Invasive species present one of the most challenging threats to native biodiversity, particularly when they hybridize with imperiled native taxa. In California, hybridization between the endangered California tiger salamander (“CTS,” Ambystoma californiense) and the invasive barred tiger salamander (“BTS,” Ambystoma mavortium) is one of the best understood examples of this management challenge. Reclusive life history and cryptic hybridization, often on private land, render eradication programs difficult or impossible. This study evaluates hydroperiod management as a tool to conserve and maintain native CTS populations threatened by hybridization. We adapt a recent, empirically informed Bayesian integral projection model (IPM) for CTS to incorporate new results that link genotype and ecology to fitness, and use this individual-based model to evaluate alternative management scenarios. We found overwhelming support for the importance of hydrology in both native and hybrid populations, where a 10-day increase in hydroperiod can increase population growth rate (