Indigenous communities throughout California, USA, are increasingly advocating for and practicing cultural fire stewardship, leading to a host of social, cultural, and ecological benefits. Simultaneously, state agencies are recognizing the importance of controlled burning and cultural fire as a means of reducing the risk of severe wildfire while benefiting fire-adapted ecosystems. However, much of the current research on the impacts of controlled burning ignores the cultural importance of these ecosystems, and risks further marginalizing Indigenous knowledge systems. Our work adds a critical Indigenous perspective to the study of controlled burning in California's unique coastal grasslands, one of the most biodiverse and endangered ecosystems in the country. In this study, we partnered with the Amah Mutsun Tribal Band to investigate how the abundance and occurrence of shrubs, cultural plants, and invasive plants differed among three adjacent coastal grasslands with varying fire histories. These three sites are emblematic of the state's diverging approaches to grassland management: fire suppression, fire suppression followed by wildfire, and an exceedingly rare example of a grassland that has been repeatedly burned approximately every 2 years for more than 30 years. We found that Danthonia californica was significantly more abundant on the burned sites, whereas all included shrub species (Baccharis pilularis, Frangula californica, and Rubus ursinus) were significantly more abundant on the site with no recorded fire, results that have important implications for future cultural revitalization efforts and the loss of coastal grasslands to shrub encroachment. In addition to conducting a culturally relevant vegetation survey, we used Sentinel-2 satellite imagery to compare the relative severities of the two most recent fire events within the study area. Critically, we used interviews with Amah Mutsun tribal members to contextualize the results of our vegetation survey and remote sensing analysis, and to investigate how cultural burning contrasts from typical Western fire management approaches in this region. Our study is a novel example of how interviews, field data, and satellite imagery can be combined to gain a deeper ecological and cultural understanding of fire in California's endangered coastal grasslands.
{"title":"Centering Amah Mutsun voices in the analysis of a culturally important, fire-managed coastal grassland","authors":"Annalise Taylor, Alexii Sigona, Maggi Kelly","doi":"10.1002/eap.3014","DOIUrl":"10.1002/eap.3014","url":null,"abstract":"<p>Indigenous communities throughout California, USA, are increasingly advocating for and practicing cultural fire stewardship, leading to a host of social, cultural, and ecological benefits. Simultaneously, state agencies are recognizing the importance of controlled burning and cultural fire as a means of reducing the risk of severe wildfire while benefiting fire-adapted ecosystems. However, much of the current research on the impacts of controlled burning ignores the cultural importance of these ecosystems, and risks further marginalizing Indigenous knowledge systems. Our work adds a critical Indigenous perspective to the study of controlled burning in California's unique coastal grasslands, one of the most biodiverse and endangered ecosystems in the country. In this study, we partnered with the Amah Mutsun Tribal Band to investigate how the abundance and occurrence of shrubs, cultural plants, and invasive plants differed among three adjacent coastal grasslands with varying fire histories. These three sites are emblematic of the state's diverging approaches to grassland management: fire suppression, fire suppression followed by wildfire, and an exceedingly rare example of a grassland that has been repeatedly burned approximately every 2 years for more than 30 years. We found that <i>Danthonia californica</i> was significantly more abundant on the burned sites, whereas all included shrub species (<i>Baccharis pilularis</i>, <i>Frangula californica</i>, and <i>Rubus ursinus</i>) were significantly more abundant on the site with no recorded fire, results that have important implications for future cultural revitalization efforts and the loss of coastal grasslands to shrub encroachment. In addition to conducting a culturally relevant vegetation survey, we used Sentinel-2 satellite imagery to compare the relative severities of the two most recent fire events within the study area. Critically, we used interviews with Amah Mutsun tribal members to contextualize the results of our vegetation survey and remote sensing analysis, and to investigate how cultural burning contrasts from typical Western fire management approaches in this region. Our study is a novel example of how interviews, field data, and satellite imagery can be combined to gain a deeper ecological and cultural understanding of fire in California's endangered coastal grasslands.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.3014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiangxiao Qiu, Ran Zhi, Elizabeth H. Boughton, Haoyu Li, Charlotte R. B. Henderson, Daniel F. Petticord, Jed P. Sparks, Amartya Saha, K. Ramesh Reddy
