Pub Date : 2024-04-02DOI: 10.1007/s10589-024-00569-5
N. Hoseini Monjezi, S. Nobakhtian, M. R. Pouryayevali
This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.
{"title":"Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm","authors":"N. Hoseini Monjezi, S. Nobakhtian, M. R. Pouryayevali","doi":"10.1007/s10589-024-00569-5","DOIUrl":"https://doi.org/10.1007/s10589-024-00569-5","url":null,"abstract":"<p>This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"4 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1007/s10589-023-00550-8
Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos
We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.
{"title":"SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization","authors":"Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos","doi":"10.1007/s10589-023-00550-8","DOIUrl":"https://doi.org/10.1007/s10589-023-00550-8","url":null,"abstract":"<p>We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.\u0000</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"15 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1007/s10589-024-00567-7
Youssef Diouane, Vyacheslav Kungurtsev, Francesco Rinaldi, Damiano Zeffiro
In this work, we introduce new direct-search schemes for the solution of bilevel optimization (BO) problems. Our methods rely on a fixed accuracy blackbox oracle for the lower-level problem, and deal both with smooth and potentially nonsmooth true objectives. We thus analyze for the first time in the literature direct-search schemes in these settings, giving convergence guarantees to approximate stationary points, as well as complexity bounds in the smooth case. We also propose the first adaptation of mesh adaptive direct-search schemes for BO. Some preliminary numerical results on a standard set of bilevel optimization problems show the effectiveness of our new approaches.
在这项工作中,我们为双层优化(BO)问题的求解引入了新的直接搜索方案。我们的方法依赖于下层问题的固定精度黑盒子甲骨文,并同时处理光滑和潜在非光滑真实目标。因此,我们首次在文献中分析了这些情况下的直接搜索方案,给出了近似静止点的收敛保证,以及光滑情况下的复杂度边界。我们还首次提出了适用于 BO 的网格自适应直接搜索方案。对一组标准双层优化问题的初步数值结果表明了我们新方法的有效性。
{"title":"Inexact direct-search methods for bilevel optimization problems","authors":"Youssef Diouane, Vyacheslav Kungurtsev, Francesco Rinaldi, Damiano Zeffiro","doi":"10.1007/s10589-024-00567-7","DOIUrl":"https://doi.org/10.1007/s10589-024-00567-7","url":null,"abstract":"<p>In this work, we introduce new direct-search schemes for the solution of bilevel optimization (BO) problems. Our methods rely on a fixed accuracy blackbox oracle for the lower-level problem, and deal both with smooth and potentially nonsmooth true objectives. We thus analyze for the first time in the literature direct-search schemes in these settings, giving convergence guarantees to approximate stationary points, as well as complexity bounds in the smooth case. We also propose the first adaptation of mesh adaptive direct-search schemes for BO. Some preliminary numerical results on a standard set of bilevel optimization problems show the effectiveness of our new approaches.\u0000</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"86 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1007/s10589-024-00568-6
Xiaojing Zhu, Chungen Shen
Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.
旗流形是具有固定维数的线性子空间嵌套序列集,在数值分析和统计学中日益兴起。目前的旗流形优化算法基于指数图和平行传输,计算成本高昂。本文提出了无需指数图和平行传输的旗流形实用优化方法。观察到旗流形与格拉斯曼流形和 Stiefel 流形具有相似的同质结构,我们将一些典型的缩回和矢量传输推广到旗流形,包括 Cayley 型缩回和矢量传输、基于 QR 的缩回和基于极坐标的缩回、投影型矢量传输以及将基于极坐标的微分缩回投影为矢量传输。我们讨论了所提出的缩回和向量传输的理论特性和高效实现。然后,我们基于这些回缩和向量传输建立了黎曼梯度算法和黎曼共轭梯度算法。非线性特征标志问题的数值结果表明,与现有算法相比,我们的算法在效率上有很大优势。
{"title":"Practical gradient and conjugate gradient methods on flag manifolds","authors":"Xiaojing Zhu, Chungen Shen","doi":"10.1007/s10589-024-00568-6","DOIUrl":"https://doi.org/10.1007/s10589-024-00568-6","url":null,"abstract":"<p>Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"42 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1007/s10589-024-00554-y
Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand
This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation normalized multiparametric disaggregation technique(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as doubly discretized normalized multiparametric disaggregation technique (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.
