Pub Date : 2023-07-18DOI: 10.1186/s12983-023-00502-2
Matthew R Wood, J Low de Vries, Jonathan H Epstein, Wanda Markotter
Background: Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people.
Results: Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations.
Conclusion: This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.
{"title":"Variations in small-scale movements of, Rousettus aegyptiacus, a Marburg virus reservoir across a seasonal gradient.","authors":"Matthew R Wood, J Low de Vries, Jonathan H Epstein, Wanda Markotter","doi":"10.1186/s12983-023-00502-2","DOIUrl":"https://doi.org/10.1186/s12983-023-00502-2","url":null,"abstract":"<p><strong>Background: </strong>Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people.</p><p><strong>Results: </strong>Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations.</p><p><strong>Conclusion: </strong>This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"23"},"PeriodicalIF":2.8,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9844004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.1186/s12983-023-00500-4
Boyan Zlatkov, Vladislav Vergilov, José Vicente Pérez Santa-Rita, Joaquín Baixeras
Background: The process of copulation in Lepidoptera is understudied and poorly understood from a functional perspective. The purpose of the present paper is to study the interaction of the male and female genitalia of Tortrix viridana Linnaeus, 1758 via three-dimensional models of pairs fixed during copulation. Other techniques (confocal laser scanning microscopy, scanning electron microscopy and histology) were used to clarify the role of the organs involved in the process.
Results: Three-dimensional models based on micro-CT scanned copulating pairs were generated allowing visualisation of the position of the male and female counterparts, spatial changes during copulation, and the skeleto-muscular apparatus involved in the process. The male genitalia and their musculature are simplified in comparison with other lineages of the family, but the opposite is true for the female genitalia. The attachment of the couple is achieved only through flexion of the valvae, clasping the large and sclerotised sternite 7 of the female. The anal cone and socii of the male are in contact with certain parts of the anal papillae and the sterigma of the female. The long tubular vesica is inserted into the narrow posterior part of the ductus bursae. Its eversion is achieved by an increase in haemolymph pressure. A possible mechanism of stimulation of the female via pulsations of the diverticulum of the vesica was discovered. A compressed sclerotised area of the ductus bursae putatively serves as a valve controlling the transfer of ejaculated materials. Copulation progresses through two phases: in the first the vesica and its diverticulum are inflated by haemolymph, and in the second the diverticulum is not inflated, and the vesica is occupied by viscous ejaculated material. The formation of the multilayered spermatophore was observed, and we discovered that sperm is transferred very late in the copulation process.
Conclusions: Copulation process in Lepidoptera is studied for the first time with three-dimensional reconstructions of couples of Tortrix viridana, used as a model species. The internal genitalia is the scenario of multiple interactions between male and female, but the external remain static. A possible mechanism of stimulation of the female internal copulation organs is proposed.
{"title":"First 3-D reconstruction of copulation in Lepidoptera: interaction of genitalia in Tortrix viridana (Tortricidae).","authors":"Boyan Zlatkov, Vladislav Vergilov, José Vicente Pérez Santa-Rita, Joaquín Baixeras","doi":"10.1186/s12983-023-00500-4","DOIUrl":"https://doi.org/10.1186/s12983-023-00500-4","url":null,"abstract":"<p><strong>Background: </strong>The process of copulation in Lepidoptera is understudied and poorly understood from a functional perspective. The purpose of the present paper is to study the interaction of the male and female genitalia of Tortrix viridana Linnaeus, 1758 via three-dimensional models of pairs fixed during copulation. Other techniques (confocal laser scanning microscopy, scanning electron microscopy and histology) were used to clarify the role of the organs involved in the process.</p><p><strong>Results: </strong>Three-dimensional models based on micro-CT scanned copulating pairs were generated allowing visualisation of the position of the male and female counterparts, spatial changes during copulation, and the skeleto-muscular apparatus involved in the process. The male genitalia and their musculature are simplified in comparison with other lineages of the family, but the opposite is true for the female genitalia. The attachment of the couple is achieved only through flexion of the valvae, clasping the large and sclerotised sternite 7 of the female. The anal cone and socii of the male are in contact with certain parts of the anal papillae and the sterigma of the female. The long tubular vesica is inserted into the narrow posterior part of the ductus bursae. Its eversion is achieved by an increase in haemolymph pressure. A possible mechanism of stimulation of the female via pulsations of the diverticulum of the vesica was discovered. A compressed sclerotised area of the ductus bursae putatively serves as a valve controlling the transfer of ejaculated materials. Copulation progresses through two phases: in the first the vesica and its diverticulum are inflated by haemolymph, and in the second the diverticulum is not inflated, and the vesica is occupied by viscous ejaculated material. The formation of the multilayered spermatophore was observed, and we discovered that sperm is transferred very late in the copulation process.</p><p><strong>Conclusions: </strong>Copulation process in Lepidoptera is studied for the first time with three-dimensional reconstructions of couples of Tortrix viridana, used as a model species. The internal genitalia is the scenario of multiple interactions between male and female, but the external remain static. A possible mechanism of stimulation of the female internal copulation organs is proposed.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"22"},"PeriodicalIF":2.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9804021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-16DOI: 10.1186/s12983-023-00499-8
Krzysztof Kowalski, Paweł Marciniak, Leszek Rychlik
Background: Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands.