Humans have profoundly altered phosphorus (P) cycling across scales. Agriculturally driven changes (e.g., excessive P-fertilization and manure addition), in particular, have resulted in pronounced P accumulations in soils, often known as “soil legacy P.” These legacy P reserves serve as persistent and long-term nonpoint sources, inducing downstream eutrophication and ecosystem services degradation. While there is considerable scientific and policy interest in legacy P, its fine-scale spatial heterogeneity, underlying drivers, and scales of variance remain unclear. Here we present an extensive field sampling (150-m interval grid) and analysis of 1438 surface soils (0–15 cm) in 2020 for two typical subtropical grassland types managed for livestock production: Intensively managed (IM) and Semi-natural (SN) pastures. We ask the following questions: (1) What is the spatial variability, and are there hotspots of soil legacy P? (2) Does soil legacy P vary primarily within pastures, among pastures, or between pasture types? (3) How does soil legacy P relate to pasture management intensity, soil and geographic characteristics? and (4) What is the relationship between soil legacy P and aboveground plant tissue P concentration? Our results showed that three measurements of soil legacy P (total P, Mehlich-1, and Mehlich-3 extractable P representing labile P pools) varied substantially across the landscape. Spatial autoregressive models revealed that soil organic matter, pH, available Fe and Al, elevation, and pasture management intensity were crucial predictors for spatial patterns of soil P, although models were more reliable for predicting total P (68.9%) than labile P. Our analysis further demonstrated that total variance in soil legacy P was greater in IM than SN pastures, and intensified pasture management rescaled spatial patterns of soil legacy P. In particular, after controlling for sample size, soil P was extremely variable at small scales, with variance diminished as spatial scale increased. Our results suggest that broad pasture- or farm-level best management practices may be limited and less efficient, especially for more IM pastures. Rather, management to curtail soil legacy P and mitigate P loading and losses should be implemented at fine scales designed to target spatially distinct P hotspots across the landscape.
人类已经深刻改变了磷的跨尺度循环。特别是农业驱动的变化(如过量施用磷肥和添加粪便)导致土壤中的磷明显累积,通常被称为 "土壤遗留磷"。这些遗留的 P 储备可作为持久和长期的非点源,导致下游富营养化和生态系统服务退化。虽然科学界和政策界对遗留 P 颇感兴趣,但其精细尺度空间异质性、潜在驱动因素和差异尺度仍不清楚。在此,我们对 2020 年两种典型的亚热带畜牧生产管理草地类型的 1438 块表层土壤(0-15 厘米)进行了广泛的实地采样(150 米间隔网格)和分析:集中管理(IM)和半自然(SN)牧场。我们提出了以下问题:(1) 空间变异性如何,是否存在土壤遗留 P 的热点?(2)土壤中遗留的 P 主要是在牧场内部、牧场之间还是在不同类型的牧场之间变化?(3) 土壤遗留 P 与牧场管理强度、土壤和地理特征的关系如何? (4) 土壤遗留 P 与地上植物组织 P 浓度之间的关系如何?我们的研究结果表明,土壤遗留 P 的三种测量值(总 P、代表易溶 P 池的 Mehlich-1 和 Mehlich-3 可提取 P)在整个地形上有很大差异。空间自回归模型显示,土壤有机质、pH 值、可利用的铁和铝、海拔高度和牧场管理强度是预测土壤钾空间模式的关键因素,尽管模型对总钾(68.9%)的预测比对可溶性钾的预测更可靠。我们的分析进一步表明,IM 型牧场的土壤遗留钾的总方差大于 SN 型牧场,强化牧场管理会改变土壤遗留钾的空间模式。我们的研究结果表明,广泛的牧场或农场层面的最佳管理方法可能是有限的,而且效率较低,尤其是对于更多的 IM 型牧场。相反,应在精细尺度上实施管理,以减少土壤中遗留的 P,并减轻 P 的负荷和损失,从而在整个地形上针对空间上不同的 P 热点进行管理。
{"title":"Unraveling spatial heterogeneity of soil legacy phosphorus in subtropical grasslands","authors":"Jiangxiao Qiu, Ran Zhi, Elizabeth H. Boughton, Haoyu Li, Charlotte R. B. Henderson, Daniel F. Petticord, Jed P. Sparks, Amartya Saha, K. Ramesh Reddy","doi":"10.1002/eap.3007","DOIUrl":"10.1002/eap.3007","url":null,"abstract":"<p>Humans have profoundly altered phosphorus (P) cycling across scales. Agriculturally driven changes (e.g., excessive P-fertilization and manure addition), in particular, have resulted in pronounced P accumulations in soils, often known as “soil legacy P.” These legacy P reserves serve as persistent and long-term nonpoint sources, inducing downstream eutrophication and ecosystem services degradation. While there is considerable scientific and policy interest in legacy P, its fine-scale spatial heterogeneity, underlying drivers, and scales of variance remain unclear. Here we present an extensive field sampling (150-m interval grid) and analysis of 1438 surface soils (0–15 cm) in 2020 for two typical subtropical grassland types managed for livestock production: Intensively managed (IM) and Semi-natural (SN) pastures. We ask the following questions: (1) What is the spatial variability, and are there hotspots of soil legacy P? (2) Does soil legacy P vary primarily within pastures, among pastures, or between pasture types? (3) How does soil legacy P relate to pasture management intensity, soil and geographic characteristics? and (4) What is the relationship between soil legacy P and aboveground plant tissue P concentration? Our results showed that three measurements of soil legacy P (total P, Mehlich-1, and Mehlich-3 extractable P representing labile P pools) varied substantially across