Pub Date : 2024-01-30DOI: 10.1007/s10589-023-00543-7
Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand
We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In this paper, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products of the form (z=xy), called hybrid separable (HybS). Additionally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called sawtooth relaxation, based on Beach (Beach in J Glob Optim 84:869–912, 2022). We combine the latter with HybS and existing separable reformulations to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, underlining the theoretical advantages of HybS compared to its predecessors. We perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In Part II, we study MIP relaxations that extend the MIP relaxation normalized multiparametric disaggregation technique (NMDT) (Castro in J Glob Optim 64:765–784, 2015) and present a computational study which also includes the MIP relaxations from this work and compares them with a state-of-the-art of MIQCQP solvers.
{"title":"Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I","authors":"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand","doi":"10.1007/s10589-023-00543-7","DOIUrl":"https://doi.org/10.1007/s10589-023-00543-7","url":null,"abstract":"<p>We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In this paper, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products of the form <span>(z=xy)</span>, called <i>hybrid separable</i> (HybS). Additionally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called <i>sawtooth relaxation</i>, based on Beach (Beach in J Glob Optim 84:869–912, 2022). We combine the latter with HybS and existing separable reformulations to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, underlining the theoretical advantages of HybS compared to its predecessors. We perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In Part II, we study MIP relaxations that extend the MIP relaxation <i>normalized multiparametric disaggregation technique</i> (NMDT) (Castro in J Glob Optim 64:765–784, 2015) and present a computational study which also includes the MIP relaxations from this work and compares them with a state-of-the-art of MIQCQP solvers.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 4 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139646514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1007/s10589-023-00548-2
Qingjie Hu, Liping Zhu, Yu Chen
Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.
{"title":"Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization","authors":"Qingjie Hu, Liping Zhu, Yu Chen","doi":"10.1007/s10589-023-00548-2","DOIUrl":"https://doi.org/10.1007/s10589-023-00548-2","url":null,"abstract":"<p>Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139557926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1007/s10589-023-00546-4
Shiru Li, Tao Zhang, Yong Xia
The Barzilai-Borwein (BB) steplengths play great roles in practical gradient methods for solving unconstrained optimization problems. Motivated by the observation that the two well-known BB steplengths correspond to the ordinary and the data least squares, respectively, we introduce a novel family of BB steplengths from the viewpoint of scaled total least squares. Numerical experiments demonstrate that high performance can be received by a carefully-selected BB steplength in the new family.
{"title":"A family of Barzilai-Borwein steplengths from the viewpoint of scaled total least squares","authors":"Shiru Li, Tao Zhang, Yong Xia","doi":"10.1007/s10589-023-00546-4","DOIUrl":"https://doi.org/10.1007/s10589-023-00546-4","url":null,"abstract":"<p>The Barzilai-Borwein (BB) steplengths play great roles in practical gradient methods for solving unconstrained optimization problems. Motivated by the observation that the two well-known BB steplengths correspond to the ordinary and the data least squares, respectively, we introduce a novel family of BB steplengths from the viewpoint of scaled total least squares. Numerical experiments demonstrate that high performance can be received by a carefully-selected BB steplength in the new family.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"20 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1007/s10589-023-00544-6
Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
{"title":"Correction to: The continuous stochastic gradient method: part II–application and numerics","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00544-6","DOIUrl":"https://doi.org/10.1007/s10589-023-00544-6","url":null,"abstract":"","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"26 6","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139005130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1007/s10589-023-00541-9
Robert Gower, Dirk A. Lorenz, Maximilian Winkler
We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.