Results: Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings.
Conclusion: This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.
{"title":"Proteins from toad's parotoid macroglands: do they play a role in gland functioning and chemical defence?","authors":"Krzysztof Kowalski, Paweł Marciniak, Leszek Rychlik","doi":"10.1186/s12983-023-00499-8","DOIUrl":"https://doi.org/10.1186/s12983-023-00499-8","url":null,"abstract":"<p><strong>Background: </strong>Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands.</p><p><strong>Results: </strong>Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings.</p><p><strong>Conclusion: </strong>This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"21"},"PeriodicalIF":2.8,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10013617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1186/s12983-023-00489-w
Francesco Ferretti, Raquel Oliveira, Mariana Rossa, Irene Belardi, Giada Pacini, Sara Mugnai, Niccolò Fattorini, Lorenzo Lazzeri
Background: There is need of information on ecological interactions that keystone species such as apex predators establish in ecosystems recently recolonised. Interactions among carnivore species have the potential to influence community-level processes, with consequences for ecosystem dynamics. Although avoidance of apex predators by smaller carnivores has been reported, there is increasing evidence that the potential for competitive-to-facilitative interactions is context-dependent. In a protected area recently recolonised by the wolf Canis lupus and hosting abundant wild prey (3 ungulate species, 20-30 individuals/km2, together), we used 5-year food habit analyses and 3-year camera trapping to (i) investigate the role of mesocarnivores (4 species) in the wolf diet; (ii) test for temporal, spatial, and fine-scale spatiotemporal association between mesocarnivores and the wolf.
Results: Wolf diet was dominated by large herbivores (86% occurrences, N = 2201 scats), with mesocarnivores occurring in 2% scats. We collected 12,808 carnivore detections over > 19,000 camera trapping days. We found substantial (i.e., generally ≥ 0.75, 0-1 scale) temporal overlap between mesocarnivores-in particular red fox-and the wolf, with no support for negative temporal or spatial associations between mesocarnivore and wolf detection rates. All the species were nocturnal/crepuscular and results suggested a minor role of human activity in modifying interspecific spatiotemporal partitioning.
Conclusions: Results suggest that the local great availability of large prey to wolves limited negative interactions towards smaller carnivores, thus reducing the potential for spatiotemporal avoidance. Our study emphasises that avoidance patterns leading to substantial spatiotemporal partitioning are not ubiquitous in carnivore guilds.