the landscape. Spatial autoregressive models revealed that soil organic matter, pH, available Fe and Al, elevation, and pasture management intensity were crucial predictors for spatial patterns of soil P, although models were more reliable for predicting total P (68.9%) than labile P. Our analysis further demonstrated that total variance in soil legacy P was greater in IM than SN pastures, and intensified pasture management rescaled spatial patterns of soil legacy P. In particular, after controlling for sample size, soil P was extremely variable at small scales, with variance diminished as spatial scale increased. Our results suggest that broad pasture- or farm-level best management practices may be limited and less efficient, especially for more IM pastures. Rather, management to curtail soil legacy P and mitigate P loading and losses should be implemented at fine scales designed to target spatially distinct P hotspots across the landscape.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agricultural habitats are frequently disturbed, and disturbances could have major effects on species in upper trophic levels such as hymenopteran parasitoids that are important for biological control. A strategy for conservation biological control is to provide a diversified agricultural landscape which increases the availability of resources such as sugar required by parasitoid biological control agents. Here, we ask whether parasitoids occurring in agriculture benefit from sugar resources more or less than parasitoids occurring in natural habitats surrounding agricultural fields. We collected parasitoids from agricultural alfalfa fields, field margins, and natural prairies, and in the lab we randomly divided them into two treatments: half were given a constant supply of a sugar source to test their residual lifespan, and half were given neither sugar nor water to test their hardiness. Collected individuals were monitored daily and their day of death recorded. Parasitoids receiving a sugar source lived substantially longer than those without. Parasitoids collected in prairies lived longer than those from alfalfa fields in both the residual lifespan and hardiness treatments, with parasitoids from field margins being intermediate between them. Furthermore, the benefits of a sugar source to increase longevity was lower for parasitoids collected in agriculture than in natural habitats. This suggests that, even though parasitoid biological control agents benefit from sugar resources, their short lifespans make the benefit of sugar resources small compared to parasitoids that occur in natural habitats and have longer lifespans, and are adapted to consistent sugar sources.
{"title":"Longevity of hymenopteran parasitoids in natural versus agricultural habitats and implications for biological control","authors":"Miriam Kishinevsky, Anthony R. Ives","doi":"10.1002/eap.3009","DOIUrl":"10.1002/eap.3009","url":null,"abstract":"<p>Agricultural habitats are frequently disturbed, and disturbances could have major effects on species in upper trophic levels such as hymenopteran parasitoids that are important for biological control. A strategy for conservation biological control is to provide a diversified agricultural landscape which increases the availability of resources such as sugar required by parasitoid biological control agents. Here, we ask whether parasitoids occurring in agriculture benefit from sugar resources more or less than parasitoids occurring in natural habitats surrounding agricultural fields. We collected parasitoids from agricultural alfalfa fields, field margins, and natural prairies, and in the lab we randomly divided them into two treatments: half were given a constant supply of a sugar source to test their residual lifespan, and half were given neither sugar nor water to test their hardiness. Collected individuals were monitored daily and their day of death recorded. Parasitoids receiving a sugar source lived substantially longer than those without. Parasitoids collected in prairies lived longer than those from alfalfa fields in both the residual lifespan and hardiness treatments, with parasitoids from field margins being intermediate between them. Furthermore, the benefits of a sugar source to increase longevity was lower for parasitoids collected in agriculture than in natural habitats. This suggests that, even though parasitoid biological control agents benefit from sugar resources, their short lifespans make the benefit of sugar resources small compared to parasitoids that occur in natural habitats and have longer lifespans, and are adapted to consistent sugar sources.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.3009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shenglai Yin, Chi Xu, Yong Zhang, Willem F. de Boer, Taej Mundkur, Jean Artois, Francisca C. Velkers, John Y. Takekawa, Yali Si, Huaiyu Tian, Guan-Zhu Han, Yuyang Chen, Hongliang Chai, Lijuan Cui, Zheng Y. X. Huang
Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.
