首页 > 最新文献

Computational Intelligence最新文献

英文 中文
Multi-View Self-Supervised Auxiliary Task for Few-Shot Remote Sensing Classification 用于少镜头遥感分类的多视图自监督辅助任务
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-25 DOI: 10.1111/coin.70009
Baodi Liu, Lei Xing, Xujian Qiao, Qian Liu

In the past few years, the swift advancement of remote sensing technology has greatly promoted its widespread application in the agricultural field. For example, remote sensing technology is used to monitor the planting area and growth status of crops, classify crops, and detect agricultural disasters. In these applications, the accuracy of image classification is of great significance in improving the efficiency and sustainability of agricultural production. However, many of the existing studies primarily rely on contrastive self-supervised learning methods, which come with certain limitations such as complex data construction and a bias towards invariant features. To address these issues, additional techniques like knowledge distillation are often employed to optimize the learned features. In this article, we propose a novel approach to enhance feature acquisition specific to remote sensing images by introducing a classification-based self-supervised auxiliary task. This auxiliary task involves performing image transformation self-supervised learning tasks directly on the remote sensing images, thereby improving the overall capacity for feature representation. In this work, we design a texture fading reinforcement auxiliary task to reinforce texture features and color features that are useful for distinguishing similar classes of remote sensing. Different auxiliary tasks are fused to form a multi-view self-supervised auxiliary task and integrated with the main task to optimize the model training in an end-to-end manner. The experimental results on several popular few-shot remote sensing image datasets validate the effectiveness of the proposed method. The performance better than many advanced algorithms is achieved with a more concise structure.

过去几年,遥感技术的迅速发展极大地推动了其在农业领域的广泛应用。例如,遥感技术可用于监测农作物的种植面积和生长状况、对农作物进行分类以及检测农业灾害。在这些应用中,图像分类的准确性对于提高农业生产的效率和可持续性具有重要意义。然而,现有的许多研究主要依赖于对比自监督学习方法,这种方法存在一定的局限性,如数据构建复杂、偏向不变特征等。为了解决这些问题,通常会采用知识提炼等附加技术来优化学习到的特征。在本文中,我们提出了一种新方法,通过引入基于分类的自监督辅助任务来增强遥感图像的特征获取。该辅助任务包括直接在遥感图像上执行图像变换自监督学习任务,从而提高特征表示的整体能力。在这项工作中,我们设计了一个纹理衰减强化辅助任务,以强化纹理特征和颜色特征,这些特征对于区分遥感的相似类别非常有用。不同的辅助任务被融合成多视角自监督辅助任务,并与主任务集成,以端到端的方式优化模型训练。在几个常用的几幅遥感图像数据集上的实验结果验证了所提方法的有效性。该方法结构更简洁,性能优于许多先进算法。
{"title":"Multi-View Self-Supervised Auxiliary Task for Few-Shot Remote Sensing Classification","authors":"Baodi Liu,&nbsp;Lei Xing,&nbsp;Xujian Qiao,&nbsp;Qian Liu","doi":"10.1111/coin.70009","DOIUrl":"https://doi.org/10.1111/coin.70009","url":null,"abstract":"<div>\u0000 \u0000 <p>In the past few years, the swift advancement of remote sensing technology has greatly promoted its widespread application in the agricultural field. For example, remote sensing technology is used to monitor the planting area and growth status of crops, classify crops, and detect agricultural disasters. In these applications, the accuracy of image classification is of great significance in improving the efficiency and sustainability of agricultural production. However, many of the existing studies primarily rely on contrastive self-supervised learning methods, which come with certain limitations such as complex data construction and a bias towards invariant features. To address these issues, additional techniques like knowledge distillation are often employed to optimize the learned features. In this article, we propose a novel approach to enhance feature acquisition specific to remote sensing images by introducing a classification-based self-supervised auxiliary task. This auxiliary task involves performing image transformation self-supervised learning tasks directly on the remote sensing images, thereby improving the overall capacity for feature representation. In this work, we design a texture fading reinforcement auxiliary task to reinforce texture features and color features that are useful for distinguishing similar classes of remote sensing. Different auxiliary tasks are fused to form a multi-view self-supervised auxiliary task and integrated with the main task to optimize the model training in an end-to-end manner. The experimental results on several popular few-shot remote sensing image datasets validate the effectiveness of the proposed method. The performance better than many advanced algorithms is achieved with a more concise structure.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AgriFusion: A Low-Carbon Sustainable Computing Approach for Precision Agriculture Through Probabilistic Ensemble Crop Recommendation 农业融合:通过概率集合作物推荐实现精准农业的低碳可持续计算方法
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-19 DOI: 10.1111/coin.70006
T. R. Mahesh, Arastu Thakur, A. K. Velmurugan, Surbhi Bhatia Khan, Thippa Reddy Gadekallu, Saeed Alzahrani, Mohammed Alojail