{"title":"Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II","authors":"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand","doi":"10.1007/s10589-024-00554-y","DOIUrl":"https://doi.org/10.1007/s10589-024-00554-y","url":null,"abstract":"<p>This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation <i>normalized multiparametric disaggregation technique</i>(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as <i>doubly discretized normalized multiparametric disaggregation technique</i> (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"26 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-10DOI: 10.1007/s10589-024-00565-9
S. Bonettini, M. Prato, S. Rebegoldi
We study a novel inertial proximal-gradient method for composite optimization. The proposed method alternates between a variable metric proximal-gradient iteration with momentum and an Armijo-like linesearch based on the sufficient decrease of a suitable merit function. The linesearch procedure allows for a major flexibility on the choice of the algorithm parameters. We prove the convergence of the iterates sequence towards a stationary point of the problem, in a Kurdyka–Łojasiewicz framework. Numerical experiments on a variety of convex and nonconvex problems highlight the superiority of our proposal with respect to several standard methods, especially when the inertial parameter is selected by mimicking the Conjugate Gradient updating rule.
{"title":"A new proximal heavy ball inexact line-search algorithm","authors":"S. Bonettini, M. Prato, S. Rebegoldi","doi":"10.1007/s10589-024-00565-9","DOIUrl":"https://doi.org/10.1007/s10589-024-00565-9","url":null,"abstract":"<p>We study a novel inertial proximal-gradient method for composite optimization. The proposed method alternates between a variable metric proximal-gradient iteration with momentum and an Armijo-like linesearch based on the sufficient decrease of a suitable merit function. The linesearch procedure allows for a major flexibility on the choice of the algorithm parameters. We prove the convergence of the iterates sequence towards a stationary point of the problem, in a Kurdyka–Łojasiewicz framework. Numerical experiments on a variety of convex and nonconvex problems highlight the superiority of our proposal with respect to several standard methods, especially when the inertial parameter is selected by mimicking the Conjugate Gradient updating rule.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"41 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s10589-024-00562-y
Takayuki Okuno
The recent advance of algorithms for nonlinear semidefinite optimization problems (NSDPs) is remarkable. Yamashita et al. first proposed a primal–dual interior point method (PDIPM) for solving NSDPs using the family of Monteiro–Zhang (MZ) search directions. Since then, various kinds of PDIPMs have been proposed for NSDPs, but, as far as we know, all of them are based on the MZ family. In this paper, we present a PDIPM equipped with the family of Monteiro–Tsuchiya (MT) directions, which were originally devised for solving linear semidefinite optimization problems as were the MZ family. We further prove local superlinear convergence to a Karush–Kuhn–Tucker point of the NSDP in the presence of certain general assumptions on scaling matrices, which are used in producing the MT search directions. Finally, we conduct numerical experiments to compare the efficiency among members of the MT family.
{"title":"Local convergence of primal–dual interior point methods for nonlinear semidefinite optimization using the Monteiro–Tsuchiya family of search directions","authors":"Takayuki Okuno","doi":"10.1007/s10589-024-00562-y","DOIUrl":"https://doi.org/10.1007/s10589-024-00562-y","url":null,"abstract":"<p>The recent advance of algorithms for nonlinear semidefinite optimization problems (NSDPs) is remarkable. Yamashita et al. first proposed a primal–dual interior point method (PDIPM) for solving NSDPs using the family of Monteiro–Zhang (MZ) search directions. Since then, various kinds of PDIPMs have been proposed for NSDPs, but, as far as we know, all of them are based on the MZ family. In this paper, we present a PDIPM equipped with the family of Monteiro–Tsuchiya (MT) directions, which were originally devised for solving linear semidefinite optimization problems as were the MZ family. We further prove local superlinear convergence to a Karush–Kuhn–Tucker point of the NSDP in the presence of certain general assumptions on scaling matrices, which are used in producing the MT search directions. Finally, we conduct numerical experiments to compare the efficiency among members of the MT family.\u0000</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"48 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1007/s10589-024-00559-7
Bin Gao, Renfeng Peng, Ya-xiang Yuan
We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets—movie ratings, hyperspectral images, and high-dimensional functions—suggest that the proposed algorithms have better or favorably comparable performance to other candidates.
{"title":"Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition","authors":"Bin Gao, Renfeng Peng, Ya-xiang Yuan","doi":"10.1007/s10589-024-00559-7","DOIUrl":"https://doi.org/10.1007/s10589-024-00559-7","url":null,"abstract":"<p>We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets—movie ratings, hyperspectral images, and high-dimensional functions—suggest that the proposed algorithms have better or favorably comparable performance to other candidates.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"25 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139979554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1007/s10589-024-00564-w
Christoph Hansknecht, Christian Kirches, Paul Manns
Gradient-based methods have been highly successful for solving a variety of both unconstrained and constrained nonlinear optimization problems. In real-world applications, such as optimal control or machine learning, the necessary function and derivative information may be corrupted by noise, however. Sun and Nocedal have recently proposed a remedy for smooth unconstrained problems by means of a stabilization of the acceptance criterion for computed iterates, which leads to convergence of the iterates of a trust-region method to a region of criticality (Sun and Nocedal in Math Program 66:1–28, 2023. https://doi.org/10.1007/s10107-023-01941-9). We extend their analysis to the successive linear programming algorithm (Byrd et al. in Math Program 100(1):27–48, 2003. https://doi.org/10.1007/s10107-003-0485-4, SIAM J Optim 16(2):471–489, 2005. https://doi.org/10.1137/S1052623403426532) for unconstrained optimization problems with objectives that can be characterized as the composition of a polyhedral function with a smooth function, where the latter and its gradient may be corrupted by noise. This gives the flexibility to cover, for example, (sub)problems arising in image reconstruction or constrained optimization algorithms. We provide computational examples that illustrate the findings and point to possible strategies for practical determination of the stabilization parameter that balances the size of the critical region with a relaxation of the acceptance criterion (or descent property) of the algorithm.
