-Seq) data. Genes related to insulin and circadian rhythm pathways were present in the NR genome, similar to orthologues in the rat, mouse and human genomes. T2DM development in the NR is thus most likely not attributable to structural differences in these genes when compared to other biological models. Further studies are warranted to gain additional insights on the genetic-environmental factors which underlie the genetic permissiveness of NRs to develop T2DM.
非洲草鼠或尼罗河鼠(NR)(Arvicanthis niloticus)是一种草食性昼行啮齿动物,被用作研究 2 型糖尿病(T2DM)和昼夜节律的生物模型。与人类类似,雄性 NR 也会在高碳水化合物饮食中患上 T2DM。因此,NR 提供了一个独特的机会来确定人类 T2DM 的营养和潜在遗传因素,以及潜在抗糖尿病植物化学物质(如水溶性棕榈果提取物)的作用。全基因组测序(WGS)可帮助确定人工饲养的 NR 自发患 T2DM 的可能遗传原因。在本研究中,我们使用 PacBio 高保真长读数测序技术对从雄性 NR 分离出来的肝脏脱氧核糖核酸(DNA)样本进行了 WGS 测序。然后利用 PacBio HiFi 异构体测序(Iso-Seq)数据和之前的 Illumina RNA 测序(RNA-Seq)数据对获得的 WGS 数据进行了全新的组装和注释。NR基因组中存在与胰岛素和昼夜节律通路相关的基因,这与大鼠、小鼠和人类基因组中的同源基因相似。因此,与其他生物模型相比,T2DM 在 NR 中的发生很可能不是由于这些基因的结构差异造成的。为了进一步了解导致 NR 发生 T2DM 的遗传易感性的遗传环境因素,我们有必要开展进一步的研究。
{"title":"Insulin and circadian rhythm genes of the Nile rat (Arvicanthis niloticus) are conserved and orthologous to those in the rat, mouse and human","authors":"Soon-Sen Leow, Jia-Shiun Khoo, Siuk-Mun Ng, Wei-Kang Lee, Chee-Choong Hoh, Syed Fairus, Ravigadevi Sambanthamurthi, K. C. Hayes","doi":"10.1007/s10709-023-00202-z","DOIUrl":"https://doi.org/10.1007/s10709-023-00202-z","url":null,"abstract":"<p>The African grass or Nile rat (NR) (<i>Arvicanthis niloticus</i>) is a herbivorous diurnal rodent which is used as a biological model for research on type 2 diabetes mellitus (T2DM) and the circadian rhythm. Similar to humans, male NRs develop T2DM with high-carbohydrate diets. The NR thus provides a unique opportunity to identify the nutritional and underlying genetic factors that characterise human T2DM, as well as the effects of potential anti-diabetic phytochemicals such as Water-Soluble Palm Fruit Extract. Whole genome sequencing (WGS) could help identify possible genetic causes why NRs spontaneously develop T2DM in captivity. In this study, we performed WGS on a hepatic deoxyribonucleic acid (DNA) sample isolated from a male NR using PacBio high-fidelity long-read sequencing. The WGS data obtained were then <i>de novo</i> assembled and annotated using PacBio HiFi isoform sequencing (Iso-Seq) data as well as previous Illumina RNA sequencing (RNA-Seq) data. Genes related to insulin and circadian rhythm pathways were present in the NR genome, similar to orthologues in the rat, mouse and human genomes. T2DM development in the NR is thus most likely not attributable to structural differences in these genes when compared to other biological models. Further studies are warranted to gain additional insights on the genetic-environmental factors which underlie the <i>genetic permissiveness</i> of NRs to develop T2DM.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"85 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-27DOI: 10.1007/s10709-023-00200-1
Qi Zheng
The fluctuation experiment, devised by Luria and Delbrück in 1943, remains the method of choice for measuring microbial mutation rates in the laboratory. While most inference problems commonly encountered in a fluctuation experiment can be tackled by existing standard algorithms, investigators from time to time run into nonstandard problems not amenable to any existing algorithms. A major obstacle to solving these nonstandard problems is the construction of confidence intervals for mutation rates. This note describes methods for two important categories of nonstandard problems, namely, pooling data from separate experiments and analyzing grouped mutant count data, focusing on the construction of likelihood ratio confidence intervals. In addition to illustrative examples using real-world data, simulation results are presented to help assess the proposed methods.