{"title":"Interactions between carnivore species: limited spatiotemporal partitioning between apex predator and smaller carnivores in a Mediterranean protected area.","authors":"Francesco Ferretti, Raquel Oliveira, Mariana Rossa, Irene Belardi, Giada Pacini, Sara Mugnai, Niccolò Fattorini, Lorenzo Lazzeri","doi":"10.1186/s12983-023-00489-w","DOIUrl":"10.1186/s12983-023-00489-w","url":null,"abstract":"<p><strong>Background: </strong>There is need of information on ecological interactions that keystone species such as apex predators establish in ecosystems recently recolonised. Interactions among carnivore species have the potential to influence community-level processes, with consequences for ecosystem dynamics. Although avoidance of apex predators by smaller carnivores has been reported, there is increasing evidence that the potential for competitive-to-facilitative interactions is context-dependent. In a protected area recently recolonised by the wolf Canis lupus and hosting abundant wild prey (3 ungulate species, 20-30 individuals/km<sup>2</sup>, together), we used 5-year food habit analyses and 3-year camera trapping to (i) investigate the role of mesocarnivores (4 species) in the wolf diet; (ii) test for temporal, spatial, and fine-scale spatiotemporal association between mesocarnivores and the wolf.</p><p><strong>Results: </strong>Wolf diet was dominated by large herbivores (86% occurrences, N = 2201 scats), with mesocarnivores occurring in 2% scats. We collected 12,808 carnivore detections over > 19,000 camera trapping days. We found substantial (i.e., generally ≥ 0.75, 0-1 scale) temporal overlap between mesocarnivores-in particular red fox-and the wolf, with no support for negative temporal or spatial associations between mesocarnivore and wolf detection rates. All the species were nocturnal/crepuscular and results suggested a minor role of human activity in modifying interspecific spatiotemporal partitioning.</p><p><strong>Conclusions: </strong>Results suggest that the local great availability of large prey to wolves limited negative interactions towards smaller carnivores, thus reducing the potential for spatiotemporal avoidance. Our study emphasises that avoidance patterns leading to substantial spatiotemporal partitioning are not ubiquitous in carnivore guilds.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"20"},"PeriodicalIF":2.6,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9526074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1186/s12983-023-00498-9
Sylvain Giroud, Marie-Therese Ragger, Amélie Baille, Franz Hoelzl, Steve Smith, Julia Nowack, Thomas Ruf
Background: Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming-characterised by high levels of oxidative stress-is associated with shortening of telomeres, a marker of somatic maintenance.
Objectives: In this study, we determined the impact of ambient temperature on feeding behaviour and telomere dynamics in hibernating garden dormice (Eliomys quercinus) over winter. This obligate hibernator prepares for hibernation by accumulating fat stores but can also feed during hibernation.
Methodology: Food intake, torpor pattern, changes in telomere length, and body mass change were assessed in animals housed at experimentally controlled temperatures of either 14 °C (i.e., a mild winter) or 3 °C (i.e., a cold winter) over 6 months.
Results: When hibernating at 14 °C, dormice experienced 1.7-fold more frequent and 2.4-fold longer inter-bout euthermia, and spent significantly less time torpid, compared to animals hibernating at 3 °C. Higher food intake enabled individuals to compensate for increased energetic costs when hibernating at milder temperatures (14 °C vs. 3 °C), to buffer body mass loss and thus increase winter survival. Interestingly, we observed a significant increase of telomere length over the entire hibernation period, irrespective of temperature treatment.
Conclusion: We conclude that higher temperatures during winter, if associated with sufficient food availability, can have a positive effect on the individual's energy balance and somatic maintenance. These results suggest that winter food availability might be a crucial determinant for the survival of the garden dormouse in the context of ever-increasing environmental temperatures.
{"title":"Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus).","authors":"Sylvain Giroud, Marie-Therese Ragger, Amélie Baille, Franz Hoelzl, Steve Smith, Julia Nowack, Thomas Ruf","doi":"10.1186/s12983-023-00498-9","DOIUrl":"10.1186/s12983-023-00498-9","url":null,"abstract":"<p><strong>Background: </strong>Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming-characterised by high levels of oxidative stress-is associated with shortening of telomeres, a marker of somatic maintenance.</p><p><strong>Objectives: </strong>In this study, we determined the impact of ambient temperature on feeding behaviour and telomere dynamics in hibernating garden dormice (Eliomys quercinus) over winter. This obligate hibernator prepares for hibernation by accumulating fat stores but can also feed during hibernation.</p><p><strong>Methodology: </strong>Food intake, torpor pattern, changes in telomere length, and body mass change were assessed in animals housed at experimentally controlled temperatures of either 14 °C (i.e., a mild winter) or 3 °C (i.e., a cold winter) over 6 months.</p><p><strong>Results: </strong>When hibernating at 14 °C, dormice experienced 1.7-fold more frequent and 2.4-fold longer inter-bout euthermia, and spent significantly less time torpid, compared to animals hibernating at 3 °C. Higher food intake enabled individuals to compensate for increased energetic costs when hibernating at milder temperatures (14 °C vs. 3 °C), to buffer body mass loss and thus increase winter survival. Interestingly, we observed a significant increase of telomere length over the entire hibernation period, irrespective of temperature treatment.</p><p><strong>Conclusion: </strong>We conclude that higher temperatures during winter, if associated with sufficient food availability, can have a positive effect on the individual's energy balance and somatic maintenance. These results suggest that winter food availability might be a crucial determinant for the survival of the garden dormouse in the context of ever-increasing environmental temperatures.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"19"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9524006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The current modification of species distribution ranges, as a response to a warmer climate, constitutes an interesting line of work and a recent challenge for biogeography. This study aimed to determine if the climatic conditions of southern Europe are adequate to host a typical African species, the House Bunting, which is registered regularly during the last years, still in low numbers. To this end, the distribution of the species in its native range was modelled, both in the present and in future climate scenarios, using its current breeding distribution areas and a set of environmental variables.