{"title":"Strong and consistent effects of waterbird composition on HPAI H5 occurrences across Europe","authors":"Shenglai Yin, Chi Xu, Yong Zhang, Willem F. de Boer, Taej Mundkur, Jean Artois, Francisca C. Velkers, John Y. Takekawa, Yali Si, Huaiyu Tian, Guan-Zhu Han, Yuyang Chen, Hongliang Chai, Lijuan Cui, Zheng Y. X. Huang","doi":"10.1002/eap.3010","DOIUrl":"10.1002/eap.3010","url":null,"abstract":"<p>Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gonçalo Curveira-Santos, Solène Marion, Chris Sutherland, Christopher Beirne, Emily J. Herdman, Erin R. Tattersall, Joanna M. Burgar, Jason T. Fisher, A. Cole Burton
Compound effects of anthropogenic disturbances on wildlife emerge through a complex network of direct responses and species interactions. Land-use changes driven by energy and forestry industries are known to disrupt predator–prey dynamics in boreal ecosystems, yet how these disturbance effects propagate across mammal communities remains uncertain. Using structural equation modeling, we tested disturbance-mediated pathways governing the spatial structure of multipredator multiprey boreal mammal networks across a landscape-scale disturbance gradient within Canada's Athabasca oil sands region. Linear disturbances had pervasive direct effects, increasing site use for all focal species, except black bears and threatened caribou, in at least one landscape. Conversely, block (polygonal) disturbance effects were negative but less common. Indirect disturbance effects were widespread and mediated by caribou avoidance of wolves, tracking of primary prey by subordinate predators, and intraguild dependencies among predators and large prey. Context-dependent responses to linear disturbances were most common among prey and within the landscape with intermediate disturbance. Our research suggests that industrial disturbances directly affect a suite of boreal mammals by altering forage availability and movement, leading to indirect effects across a range of interacting predators and prey, including the keystone snowshoe hare. The complexity of network-level direct and indirect disturbance effects reinforces calls for increased investment in addressing habitat degradation as the root cause of threatened species declines and broader ecosystem change.