我们提出了一种求解非线性方程组的新随机方法,它可以找到稀疏解或某些简单约束条件下的解。该方法只取分量函数的梯度,并使用布雷格曼投影到牛顿方程的解空间。在欧几里得投影的特殊情况下,该方法被称为非线性 Kaczmarz 法。此外,如果分量函数是非负的,我们就处于插值假设下的优化环境中,该方法就简化为使用最近提出的随机 Polyak 步长的 SGD 方法。对于一般的布雷格曼投影,我们的方法是一种具有新颖自适应步长的随机镜像下降法。我们证明,与标准 Polyak 步长相比,我们的方法在凹凸环境中的每次迭代都能使精确解的 Bregman 距离更小。我们对 Bregman 投影的推广是有代价的,即每次迭代都需要解决凸一维优化问题。这通常可以通过全局化牛顿迭代来实现。收敛性在两种经典的非线性设置中得到了证明:凸非负函数和满足切向锥条件的函数的局部收敛性。最后,我们举例说明了所提出的方法在内存要求相同的情况下优于类似方法。
{"title":"A Bregman–Kaczmarz method for nonlinear systems of equations","authors":"Robert Gower, Dirk A. Lorenz, Maximilian Winkler","doi":"10.1007/s10589-023-00541-9","DOIUrl":"https://doi.org/10.1007/s10589-023-00541-9","url":null,"abstract":"<p>We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"22 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138557060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.1007/s10589-023-00540-w
Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.
{"title":"The continuous stochastic gradient method: part II–application and numerics","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00540-w","DOIUrl":"https://doi.org/10.1007/s10589-023-00540-w","url":null,"abstract":"<p>In this contribution, we present a numerical analysis of the <i>continuous stochastic gradient</i> (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables <i>and</i> an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.\u0000</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1007/s10589-023-00542-8
Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
In this contribution, we present a full overview of the continuous stochastic gradient (CSG) method, including convergence results, step size rules and algorithmic insights. We consider optimization problems in which the objective function requires some form of integration, e.g., expected values. Since approximating the integration by a fixed quadrature rule can introduce artificial local solutions into the problem while simultaneously raising the computational effort, stochastic optimization schemes have become increasingly popular in such contexts. However, known stochastic gradient type methods are typically limited to expected risk functions and inherently require many iterations. The latter is particularly problematic, if the evaluation of the cost function involves solving multiple state equations, given, e.g., in form of partial differential equations. To overcome these drawbacks, a recent article introduced the CSG method, which reuses old gradient sample information via the calculation of design dependent integration weights to obtain a better approximation to the full gradient. While in the original CSG paper convergence of a subsequence was established for a diminishing step size, here, we provide a complete convergence analysis of CSG for constant step sizes and an Armijo-type line search. Moreover, new methods to obtain the integration weights are presented, extending the application range of CSG to problems involving higher dimensional integrals and distributed data.
{"title":"The continuous stochastic gradient method: part I–convergence theory","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00542-8","DOIUrl":"https://doi.org/10.1007/s10589-023-00542-8","url":null,"abstract":"<p>In this contribution, we present a full overview of the <i>continuous stochastic gradient</i> (CSG) method, including convergence results, step size rules and algorithmic insights. We consider optimization problems in which the objective function requires some form of integration, e.g., expected values. Since approximating the integration by a fixed quadrature rule can introduce artificial local solutions into the problem while simultaneously raising the computational effort, stochastic optimization schemes have become increasingly popular in such contexts. However, known stochastic gradient type methods are typically limited to expected risk functions and inherently require many iterations. The latter is particularly problematic, if the evaluation of the cost function involves solving multiple state equations, given, e.g., in form of partial differential equations. To overcome these drawbacks, a recent article introduced the CSG method, which reuses old gradient sample information via the calculation of design dependent integration weights to obtain a better approximation to the full gradient. While in the original CSG paper convergence of a subsequence was established for a diminishing step size, here, we provide a complete convergence analysis of CSG for constant step sizes and an Armijo-type line search. Moreover, new methods to obtain the integration weights are presented, extending the application range of CSG to problems involving higher dimensional integrals and distributed data.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1007/s10589-023-00537-5
William W. Hager, R. Tyrrell Rockafellar, Vladimir M. Veliov
{"title":"Preface to Asen L. Dontchev Memorial Special Issue","authors":"William W. Hager, R. Tyrrell Rockafellar, Vladimir M. Veliov","doi":"10.1007/s10589-023-00537-5","DOIUrl":"https://doi.org/10.1007/s10589-023-00537-5","url":null,"abstract":"","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"14 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135867996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1007/s10589-023-00538-4
{"title":"COAP 2022 Best Paper Prize","authors":"","doi":"10.1007/s10589-023-00538-4","DOIUrl":"https://doi.org/10.1007/s10589-023-00538-4","url":null,"abstract":"","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}