Results: The results showed that the southern half of the Iberian Peninsula exhibits high values of favourability to host this African species for the current climatic conditions. Furthermore, future forecasts indicated an increase in favourability for this area. The highly favourable areas we detected in the south of the Iberian Peninsula are already regularly receiving individuals of the species. These observations are very likely vagrant birds dispersing from recently colonised breeding areas in northern Morocco, which may indicate a continuous process of colonisation towards the north, as has occurred during the last decades in Northern Africa.
Conclusions: We cannot anticipate when the House Bunting will establish on the European continent because colonisation processes are usually slow but, according to our results, we predict its establishment in the near future. We have also identified those areas hosting favourable conditions for the species in Europe. These areas are a potential focal point for the colonisation of this and other African birds if the climate continues to warm.
{"title":"Southern Europe is becoming climatically favourable for African birds: anticipating the establishment of a new species.","authors":"Sandro López-Ramírez, Darío Chamorro, Raimundo Real, Antonio-Román Muñoz","doi":"10.1186/s12983-023-00496-x","DOIUrl":"https://doi.org/10.1186/s12983-023-00496-x","url":null,"abstract":"<p><strong>Background: </strong>The current modification of species distribution ranges, as a response to a warmer climate, constitutes an interesting line of work and a recent challenge for biogeography. This study aimed to determine if the climatic conditions of southern Europe are adequate to host a typical African species, the House Bunting, which is registered regularly during the last years, still in low numbers. To this end, the distribution of the species in its native range was modelled, both in the present and in future climate scenarios, using its current breeding distribution areas and a set of environmental variables.</p><p><strong>Results: </strong>The results showed that the southern half of the Iberian Peninsula exhibits high values of favourability to host this African species for the current climatic conditions. Furthermore, future forecasts indicated an increase in favourability for this area. The highly favourable areas we detected in the south of the Iberian Peninsula are already regularly receiving individuals of the species. These observations are very likely vagrant birds dispersing from recently colonised breeding areas in northern Morocco, which may indicate a continuous process of colonisation towards the north, as has occurred during the last decades in Northern Africa.</p><p><strong>Conclusions: </strong>We cannot anticipate when the House Bunting will establish on the European continent because colonisation processes are usually slow but, according to our results, we predict its establishment in the near future. We have also identified those areas hosting favourable conditions for the species in Europe. These areas are a potential focal point for the colonisation of this and other African birds if the climate continues to warm.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"18"},"PeriodicalIF":2.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9549593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1186/s12983-023-00497-w
Dávid Radovics, Márton Szabolcs, Szabolcs Lengyel, Edvárd Mizsei
Background: Understanding predator-prey relationships is fundamental in many areas of ecology and conservation. In reptiles, basking time often increases the risk of predation and one way to minimise this risk is to reduce activity time and to stay within a refuge. However, this implies costs of lost opportunities for foraging, reproduction, and thermoregulation. We aimed to determine the main potential and observed predators of Vipera graeca, to infer predation pressure by estimating the incidence and the body length and sex distribution of predation events based on body injuries, and to assess whether and how the activity of V. graeca individuals is modified by predation pressure.
Results: We observed n = 12 raptor bird species foraging at the study sites, of which Circaetus gallicus, Falco tinnunculus and Corvus cornix were directly observed as predators of V. graeca. We found injuries and wounds on 12.5% of the studied individuals (n = 319). The occurrence of injuries was significantly positively influenced by the body length of vipers, and was more frequent on females than on males, while the interaction of length and sex showed a significant negative effect. The temporal overlap between predator and viper activity was much greater for the vipers' potential activity than their realised activity. Vipers showed a temporal shift in their bimodal daily activity pattern as they were active earlier in the morning and later in the afternoon than could be expected based on the thermal conditions.