Optimizing crop production is essential for sustainable agriculture and food security. This study presents the AgriFusion Model, an advanced ensemble-based machine learning framework designed to enhance precision agriculture by offering highly accurate and low-carbon crop recommendations. By integrating Random Forest, Gradient Boosting, and LightGBM, the model combines their strengths to boost predictive accuracy, robustness, and energy efficiency. Trained on a comprehensive dataset of 2200 instances covering key parameters like nitrogen, phosphorus, potassium, temperature, humidity, pH, rainfall, and crop type, the model underwent rigorous preprocessing for data integrity. The RandomizedSearchCV method was employed to do hyperparameter tuning, namely improving the number of trees in the Random Forest algorithm and the learning rates in the Gradient Boosting algorithm. This ensemble approach achieves a remarkable accuracy rate of 99.48%, optimizes computer resources, lowers carbon footprint, and responds efficiently to a variety of agricultural situations. The model's performance is confirmed using metrics including cross-validation, accuracy, precision, recall, and F1 score. This demonstrates how the model might improve agricultural decision-making, make the most use of available resources, and promote ecologically responsible farming practices.

优化作物生产对可持续农业和粮食安全至关重要。本研究介绍了 AgriFusion 模型,这是一个先进的基于集合的机器学习框架,旨在通过提供高精度、低碳的作物建议来加强精准农业。通过整合随机森林、梯度提升和 LightGBM,该模型结合了它们的优势,从而提高了预测准确性、鲁棒性和能效。该模型在一个包含氮、磷、钾、温度、湿度、pH 值、降雨量和作物类型等关键参数的 2200 个实例的综合数据集上进行了训练,并为数据完整性进行了严格的预处理。采用 RandomizedSearchCV 方法进行超参数调整,即改进随机森林算法中的树数和梯度提升算法中的学习率。这种集合方法的准确率高达 99.48%,优化了计算机资源,降低了碳足迹,并能有效地应对各种农业情况。交叉验证、准确率、精确度、召回率和 F1 分数等指标证实了该模型的性能。这表明该模型可以改善农业决策,最大限度地利用现有资源,并促进对生态负责的农业实践。
{"title":"AgriFusion: A Low-Carbon Sustainable Computing Approach for Precision Agriculture Through Probabilistic Ensemble Crop Recommendation","authors":"T. R. Mahesh,&nbsp;Arastu Thakur,&nbsp;A. K. Velmurugan,&nbsp;Surbhi Bhatia Khan,&nbsp;Thippa Reddy Gadekallu,&nbsp;Saeed Alzahrani,&nbsp;Mohammed Alojail","doi":"10.1111/coin.70006","DOIUrl":"https://doi.org/10.1111/coin.70006","url":null,"abstract":"<div>\u0000 \u0000 <p>Optimizing crop production is essential for sustainable agriculture and food security. This study presents the AgriFusion Model, an advanced ensemble-based machine learning framework designed to enhance precision agriculture by offering highly accurate and low-carbon crop recommendations. By integrating Random Forest, Gradient Boosting, and LightGBM, the model combines their strengths to boost predictive accuracy, robustness, and energy efficiency. Trained on a comprehensive dataset of 2200 instances covering key parameters like nitrogen, phosphorus, potassium, temperature, humidity, pH, rainfall, and crop type, the model underwent rigorous preprocessing for data integrity. The RandomizedSearchCV method was employed to do hyperparameter tuning, namely improving the number of trees in the Random Forest algorithm and the learning rates in the Gradient Boosting algorithm. This ensemble approach achieves a remarkable accuracy rate of 99.48%, optimizes computer resources, lowers carbon footprint, and responds efficiently to a variety of agricultural situations. The model's performance is confirmed using metrics including cross-validation, accuracy, precision, recall, and F1 score. This demonstrates how the model might improve agricultural decision-making, make the most use of available resources, and promote ecologically responsible farming practices.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SDKT: Similar Domain Knowledge Transfer for Multivariate Time Series Classification Tasks SDKT:针对多变量时间序列分类任务的相似领域知识转移
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-19 DOI: 10.1111/coin.70008
Jiaye Wen, Wenan Zhou