{"title":"Methods for two nonstandard problems arising from the Luria-Delbrück experiment.","authors":"Qi Zheng","doi":"10.1007/s10709-023-00200-1","DOIUrl":"10.1007/s10709-023-00200-1","url":null,"abstract":"<p><p>The fluctuation experiment, devised by Luria and Delbrück in 1943, remains the method of choice for measuring microbial mutation rates in the laboratory. While most inference problems commonly encountered in a fluctuation experiment can be tackled by existing standard algorithms, investigators from time to time run into nonstandard problems not amenable to any existing algorithms. A major obstacle to solving these nonstandard problems is the construction of confidence intervals for mutation rates. This note describes methods for two important categories of nonstandard problems, namely, pooling data from separate experiments and analyzing grouped mutant count data, focusing on the construction of likelihood ratio confidence intervals. In addition to illustrative examples using real-world data, simulation results are presented to help assess the proposed methods.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"369-373"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-03DOI: 10.1007/s10709-023-00199-5
Jacqueline Souza Lima, Rosane Garcia Collevatti, Leciane Kárita de Oliveira, Lázaro José Chaves, Ronaldo Veloso Naves, Thannya Nascimento Soares, José Alexandre Felizola Diniz Filho, Mariana Pires de Campos Telles
There has been a continuous interest in understanding the patterns of genetic diversity in natural populations because of the role of intraspecific genetic diversity as the basis of all evolutionary change and thus, its potential effects on population persistence when facing environmental changes. Here, we provided the first description of genetic diversity distribution and population structure of Anacardium occidentale L. (cashew) from the Brazilian Cerrado, one of the most economically important tropical crops in the world. We applied Bayesian clustering approaches (STRUCTURE and POPS) that allow predicting the effects of future climatic changes on the population genetic structure of A. occidentale. We identified distinct genetic groups corresponding to the southwestern, central, and northern regions of the species' range. The characterized genetic clusters will disappear under future climate change scenarios, leading to a homogenization of genetic variability across the landscape. Our findings suggest a high likelihood for the loss of genetic diversity, which in turn will reduce the evolutionary potential of the species to cope with predicted future climatic changes. Results from this study may help develop management strategies to conserve the genetic diversity and structure of natural cashew populations.
{"title":"Forecasting effects of climate changes on the population genetic structure of Anacardium occidentale in the Cerrado biome, Brazil.","authors":"Jacqueline Souza Lima, Rosane Garcia Collevatti, Leciane Kárita de Oliveira, Lázaro José Chaves, Ronaldo Veloso Naves, Thannya Nascimento Soares, José Alexandre Felizola Diniz Filho, Mariana Pires de Campos Telles","doi":"10.1007/s10709-023-00199-5","DOIUrl":"10.1007/s10709-023-00199-5","url":null,"abstract":"<p><p>There has been a continuous interest in understanding the patterns of genetic diversity in natural populations because of the role of intraspecific genetic diversity as the basis of all evolutionary change and thus, its potential effects on population persistence when facing environmental changes. Here, we provided the first description of genetic diversity distribution and population structure of Anacardium occidentale L. (cashew) from the Brazilian Cerrado, one of the most economically important tropical crops in the world. We applied Bayesian clustering approaches (STRUCTURE and POPS) that allow predicting the effects of future climatic changes on the population genetic structure of A. occidentale. We identified distinct genetic groups corresponding to the southwestern, central, and northern regions of the species' range. The characterized genetic clusters will disappear under future climate change scenarios, leading to a homogenization of genetic variability across the landscape. Our findings suggest a high likelihood for the loss of genetic diversity, which in turn will reduce the evolutionary potential of the species to cope with predicted future climatic changes. Results from this study may help develop management strategies to conserve the genetic diversity and structure of natural cashew populations.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"357-367"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71434930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-10DOI: 10.1007/s10709-023-00196-8
Benjamin J Nestor, Philipp E Bayer, Cassandria G Tay Fernandez, David Edwards, Patrick M Finnegan
Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.
{"title":"Approaches to increase the validity of gene family identification using manual homology search tools.","authors":"Benjamin J Nestor, Philipp E Bayer, Cassandria G Tay Fernandez, David Edwards, Patrick M Finnegan","doi":"10.1007/s10709-023-00196-8","DOIUrl":"10.1007/s10709-023-00196-8","url":null,"abstract":"<p><p>Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"325-338"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-11DOI: 10.1007/s10709-023-00197-7
Natalia V Dorogova, Svetlana A Fedorova, Elena U Bolobolova, Elina M Baricheva
The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.
{"title":"The misregulation of mitochondria-associated genes caused by GAGA-factor lack promotes autophagic germ cell death in Drosophila testes.","authors":"Natalia V Dorogova, Svetlana A Fedorova, Elena U Bolobolova, Elina M Baricheva","doi":"10.1007/s10709-023-00197-7","DOIUrl":"10.1007/s10709-023-00197-7","url":null,"abstract":"<p><p>The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"349-355"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.
{"title":"Comparative transcriptome analysis of eyes reveals the adaptive mechanism of mantis shrimp (oratosquilla oratoria) induced by a dark environment.","authors":"Xiaoli Sun, Ling He, Bujin Ayi, Yuyang Qiu, Jiayue Xu, Wei Yu, Tinghao Yan, Ge Ding, Boping Tang, Gang Wang, Daizhen Zhang","doi":"10.1007/s10709-023-00198-6","DOIUrl":"10.1007/s10709-023-00198-6","url":null,"abstract":"<p><p>The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"339-348"},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}