Conclusion: The time spent being active on the surface has costs to snakes: predation-related injuries increased in frequency with length, were more frequent in females than in males and occurred in shorter length for males than for females. Our results suggest that vipers do not fully exploit the thermally optimal time window available to them, likely because they shift their activity to periods with fewer avian predators.
{"title":"Hide or die when the winds bring wings: predator avoidance by activity shift in a mountain snake.","authors":"Dávid Radovics, Márton Szabolcs, Szabolcs Lengyel, Edvárd Mizsei","doi":"10.1186/s12983-023-00497-w","DOIUrl":"https://doi.org/10.1186/s12983-023-00497-w","url":null,"abstract":"<p><strong>Background: </strong>Understanding predator-prey relationships is fundamental in many areas of ecology and conservation. In reptiles, basking time often increases the risk of predation and one way to minimise this risk is to reduce activity time and to stay within a refuge. However, this implies costs of lost opportunities for foraging, reproduction, and thermoregulation. We aimed to determine the main potential and observed predators of Vipera graeca, to infer predation pressure by estimating the incidence and the body length and sex distribution of predation events based on body injuries, and to assess whether and how the activity of V. graeca individuals is modified by predation pressure.</p><p><strong>Results: </strong>We observed n = 12 raptor bird species foraging at the study sites, of which Circaetus gallicus, Falco tinnunculus and Corvus cornix were directly observed as predators of V. graeca. We found injuries and wounds on 12.5% of the studied individuals (n = 319). The occurrence of injuries was significantly positively influenced by the body length of vipers, and was more frequent on females than on males, while the interaction of length and sex showed a significant negative effect. The temporal overlap between predator and viper activity was much greater for the vipers' potential activity than their realised activity. Vipers showed a temporal shift in their bimodal daily activity pattern as they were active earlier in the morning and later in the afternoon than could be expected based on the thermal conditions.</p><p><strong>Conclusion: </strong>The time spent being active on the surface has costs to snakes: predation-related injuries increased in frequency with length, were more frequent in females than in males and occurred in shorter length for males than for females. Our results suggest that vipers do not fully exploit the thermally optimal time window available to them, likely because they shift their activity to periods with fewer avian predators.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"17"},"PeriodicalIF":2.8,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9488276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1186/s12983-023-00491-2
Birk Rillich, Fábio G L Oliveira
Background: Springtails have the ability to jump using morphological structures consisting of a catapult, the furca, and a latching system constructed with interaction of the retinaculum and the dens lock. The retinaculum engages in the furca at the dens lock in order to form a spring mechanism. They exhibit diversified morphological traits that serve as adaptations to a variety of terrestrial strata and aquatic surface environments. This comparative morphofunctional study centered on the retinaculum and the furcular region of the dens lock aims to describe the morphological variation between taxa and provide insights into the functional dynamics of the latching mechanism at work in the jumping apparatus. Using SEM, µCT and cLSM, we compared representatives of Collembola taxa, Poduromorpha (Neanura muscorum and Podura aquatica), Symphypleona (Dicyrtomina ornata) and Neelipleona (Megalothorax minimus), and examined extracts of the environment in which they were collected.
Results: A retinaculum is absent in N. muscorum, although vestigial muscles were found. Abdominal musculature varies significantly, being more abundant in springtails with clear segmentation (N. muscorum and P. aquatica), and reduced in springtails with fused segmentation (D. ornata and M. minimus). The M.a-ret varies as regards architecture and point of connection with the ramus, which is lateral in P. aquatica and median in the other species studied. The number of teeth in the retinaculum ramus also varies between three in M. minimus and four in the other species. The dens lock of all species studied has two locks and two furrows.
Conclusions: The retinaculum and dens lock interact in a key-lock relationship. The latching and unlatching mechanism from the retinaculum and dens lock appear to be similar in all the taxa examined, occurring by muscle force. This leads us to question the hypothesis that hemolymph pressure may be a force generator in jumping. We offer a reconstruction of the ground pattern of the retinaculum and dens lock and, in addition, an explanation of their functioning and the interaction between them. Finally, we frame the interaction between the retinaculum and the dens lock as a latch in a biological system, a mechanism which functions by force of physical contact.