Multivariate time series data classification has a wide range of applications in reality. With rapid development of deep learning, convolutional networks are widely used in this task and have achieved the current best performance. However, due to high difficulty and cost of collecting this type of data, labeled data is still scarce. In some tasks, the model shows overfitting, resulting in relatively poor classification performance. In order to improve the classification performance under such situation, we proposed a novel classification method based on transfer learning—similar domain knowledge transfer (call SDKT for short). Firstly, we designed a multivariate time series domain distance calculation method (call MTSDDC for short), which helped selecting the source domain that is most similar to target domain; Secondly, we used ResNet as a pre-trained classifier, transferred the parameters of the similar domain network to the target domain network and continue to fine-tune the parameters. To verify our method, we conducted experiments on several public datasets. Our study has also shown that the transfer effect from the source domain to the target domain is highly negatively correlated with the distance between them, with an average Pearson coefficient of −0.78. For the transfer of most similar source domain, compared to the ResNet model without transfer and the current best model, the average accuracy improvements on the datasets we used are 4.01% and 1.46% respectively.

多变量时间序列数据分类在现实中有着广泛的应用。随着深度学习的快速发展,卷积网络被广泛应用于这一任务,并取得了目前最好的性能。然而,由于这类数据的收集难度大、成本高,标注数据仍然稀缺。在某些任务中,模型会出现过拟合现象,导致分类性能相对较差。为了提高这种情况下的分类性能,我们提出了一种基于迁移学习--相似领域知识迁移(简称 SDKT)的新型分类方法。首先,我们设计了一种多变量时间序列域距离计算方法(简称 MTSDDC),有助于选择与目标域最相似的源域;其次,我们使用 ResNet 作为预训练分类器,将相似域网络的参数转移到目标域网络,并继续微调参数。为了验证我们的方法,我们在几个公共数据集上进行了实验。我们的研究还表明,从源域到目标域的转移效果与它们之间的距离呈高度负相关,平均皮尔逊系数为-0.78。对于最相似源域的转移,与没有转移的 ResNet 模型和当前最佳模型相比,我们使用的数据集的平均准确率分别提高了 4.01% 和 1.46%。
{"title":"SDKT: Similar Domain Knowledge Transfer for Multivariate Time Series Classification Tasks","authors":"Jiaye Wen,&nbsp;Wenan Zhou","doi":"10.1111/coin.70008","DOIUrl":"https://doi.org/10.1111/coin.70008","url":null,"abstract":"<div>\u0000 \u0000 <p>Multivariate time series data classification has a wide range of applications in reality. With rapid development of deep learning, convolutional networks are widely used in this task and have achieved the current best performance. However, due to high difficulty and cost of collecting this type of data, labeled data is still scarce. In some tasks, the model shows overfitting, resulting in relatively poor classification performance. In order to improve the classification performance under such situation, we proposed a novel classification method based on transfer learning—similar domain knowledge transfer (call SDKT for short). Firstly, we designed a multivariate time series domain distance calculation method (call MTSDDC for short), which helped selecting the source domain that is most similar to target domain; Secondly, we used ResNet as a pre-trained classifier, transferred the parameters of the similar domain network to the target domain network and continue to fine-tune the parameters. To verify our method, we conducted experiments on several public datasets. Our study has also shown that the transfer effect from the source domain to the target domain is highly negatively correlated with the distance between them, with an average Pearson coefficient of −0.78. For the transfer of most similar source domain, compared to the ResNet model without transfer and the current best model, the average accuracy improvements on the datasets we used are 4.01% and 1.46% respectively.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection 基于三维 CNN、时间分布式二维 CNN-BLSTM 模型和 mRMR 特征选择的高效稳健的三维医学图像分类方法
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-23 DOI: 10.1111/coin.70000
Enver Akbacak, Nedim Muzoğlu

The advent of 3D medical imaging has been a turning point in the diagnosis of various diseases, as voxel information from adjacent slices helps radiologists better understand complex anatomical relationships. However, the interpretation of medical images by radiologists with different levels of expertise can vary and is also time-consuming. In the last decades, artificial intelligence-based computer-aided systems have provided fast and more reliable diagnostic insights with great potential for various clinical purposes. This paper proposes a significant deep learning based 3D medical image diagnosis method. The method classifies MedMNIST3D, which consists of six 3D biomedical datasets obtained from CT, MRA, and electron microscopy modalities. The proposed method concatenates 3D image features extracted from three independent networks, a 3D CNN, and two time-distributed ResNet BLSTM structures. The ultimate discriminative features are selected via the minimum redundancy maximum relevance (mRMR) feature selection method. Those features are then classified by a neural network model. Experiments adhere to the rules of the official splits and evaluation metrics of the MedMNIST3D datasets. The results reveal that the proposed approach outperforms similar studies in terms of accuracy and AUC.