{"title":"Disturbance-mediated changes to boreal mammal spatial networks in industrializing landscapes","authors":"Gonçalo Curveira-Santos, Solène Marion, Chris Sutherland, Christopher Beirne, Emily J. Herdman, Erin R. Tattersall, Joanna M. Burgar, Jason T. Fisher, A. Cole Burton","doi":"10.1002/eap.3004","DOIUrl":"10.1002/eap.3004","url":null,"abstract":"<p>Compound effects of anthropogenic disturbances on wildlife emerge through a complex network of direct responses and species interactions. Land-use changes driven by energy and forestry industries are known to disrupt predator–prey dynamics in boreal ecosystems, yet how these disturbance effects propagate across mammal communities remains uncertain. Using structural equation modeling, we tested disturbance-mediated pathways governing the spatial structure of multipredator multiprey boreal mammal networks across a landscape-scale disturbance gradient within Canada's Athabasca oil sands region. Linear disturbances had pervasive direct effects, increasing site use for all focal species, except black bears and threatened caribou, in at least one landscape. Conversely, block (polygonal) disturbance effects were negative but less common. Indirect disturbance effects were widespread and mediated by caribou avoidance of wolves, tracking of primary prey by subordinate predators, and intraguild dependencies among predators and large prey. Context-dependent responses to linear disturbances were most common among prey and within the landscape with intermediate disturbance. Our research suggests that industrial disturbances directly affect a suite of boreal mammals by altering forage availability and movement, leading to indirect effects across a range of interacting predators and prey, including the keystone snowshoe hare. The complexity of network-level direct and indirect disturbance effects reinforces calls for increased investment in addressing habitat degradation as the root cause of threatened species declines and broader ecosystem change.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.3004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anya Dunham, Josephine C. Iacarella, Karen L. Hunter, Sarah C. Davies, Sarah Dudas, Katie S. P. Gale, Emily Rubidge, Stephanie K. Archer
Global policies increasingly focus on the importance of maintaining or improving the integrity of ecosystems, but defining, assessing, and monitoring integrity in marine protected areas (MPAs) remains a challenge. In this paper, we conceptualized ecological integrity along dimensions of heterogeneity and stability containing seven components: physical structure, diversity, function, persistence, resistance, resilience, and natural variability. Through a structured literature search, we identified indicators and metrics used for quantifying ecosystem status components in the marine environment, then reviewed MPA management plans worldwide for inclusion of these components. We evaluated 202 papers applying 83 ecological indicators built from 72 metrics. Ecosystem components were most comprehensively addressed by metrics of taxa presence, organisms count, and area occupied by benthic organisms, and community structure, biomass, and percent cover indicators. Of the 557 MPA management plans we reviewed globally, 93% used at least one ecosystem status term or its synonym in an ecologically relevant context, but 39% did not address any components of stability. In particular, resistance was mentioned in only 1% of management plans, but in some cases it may be inferred from indicators and metrics used to track the best addressed component in management plans, diversity. Plans for MPAs with both an ecological/biological purpose and a research and education purpose contained ecosystem status terms more frequently than other plans, suggesting that engagement with the scientific community may have improved the application of these terms. An improved understanding of how to operationalize and measure ecological integrity can help MPA monitoring and management.
{"title":"Conserving ecosystem integrity: Ecological theory as a guide for marine protected area monitoring","authors":"Anya Dunham, Josephine C. Iacarella, Karen L. Hunter, Sarah C. Davies, Sarah Dudas, Katie S. P. Gale, Emily Rubidge, Stephanie K. Archer","doi":"10.1002/eap.3005","DOIUrl":"10.1002/eap.3005","url":null,"abstract":"<p>Global policies increasingly focus on the importance of maintaining or improving the integrity of ecosystems, but defining, assessing, and monitoring integrity in marine protected areas (MPAs) remains a challenge. In this paper, we conceptualized ecological integrity along dimensions of heterogeneity and stability containing seven components: physical structure, diversity, function, persistence, resistance, resilience, and natural variability. Through a structured literature search, we identified indicators and metrics used for quantifying ecosystem status components in the marine environment, then reviewed MPA management plans worldwide for inclusion of these components. We evaluated 202 papers applying 83 ecological indicators built from 72 metrics. Ecosystem components were most comprehensively addressed by metrics of taxa presence, organisms count, and area occupied by benthic organisms, and community structure, biomass, and percent cover indicators. Of the 557 MPA management plans we reviewed globally, 93% used at least one ecosystem status term or its synonym in an ecologically relevant context, but 39% did not address any components of stability. In particular, resistance was mentioned in only 1% of management plans, but in some cases it may be inferred from indicators and metrics used to track the best addressed component in management plans, diversity. Plans for MPAs with both an ecological/biological purpose and a research and education purpose contained ecosystem status terms more frequently than other plans, suggesting that engagement with the scientific community may have improved the application of these terms. An improved understanding of how to operationalize and measure ecological integrity can help MPA monitoring and management.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 6","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.3005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taylor R. Ganz, Sarah B. Bassing, Melia T. DeVivo, Beth Gardner, Brian N. Kertson, Lauren C. Satterfield, Lisa A. Shipley, Benjamin Y. Turnock, Savanah L. Walker, Derek Abrahamson, Aaron J. Wirsing, Laura R. Prugh
Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator–prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win–win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.