{"title":"On latches in biological systems: a comparative morphological and functional study of the retinaculum and the dens lock in Collembola.","authors":"Birk Rillich, Fábio G L Oliveira","doi":"10.1186/s12983-023-00491-2","DOIUrl":"https://doi.org/10.1186/s12983-023-00491-2","url":null,"abstract":"<p><strong>Background: </strong>Springtails have the ability to jump using morphological structures consisting of a catapult, the furca, and a latching system constructed with interaction of the retinaculum and the dens lock. The retinaculum engages in the furca at the dens lock in order to form a spring mechanism. They exhibit diversified morphological traits that serve as adaptations to a variety of terrestrial strata and aquatic surface environments. This comparative morphofunctional study centered on the retinaculum and the furcular region of the dens lock aims to describe the morphological variation between taxa and provide insights into the functional dynamics of the latching mechanism at work in the jumping apparatus. Using SEM, µCT and cLSM, we compared representatives of Collembola taxa, Poduromorpha (Neanura muscorum and Podura aquatica), Symphypleona (Dicyrtomina ornata) and Neelipleona (Megalothorax minimus), and examined extracts of the environment in which they were collected.</p><p><strong>Results: </strong>A retinaculum is absent in N. muscorum, although vestigial muscles were found. Abdominal musculature varies significantly, being more abundant in springtails with clear segmentation (N. muscorum and P. aquatica), and reduced in springtails with fused segmentation (D. ornata and M. minimus). The M.a-ret varies as regards architecture and point of connection with the ramus, which is lateral in P. aquatica and median in the other species studied. The number of teeth in the retinaculum ramus also varies between three in M. minimus and four in the other species. The dens lock of all species studied has two locks and two furrows.</p><p><strong>Conclusions: </strong>The retinaculum and dens lock interact in a key-lock relationship. The latching and unlatching mechanism from the retinaculum and dens lock appear to be similar in all the taxa examined, occurring by muscle force. This leads us to question the hypothesis that hemolymph pressure may be a force generator in jumping. We offer a reconstruction of the ground pattern of the retinaculum and dens lock and, in addition, an explanation of their functioning and the interaction between them. Finally, we frame the interaction between the retinaculum and the dens lock as a latch in a biological system, a mechanism which functions by force of physical contact.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"16"},"PeriodicalIF":2.8,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9803762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brittle stars, unlike most other echinoderms, do not use their small tube feet for locomotion but instead use their flexible arms to produce a rowing or reverse rowing movement. They are among the fastest-moving echinoderms with the ability of complex locomotory behaviors. Considering the high species diversity and variability in morphotypes, a proper understanding of intra- and interspecies variation in arm flexibility and movement is lacking. This study focuses on the exploration of the methods to investigate the variability in brittle star locomotion and individual arm use. We performed a two-dimensional (2D) image processing on horizontal movement only. The result indicated that sinuosity, disc displacement and arm angle are important parameters to interpret ophiuroid locomotion. A dedicated Python script to calculate the studied movement parameters and visualize the results applicable to all 5-armed brittle stars was developed. These results can serve as the basis for further research in robotics inspired by brittle star locomotion.