三维医学影像的出现是诊断各种疾病的转折点,因为相邻切片的体素信息有助于放射科医生更好地理解复杂的解剖关系。然而,不同专业水平的放射科医生对医学影像的解读可能各不相同,而且耗费时间。在过去几十年中,基于人工智能的计算机辅助系统提供了快速、更可靠的诊断见解,在各种临床用途中具有巨大潜力。本文提出了一种重要的基于深度学习的三维医学图像诊断方法。该方法对 MedMNIST3D 进行了分类,MedMNIST3D 由六种三维生物医学数据集组成,分别来自 CT、MRA 和电子显微镜模式。所提出的方法将从三个独立网络、一个 3D CNN 和两个时间分布 ResNet BLSTM 结构中提取的 3D 图像特征合并在一起。通过最小冗余最大相关性(mRMR)特征选择法选出最终的判别特征。然后通过神经网络模型对这些特征进行分类。实验遵循 MedMNIST3D 数据集的官方拆分规则和评估指标。结果表明,所提出的方法在准确率和AUC方面优于同类研究。
{"title":"An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection","authors":"Enver Akbacak,&nbsp;Nedim Muzoğlu","doi":"10.1111/coin.70000","DOIUrl":"https://doi.org/10.1111/coin.70000","url":null,"abstract":"<div>\u0000 \u0000 <p>The advent of 3D medical imaging has been a turning point in the diagnosis of various diseases, as voxel information from adjacent slices helps radiologists better understand complex anatomical relationships. However, the interpretation of medical images by radiologists with different levels of expertise can vary and is also time-consuming. In the last decades, artificial intelligence-based computer-aided systems have provided fast and more reliable diagnostic insights with great potential for various clinical purposes. This paper proposes a significant deep learning based 3D medical image diagnosis method. The method classifies MedMNIST3D, which consists of six 3D biomedical datasets obtained from CT, MRA, and electron microscopy modalities. The proposed method concatenates 3D image features extracted from three independent networks, a 3D CNN, and two time-distributed ResNet BLSTM structures. The ultimate discriminative features are selected via the minimum redundancy maximum relevance (mRMR) feature selection method. Those features are then classified by a neural network model. Experiments adhere to the rules of the official splits and evaluation metrics of the MedMNIST3D datasets. The results reveal that the proposed approach outperforms similar studies in terms of accuracy and AUC.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning 通过机器学习全面分析各年龄组跌倒检测中特征与算法之间的相互作用
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-23 DOI: 10.1111/coin.12697
Erhan Kavuncuoğlu

Fall detection in daily activities hinges on both feature selection and algorithm choice. This study delves into their intricate interplay using the Sisfall dataset, testing 10 machine learning algorithms on 26 features encompassing diverse falls and age groups. Individual feature analysis yields key insights. RFC with the autocorrelation feature outperformed the other classifiers, achieving 97.94% accuracy and 97.51% sensitivity (surpassing F3-SVM at 96.18% and F17-LightGBM at 95.79%). The F3-SVM exhibited exceptional specificity (98.72%) for distinguishing daily activities. Time-series features employed by SVM achieved a peak accuracy of 98.60% on unseen data, exceeding motion, basic statistical, and frequency domain features. Feature combinations further excel: the Quintuple approach, fusing top-performing features, reaches 98.69% accuracy, 98.28% sensitivity, and 99.08% specificity with the ETC, demonstrating notable sensitivity owing to its adaptability. This study underscores the crucial interplay of features and algorithms, with the Quintuple-ETC approach emerging as the most effective. Rigorous hyperparameter tuning strengthens its performance in real-world fall-detection applications. Furthermore, the study investigates algorithm transferability, training models on young participants' data and applying them to the elderly—a significant challenge in machine learning. This highlights the importance of understanding the data transfer between age groups in healthcare, aging management, and medical diagnostics.