{"title":"White-tailed deer population dynamics in a multipredator landscape shaped by humans","authors":"Taylor R. Ganz, Sarah B. Bassing, Melia T. DeVivo, Beth Gardner, Brian N. Kertson, Lauren C. Satterfield, Lisa A. Shipley, Benjamin Y. Turnock, Savanah L. Walker, Derek Abrahamson, Aaron J. Wirsing, Laura R. Prugh","doi":"10.1002/eap.3003","DOIUrl":"10.1002/eap.3003","url":null,"abstract":"<p>Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (<i>Odocoileus virginianus</i>) are vulnerable to multiple carnivores, including recently returned gray wolves (<i>Canis lupus</i>), within a highly human-modified landscape. To understand the factors governing predator–prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (<i>Lynx rufus</i>), 50 cougars (<i>Puma concolor</i>), 28 coyotes (<i>C. latrans</i>), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win–win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Poissant, Oliver T. Coomes, Brian E. Robinson, Gladys Vargas Dávila
Scientists increasingly draw on fishers' ecological knowledge (FEK) to gain a better understanding of fish biology and ecology, and inform options for fisheries management. We report on a study of FEK among fishers along the Lower Ucayali River in Peru, a region of exceptional productivity and diversity, which is also a major supplier of fish to the largest city in the Peruvian Amazon. Given a lack of available scientific information on stock status, we sought to identify temporal changes in the composition and size of exploited species by interviewing fishers from 18 communities who vary in years of fishing experience since the mid-1950s. We develop four FEK-based indicators to assess changes in the fish assemblage and compare findings with landings data. We find an intensification of fishing gear deployed over time and spatiotemporal shifts in the fish assemblage and reported declines in species weight, which point to a fishing-down process with declines across multiple species. This finding is reflected in a shifting baseline among our participants, whereby younger generations of fishers have different expectations regarding the distribution and size of species. Our study points to the importance of spillover effects from the nearby Pacaya-Samira National Reserve and community initiatives to support the regional fishery. Reference to fishers' knowledge also suggests that species decline is likely underreported in aggregated landings data. Despite the dynamism and diversity of Amazonian floodplain fisheries, simple FEK-based indicators can provide useful information for understanding fishing-induced changes in the fish assemblage. Fishers hold valuable knowledge for fishery management and conservation initiatives in the region.
{"title":"Fishers' ecological knowledge points to fishing-induced changes in the Peruvian Amazon","authors":"David Poissant, Oliver T. Coomes, Brian E. Robinson, Gladys Vargas Dávila","doi":"10.1002/eap.2964","DOIUrl":"10.1002/eap.2964","url":null,"abstract":"<p>Scientists increasingly draw on fishers' ecological knowledge (FEK) to gain a better understanding of fish biology and ecology, and inform options for fisheries management. We report on a study of FEK among fishers along the Lower Ucayali River in Peru, a region of exceptional productivity and diversity, which is also a major supplier of fish to the largest city in the Peruvian Amazon. Given a lack of available scientific information on stock status, we sought to identify temporal changes in the composition and size of exploited species by interviewing fishers from 18 communities who vary in years of fishing experience since the mid-1950s. We develop four FEK-based indicators to assess changes in the fish assemblage and compare findings with landings data. We find an intensification of fishing gear deployed over time and spatiotemporal shifts in the fish assemblage and reported declines in species weight, which point to a fishing-down process with declines across multiple species. This finding is reflected in a shifting baseline among our participants, whereby younger generations of fishers have different expectations regarding the distribution and size of species. Our study points to the importance of spillover effects from the nearby Pacaya-Samira National Reserve and community initiatives to support the regional fishery. Reference to fishers' knowledge also suggests that species decline is likely underreported in aggregated landings data. Despite the dynamism and diversity of Amazonian floodplain fisheries, simple FEK-based indicators can provide useful information for understanding fishing-induced changes in the fish assemblage. Fishers hold valuable knowledge for fishery management and conservation initiatives in the region.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.2964","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hillary S. Young, Finn O. McCauley, Fiorenza Micheli, Robert B. Dunbar, Douglas J. McCauley