{"title":"A methodological exploration to study 2D arm kinematics in Ophiuroidea (Echinodermata).","authors":"Mona Goharimanesh, Sabine Stöhr, Fereshteh Ghassemzadeh, Omid Mirshamsi, Dominique Adriaens","doi":"10.1186/s12983-023-00495-y","DOIUrl":"https://doi.org/10.1186/s12983-023-00495-y","url":null,"abstract":"<p><p>Brittle stars, unlike most other echinoderms, do not use their small tube feet for locomotion but instead use their flexible arms to produce a rowing or reverse rowing movement. They are among the fastest-moving echinoderms with the ability of complex locomotory behaviors. Considering the high species diversity and variability in morphotypes, a proper understanding of intra- and interspecies variation in arm flexibility and movement is lacking. This study focuses on the exploration of the methods to investigate the variability in brittle star locomotion and individual arm use. We performed a two-dimensional (2D) image processing on horizontal movement only. The result indicated that sinuosity, disc displacement and arm angle are important parameters to interpret ophiuroid locomotion. A dedicated Python script to calculate the studied movement parameters and visualize the results applicable to all 5-armed brittle stars was developed. These results can serve as the basis for further research in robotics inspired by brittle star locomotion.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"15"},"PeriodicalIF":2.8,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9427848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1186/s12983-023-00493-0
Soma Chiyoda, Kohei Oguchi, Toru Miura
Background: Arthropods gradually change their forms through repeated molting events during postembryonic development. Anamorphosis, i.e., segment addition during postembryonic development, is seen in some arthropod lineages. In all millipede species (Myriapoda, Diplopoda), for example, postembryonic processes go through anamorphosis. Jean-Henri Fabre proposed 168 years ago the "law of anamorphosis", that is, "new rings appear between the penultimate ring and the telson" and "all apodous rings in a given stadium become podous rings in the next stadium", but the developmental process at the anamorphic molt remains largely unknown. In this study, therefore, by observing the morphological and histological changes at the time of molting, the detailed processes of leg- and ring-addition during anamorphosis were characterized in a millipede, Niponia nodulosa (Polydesmida, Cryptodesmidae).
Results: In the preparatory period, a few days before molting, scanning electron microscopy, confocal laser scanning microscopy, and histological observations revealed that two pairs of wrinkled leg primordia were present under the cuticle of each apodous ring. In the rigidation period, just prior to molt, observations of external morphology showed that a transparent protrusion was observed on the median line of the ventral surface on each apodous ring. Confocal laser scanning microscopy and histological observations revealed that the transparent protrusion covered by an arthrodial membrane contained a leg bundle consisting of two pairs of legs. On the other hand, ring primordia were observed anterior to the telson just before molts.
Conclusions: Preceding the anamorphic molt in which two pairs of legs are added on an apodous ring, a transparent protrusion containing the leg pairs (a leg bundle) appears on each apodous ring. The morphogenetic process of the rapid protrusion of leg bundles, that is enabled by thin and elastic cuticle, suggested that millipedes have acquired a resting period and unique morphogenesis to efficiently add new legs and rings.
{"title":"Appearance of a transparent protrusion containing two pairs of legs on the apodous ring preceding the anamorphic molt in a millipede, Niponia nodulosa.","authors":"Soma Chiyoda, Kohei Oguchi, Toru Miura","doi":"10.1186/s12983-023-00493-0","DOIUrl":"https://doi.org/10.1186/s12983-023-00493-0","url":null,"abstract":"<p><strong>Background: </strong>Arthropods gradually change their forms through repeated molting events during postembryonic development. Anamorphosis, i.e., segment addition during postembryonic development, is seen in some arthropod lineages. In all millipede species (Myriapoda, Diplopoda), for example, postembryonic processes go through anamorphosis. Jean-Henri Fabre proposed 168 years ago the \"law of anamorphosis\", that is, \"new rings appear between the penultimate ring and the telson\" and \"all apodous rings in a given stadium become podous rings in the next stadium\", but the developmental process at the anamorphic molt remains largely unknown. In this study, therefore, by observing the morphological and histological changes at the time of molting, the detailed processes of leg- and ring-addition during anamorphosis were characterized in a millipede, Niponia nodulosa (Polydesmida, Cryptodesmidae).</p><p><strong>Results: </strong>In the preparatory period, a few days before molting, scanning electron microscopy, confocal laser scanning microscopy, and histological observations revealed that two pairs of wrinkled leg primordia were present under the cuticle of each apodous ring. In the rigidation period, just prior to molt, observations of external morphology showed that a transparent protrusion was observed on the median line of the ventral surface on each apodous ring. Confocal laser scanning microscopy and histological observations revealed that the transparent protrusion covered by an arthrodial membrane contained a leg bundle consisting of two pairs of legs. On the other hand, ring primordia were observed anterior to the telson just before molts.</p><p><strong>Conclusions: </strong>Preceding the anamorphic molt in which two pairs of legs are added on an apodous ring, a transparent protrusion containing the leg pairs (a leg bundle) appears on each apodous ring. The morphogenetic process of the rapid protrusion of leg bundles, that is enabled by thin and elastic cuticle, suggested that millipedes have acquired a resting period and unique morphogenesis to efficiently add new legs and rings.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"20 1","pages":"14"},"PeriodicalIF":2.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}