日常活动中的跌倒检测取决于特征选择和算法选择。本研究利用 Sisfall 数据集深入探讨了它们之间错综复杂的相互作用,在 26 个特征上测试了 10 种机器学习算法,这些特征包括不同的跌倒和年龄组。对单个特征的分析得出了关键的见解。带有自相关特征的 RFC 的表现优于其他分类器,准确率达到 97.94%,灵敏度达到 97.51%(超过了 96.18% 的 F3-SVM 和 95.79% 的 F17-LightGBM)。F3-SVM 在区分日常活动方面表现出了极高的特异性(98.72%)。SVM 采用的时间序列特征在未见数据上达到了 98.60% 的峰值准确率,超过了运动、基本统计和频域特征。特征组合的效果更加突出:融合了最佳特征的 Quintuple 方法与 ETC 的准确率达到了 98.69%,灵敏度达到了 98.28%,特异性达到了 99.08%,由于其适应性强,灵敏度显著提高。这项研究强调了特征和算法之间的重要相互作用,其中五元-ETC 方法最为有效。严格的超参数调整增强了其在实际跌倒检测应用中的性能。此外,该研究还调查了算法的可移植性,即在年轻参与者的数据上训练模型,然后将其应用于老年人--这在机器学习中是一项重大挑战。这凸显了了解医疗保健、老龄化管理和医疗诊断中不同年龄组之间数据转移的重要性。
{"title":"Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning","authors":"Erhan Kavuncuoğlu","doi":"10.1111/coin.12697","DOIUrl":"https://doi.org/10.1111/coin.12697","url":null,"abstract":"<p>Fall detection in daily activities hinges on both feature selection and algorithm choice. This study delves into their intricate interplay using the Sisfall dataset, testing 10 machine learning algorithms on 26 features encompassing diverse falls and age groups. Individual feature analysis yields key insights. RFC with the autocorrelation feature outperformed the other classifiers, achieving 97.94% accuracy and 97.51% sensitivity (surpassing F3-SVM at 96.18% and F17-LightGBM at 95.79%). The F3-SVM exhibited exceptional specificity (98.72%) for distinguishing daily activities. Time-series features employed by SVM achieved a peak accuracy of 98.60% on unseen data, exceeding motion, basic statistical, and frequency domain features. Feature combinations further excel: the Quintuple approach, fusing top-performing features, reaches 98.69% accuracy, 98.28% sensitivity, and 99.08% specificity with the ETC, demonstrating notable sensitivity owing to its adaptability. This study underscores the crucial interplay of features and algorithms, with the Quintuple-ETC approach emerging as the most effective. Rigorous hyperparameter tuning strengthens its performance in real-world fall-detection applications. Furthermore, the study investigates algorithm transferability, training models on young participants' data and applying them to the elderly—a significant challenge in machine learning. This highlights the importance of understanding the data transfer between age groups in healthcare, aging management, and medical diagnostics.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric 使用公平-效用权衡指标的非生成公平对抗学习策略基准提案
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1111/coin.70003
Luiz Fernando F. P. de Lima, Danielle Rousy D. Ricarte, Clauirton A. Siebra

AI systems for decision-making have become increasingly popular in several areas. However, it is possible to identify biased decisions in many applications, which have become a concern for the computer science, artificial intelligence, and law communities. Therefore, researchers are proposing solutions to mitigate bias and discrimination among decision-makers. Some explored strategies are based on GANs to generate fair data. Others are based on adversarial learning to achieve fairness by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. Therefore, this work proposes a systematical benchmark procedure to assess the fair machine learning models. The proposed procedure comprises a fairness-utility trade-off metric (FU-score$$ FUhbox{-} score $$), the utility and fairness metrics to compose this assessment, the used datasets and preparation, and the statistical test. A previous work presents some of these definitions. The present work enriches the procedure by increasing the applied datasets and statistical guarantees when comparing the models' results. We performed this benchmark evaluation for the non-generative adversarial models, analyzing the literature models from the same metric perspective. This assessment could not indicate a single model which better performs for all datasets. However, we built an understanding of how each model performs on each dataset with statistical confidence.