Direct exploitation through fishing is driving dramatic declines of wildlife populations in ocean environments, particularly for predatory and large-bodied taxa. Despite wide recognition of this pattern and well-established consequences of such trophic downgrading on ecosystem function, there have been few empirical studies examining the effects of fishing on whole system trophic architecture. Understanding these kinds of structural impacts is especially important in coral reef ecosystems—often heavily fished and facing multiple stressors. Given the often high dietary flexibility and numerous functional redundancies in diverse ecosystems such as coral reefs, it is important to establish whether web architecture is strongly impacted by fishing pressure or whether it might be resilient, at least to moderate-intensity pressure. To examine this question, we used a combination of bulk and compound-specific stable isotope analyses measured across a range of predatory and low-trophic-level consumers between two coral reef ecosystems that differed with respect to fishing pressure but otherwise remained largely similar. We found that even in a high-diversity system with relatively modest fishing pressure, there were strong reductions in the trophic position (TP) of the three highest TP consumers examined in the fished system but no effects on the TP of lower-level consumers. We saw no evidence that this shortening of the affected food webs was being driven by changes in basal resource consumption, for example, through changes in the spatial location of foraging by consumers. Instead, this likely reflected internal changes in food web architecture, suggesting that even in diverse systems and with relatively modest pressure, human harvest causes significant compressions in food chain length. This observed shortening of these food webs may have many important emergent ecological consequences for the functioning of ecosystems impacted by fishing or hunting. Such important structural shifts may be widespread but unnoticed by traditional surveys. This insight may also be useful for applied ecosystem managers grappling with choices about the relative importance of protection for remote and pristine areas and the value of strict no-take areas to protect not just the raw constituents of systems affected by fishing and hunting but also the health and functionality of whole systems.
{"title":"Shortened food chain length in a fished versus unfished coral reef","authors":"Hillary S. Young, Finn O. McCauley, Fiorenza Micheli, Robert B. Dunbar, Douglas J. McCauley","doi":"10.1002/eap.3002","DOIUrl":"10.1002/eap.3002","url":null,"abstract":"<p>Direct exploitation through fishing is driving dramatic declines of wildlife populations in ocean environments, particularly for predatory and large-bodied taxa. Despite wide recognition of this pattern and well-established consequences of such trophic downgrading on ecosystem function, there have been few empirical studies examining the effects of fishing on whole system trophic architecture. Understanding these kinds of structural impacts is especially important in coral reef ecosystems—often heavily fished and facing multiple stressors. Given the often high dietary flexibility and numerous functional redundancies in diverse ecosystems such as coral reefs, it is important to establish whether web architecture is strongly impacted by fishing pressure or whether it might be resilient, at least to moderate-intensity pressure. To examine this question, we used a combination of bulk and compound-specific stable isotope analyses measured across a range of predatory and low-trophic-level consumers between two coral reef ecosystems that differed with respect to fishing pressure but otherwise remained largely similar. We found that even in a high-diversity system with relatively modest fishing pressure, there were strong reductions in the trophic position (TP) of the three highest TP consumers examined in the fished system but no effects on the TP of lower-level consumers. We saw no evidence that this shortening of the affected food webs was being driven by changes in basal resource consumption, for example, through changes in the spatial location of foraging by consumers. Instead, this likely reflected internal changes in food web architecture, suggesting that even in diverse systems and with relatively modest pressure, human harvest causes significant compressions in food chain length. This observed shortening of these food webs may have many important emergent ecological consequences for the functioning of ecosystems impacted by fishing or hunting. Such important structural shifts may be widespread but unnoticed by traditional surveys. This insight may also be useful for applied ecosystem managers grappling with choices about the relative importance of protection for remote and pristine areas and the value of strict no-take areas to protect not just the raw constituents of systems affected by fishing and hunting but also the health and functionality of whole systems.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xanthe J. Walker, Sarah Hart, Winslow D. Hansen, Mélanie Jean, Carissa D. Brown, F. Stuart Chapin III, Rebecca Hewitt, Teresa N. Hollingsworth, Michelle C. Mack, Jill F. Johnstone
Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.
{"title":"Factors limiting the potential range expansion of lodgepole pine in Interior Alaska","authors":"Xanthe J. Walker, Sarah Hart, Winslow D. Hansen, Mélanie Jean, Carissa D. Brown, F. Stuart Chapin III, Rebecca Hewitt, Teresa N. Hollingsworth, Michelle C. Mack, Jill F. Johnstone","doi":"10.1002/eap.2983","DOIUrl":"10.1002/eap.2983","url":null,"abstract":"<p>Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (<i>Pinus contorta</i> var. <i>latifolia</i>) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}