{"title":"Convergence of successive linear programming algorithms for noisy functions","authors":"Christoph Hansknecht, Christian Kirches, Paul Manns","doi":"10.1007/s10589-024-00564-w","DOIUrl":"https://doi.org/10.1007/s10589-024-00564-w","url":null,"abstract":"<p>Gradient-based methods have been highly successful for solving a variety of both unconstrained and constrained nonlinear optimization problems. In real-world applications, such as optimal control or machine learning, the necessary function and derivative information may be corrupted by noise, however. Sun and Nocedal have recently proposed a remedy for smooth unconstrained problems by means of a stabilization of the acceptance criterion for computed iterates, which leads to convergence of the iterates of a trust-region method to a region of criticality (Sun and Nocedal in Math Program 66:1–28, 2023. https://doi.org/10.1007/s10107-023-01941-9). We extend their analysis to the successive linear programming algorithm (Byrd et al. in Math Program 100(1):27–48, 2003. https://doi.org/10.1007/s10107-003-0485-4, SIAM J Optim 16(2):471–489, 2005. https://doi.org/10.1137/S1052623403426532) for unconstrained optimization problems with objectives that can be characterized as the composition of a polyhedral function with a smooth function, where the latter and its gradient may be corrupted by noise. This gives the flexibility to cover, for example, (sub)problems arising in image reconstruction or constrained optimization algorithms. We provide computational examples that illustrate the findings and point to possible strategies for practical determination of the stabilization parameter that balances the size of the critical region with a relaxation of the acceptance criterion (or descent property) of the algorithm.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"17 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s10589-024-00558-8
Rui-Jin Zhang, Xin-Wei Liu, Yu-Hong Dai
We propose an efficient primal-dual interior-point relaxation algorithm based on a smoothing barrier augmented Lagrangian, called IPRSDP, for solving semidefinite programming problems in this paper. The IPRSDP algorithm has three advantages over classical interior-point methods. Firstly, IPRSDP does not require the iterative points to be positive definite. Consequently, it can easily be combined with the warm-start technique used for solving many combinatorial optimization problems, which require the solutions of a series of semidefinite programming problems. Secondly, the search direction of IPRSDP is symmetric in itself, and hence the symmetrization procedure is not required any more. Thirdly, with the introduction of the smoothing barrier augmented Lagrangian function, IPRSDP can provide the explicit form of the Schur complement matrix. This enables the complexity of forming this matrix in IPRSDP to be comparable to or lower than that of many existing search directions. The global convergence of IPRSDP is established under suitable assumptions. Numerical experiments are made on the SDPLIB set, which demonstrate the efficiency of IPRSDP.
{"title":"IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming","authors":"Rui-Jin Zhang, Xin-Wei Liu, Yu-Hong Dai","doi":"10.1007/s10589-024-00558-8","DOIUrl":"https://doi.org/10.1007/s10589-024-00558-8","url":null,"abstract":"<p>We propose an efficient primal-dual interior-point relaxation algorithm based on a smoothing barrier augmented Lagrangian, called IPRSDP, for solving semidefinite programming problems in this paper. The IPRSDP algorithm has three advantages over classical interior-point methods. Firstly, IPRSDP does not require the iterative points to be positive definite. Consequently, it can easily be combined with the warm-start technique used for solving many combinatorial optimization problems, which require the solutions of a series of semidefinite programming problems. Secondly, the search direction of IPRSDP is symmetric in itself, and hence the symmetrization procedure is not required any more. Thirdly, with the introduction of the smoothing barrier augmented Lagrangian function, IPRSDP can provide the explicit form of the Schur complement matrix. This enables the complexity of forming this matrix in IPRSDP to be comparable to or lower than that of many existing search directions. The global convergence of IPRSDP is established under suitable assumptions. Numerical experiments are made on the SDPLIB set, which demonstrate the efficiency of IPRSDP.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"3 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}