用于决策的人工智能系统在多个领域越来越受欢迎。然而,在许多应用中都有可能发现有偏见的决策,这已成为计算机科学、人工智能和法律界关注的问题。因此,研究人员正在提出一些解决方案,以减少决策者之间的偏见和歧视。一些已探索的策略基于 GAN 生成公平数据。另一些则基于对抗学习,通过对抗模型对公平性约束进行编码来实现公平性。此外,每个建议通常都会用特定的指标来评估其模型,这使得比较当前的方法成为一项复杂的任务。因此,这项工作提出了一个系统的基准程序,用于评估公平的机器学习模型。建议的程序包括公平性-效用权衡指标(FU-score $$ FUhbox{-} score $$$)、组成该评估的效用和公平性指标、使用的数据集和准备工作以及统计测试。之前的一项工作介绍了其中的一些定义。本研究通过增加应用数据集和比较模型结果时的统计保证,丰富了这一程序。我们对非生成对抗模型进行了基准评估,从相同的度量角度分析了文献模型。这项评估无法指出哪一个模型在所有数据集上都有更好的表现。不过,我们对每种模型在每种数据集上的表现都有了一定的了解,并在统计上有了信心。
{"title":"A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric","authors":"Luiz Fernando F. P. de Lima,&nbsp;Danielle Rousy D. Ricarte,&nbsp;Clauirton A. Siebra","doi":"10.1111/coin.70003","DOIUrl":"https://doi.org/10.1111/coin.70003","url":null,"abstract":"<div>\u0000 \u0000 <p>AI systems for decision-making have become increasingly popular in several areas. However, it is possible to identify biased decisions in many applications, which have become a concern for the computer science, artificial intelligence, and law communities. Therefore, researchers are proposing solutions to mitigate bias and discrimination among decision-makers. Some explored strategies are based on GANs to generate fair data. Others are based on adversarial learning to achieve fairness by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. Therefore, this work proposes a systematical benchmark procedure to assess the fair machine learning models. The proposed procedure comprises a fairness-utility trade-off metric (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>FU-score</mi>\u0000 </mrow>\u0000 <annotation>$$ FUhbox{-} score $$</annotation>\u0000 </semantics></math>), the utility and fairness metrics to compose this assessment, the used datasets and preparation, and the statistical test. A previous work presents some of these definitions. The present work enriches the procedure by increasing the applied datasets and statistical guarantees when comparing the models' results. We performed this benchmark evaluation for the non-generative adversarial models, analyzing the literature models from the same metric perspective. This assessment could not indicate a single model which better performs for all datasets. However, we built an understanding of how each model performs on each dataset with statistical confidence.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic Image Generation Using Deep Learning: A Systematic Literature Review 使用深度学习生成合成图像:系统性文献综述
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1111/coin.70002
Aisha Zulfiqar, Sher Muhammad Daudpota, Ali Shariq Imran, Zenun Kastrati, Mohib Ullah, Suraksha Sadhwani

The advent of deep neural networks and improved computational power have brought a revolutionary transformation in the fields of computer vision and image processing. Within the realm of computer vision, there has been a significant interest in the area of synthetic image generation, which is a creative side of AI. Many researchers have introduced innovative methods to identify deep neural network-based architectures involved in image generation via different modes of input, like text, scene graph layouts and so forth to generate synthetic images. Computer-generated images have been found to contribute a lot to the training of different machine and deep-learning models. Nonetheless, we have observed an immediate need for a comprehensive and systematic literature review that encompasses a summary and critical evaluation of current primary studies' approaches toward image generation. To address this, we carried out a systematic literature review on synthetic image generation approaches published from 2018 to February 2023. Moreover, we have conducted a systematic review of various datasets, approaches to image generation, performance metrics for existing methods, and a brief experimental comparison of DCGAN (deep convolutional generative adversarial network) and cGAN (conditional generative adversarial network) in the context of image generation. Additionally, we have identified applications related to image generation models with critical evaluation of the primary studies on the subject matter. Finally, we present some future research directions to further contribute to the field of image generation using deep neural networks.

深度神经网络的出现和计算能力的提高给计算机视觉和图像处理领域带来了革命性的变革。在计算机视觉领域,人们对合成图像生成这一人工智能的创造性领域产生了浓厚的兴趣。许多研究人员引入了创新方法,通过不同的输入模式(如文本、场景图布局等)来识别参与图像生成的基于深度神经网络的架构,从而生成合成图像。人们发现,计算机生成的图像对不同机器和深度学习模型的训练有很大帮助。然而,我们注意到,目前急需一份全面、系统的文献综述,其中包括对当前主要研究的图像生成方法进行总结和批判性评估。为此,我们对 2018 年至 2023 年 2 月期间发表的合成图像生成方法进行了系统的文献综述。此外,我们还对各种数据集、图像生成方法、现有方法的性能指标进行了系统回顾,并在图像生成方面对 DCGAN(深度卷积生成对抗网络)和 cGAN(条件生成对抗网络)进行了简要的实验比较。此外,我们还确定了与图像生成模型相关的应用,并对该主题的主要研究进行了批判性评估。最后,我们提出了一些未来的研究方向,以进一步促进使用深度神经网络生成图像领域的发展。
{"title":"Synthetic Image Generation Using Deep Learning: A Systematic Literature Review","authors":"Aisha Zulfiqar,&nbsp;Sher Muhammad Daudpota,&nbsp;Ali Shariq Imran,&nbsp;Zenun Kastrati,&nbsp;Mohib Ullah,&nbsp;Suraksha Sadhwani","doi":"10.1111/coin.70002","DOIUrl":"https://doi.org/10.1111/coin.70002","url":null,"abstract":"<p>The advent of deep neural networks and improved computational power have brought a revolutionary transformation in the fields of computer vision and image processing. Within the realm of computer vision, there has been a significant interest in the area of synthetic image generation, which is a creative side of AI. Many researchers have introduced innovative methods to identify deep neural network-based architectures involved in image generation via different modes of input, like text, scene graph layouts and so forth to generate synthetic images. Computer-generated images have been found to contribute a lot to the training of different machine and deep-learning models. Nonetheless, we have observed an immediate need for a comprehensive and systematic literature review that encompasses a summary and critical evaluation of current primary studies' approaches toward image generation. To address this, we carried out a systematic literature review on synthetic image generation approaches published from 2018 to February 2023. Moreover, we have conducted a systematic review of various datasets, approaches to image generation, performance metrics for existing methods, and a brief experimental comparison of DCGAN (deep convolutional generative adversarial network) and cGAN (conditional generative adversarial network) in the context of image generation. Additionally, we have identified applications related to image generation models with critical evaluation of the primary studies on the subject matter. Finally, we present some future research directions to further contribute to the field of image generation using deep neural networks.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data 基于彼得-克拉克算法的修正局部格兰杰因果关系分析,用于物联网数据的多变量时间序列预测
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1111/coin.12694
Fei Lv, Shuaizong Si, Xing Xiao, Weijie Ren

Climate data collected through Internet of Things (IoT) devices often contain high-dimensional, nonlinear, and auto-correlated characteristics, and general causality analysis methods obtain quantitative causality analysis results between variables based on conditional independence tests or Granger causality, and so forth. However, it is difficult to capture dynamic properties between variables of temporal distribution, which can obtain information that cannot be obtained by the mean detection method. Therefore, this paper proposed a new causality analysis method based on Peter-Clark (PC) algorithm and modified local Granger causality (MLGC) analysis method, called PC-MLGC, to reveal the causal relationships between variables and explore the dynamic properties on temporal distribution. First, the PC algorithm is applied to compute the relevant variables of each variable. Then, the results obtained in the previous stage are fed into the modified local Granger causality analysis model to explore causalities between variables. Finally, combined with the quantitative causality analysis results, the dynamic characteristic curves between variables can be obtained, and the accuracy of the causal relationship between variables can be further verified. The effectiveness of the proposed method is further demonstrated by comparing it with standard Granger causality analysis and a two-stage causal network learning method on one benchmark dataset and two real-world datasets.

通过物联网(IoT)设备采集到的气候数据往往包含高维、非线性和自相关等特征,一般的因果关系分析方法基于条件独立性检验或格兰杰因果关系等获得变量间的定量因果关系分析结果。然而,时间分布变量之间的动态特性难以捕捉,而时间分布变量之间的动态特性可以获得均值检测方法无法获得的信息。因此,本文提出了一种基于彼得-克拉克(PC)算法和改进的局部格兰杰因果关系(MLGC)分析方法的新因果关系分析方法,称为 PC-MLGC,以揭示变量之间的因果关系,探索时间分布上的动态特性。首先,应用 PC 算法计算每个变量的相关变量。然后,将前一阶段得到的结果输入修正的局部格兰杰因果分析模型,探索变量之间的因果关系。最后,结合定量因果分析结果,可以得到变量间的动态特征曲线,进一步验证变量间因果关系的准确性。通过在一个基准数据集和两个实际数据集上与标准格兰杰因果分析法和两阶段因果网络学习法进行比较,进一步证明了所提方法的有效性。
{"title":"Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data","authors":"Fei Lv,&nbsp;Shuaizong Si,&nbsp;Xing Xiao,&nbsp;Weijie Ren","doi":"10.1111/coin.12694","DOIUrl":"https://doi.org/10.1111/coin.12694","url":null,"abstract":"<p>Climate data collected through Internet of Things (IoT) devices often contain high-dimensional, nonlinear, and auto-correlated characteristics, and general causality analysis methods obtain quantitative causality analysis results between variables based on conditional independence tests or Granger causality, and so forth. However, it is difficult to capture dynamic properties between variables of temporal distribution, which can obtain information that cannot be obtained by the mean detection method. Therefore, this paper proposed a new causality analysis method based on Peter-Clark (PC) algorithm and modified local Granger causality (MLGC) analysis method, called PC-MLGC, to reveal the causal relationships between variables and explore the dynamic properties on temporal distribution. First, the PC algorithm is applied to compute the relevant variables of each variable. Then, the results obtained in the previous stage are fed into the modified local Granger causality analysis model to explore causalities between variables. Finally, combined with the quantitative causality analysis results, the dynamic characteristic curves between variables can be obtained, and the accuracy of the causal relationship between variables can be further verified. The effectiveness of the proposed method is further demonstrated by comparing it with standard Granger causality analysis and a two-stage causal network learning method on one benchmark dataset and two real-world datasets.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Synaptic Adjustment Mechanism to Improve Learning Performances of Spiking Neural Networks 改善尖峰神经网络学习性能的自适应突触调整机制
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-17 DOI: 10.1111/coin.70001
Hyun-Jong Lee, Jae-Han Lim

Spiking Neural Networks (SNNs) are currently attracting researchers' attention due to their efficiencies in various tasks. Spike-timing-dependent plasticity (STDP) is an unsupervised learning process that utilizes bio-plausibility based on the relative timing of pre/post-synaptic spikes of neurons. Integrated with STDP, SNNs perform well consuming less energy. However, it is hard to ensure that synaptic weights always converge to values guaranteeing accurate prediction because STDP does not change synaptic weights with supervision. To address this limitation, researchers have proposed mechanisms for inducing STDP to converge synaptic weights on the proper values referring to current synaptic weights. Thus, if the current weights fail to describe proper synaptic connections, they cannot induce STDP to update synaptic weights properly. To solve this problem, we propose an adaptive mechanism that helps STDP to converge synaptic weights directly based on input data features: Adaptive synaptic template (AST). AST leads synaptic weights to describe synaptic connections according to the data features. It prevents STDP from changing synaptic weights based on abnormal weights that fail to describe the proper synaptic connections. This is because it does not use the current synaptic weights that can disturb proper weight convergence. We integrate AST with an SNN and conduct experiments to compare it with a baseline (the SNN without AST) and benchmarks (previous works to improve STDP). Our experimental results show that the SNN using AST classifies various data sets with 6%–39% higher accuracy than the baseline and benchmarks.

尖峰神经网络(SNN)因其在各种任务中的高效性而备受研究人员的关注。尖峰计时可塑性(STDP)是一种无监督学习过程,它基于神经元突触前/后尖峰的相对计时,利用生物可塑性。与 STDP 相结合,SNN 的性能更佳,能耗更低。然而,由于 STDP 不会随监督而改变突触权重,因此很难确保突触权重始终收敛到能保证准确预测的值。为了解决这一限制,研究人员提出了一些机制,以诱导 STDP 参照当前的突触权重将突触权重收敛到适当的值上。因此,如果当前权重无法描述正确的突触连接,就无法诱导 STDP 正确更新突触权重。为了解决这个问题,我们提出了一种自适应机制,帮助 STDP 直接根据输入数据特征收敛突触权重:自适应突触模板(AST)。AST 根据数据特征来引导突触权重描述突触连接。它可以防止 STDP 根据无法描述正确突触连接的异常权重改变突触权重。这是因为它不会使用会干扰正确权重收敛的当前突触权重。我们将 AST 与 SNN 相结合,并进行了实验,将其与基线(不含 AST 的 SNN)和基准(以前改进 STDP 的工作)进行比较。实验结果表明,使用 AST 的 SNN 对各种数据集进行分类的准确率比基线和基准高 6%-39%。
{"title":"Adaptive Synaptic Adjustment Mechanism to Improve Learning Performances of Spiking Neural Networks","authors":"Hyun-Jong Lee,&nbsp;Jae-Han Lim","doi":"10.1111/coin.70001","DOIUrl":"https://doi.org/10.1111/coin.70001","url":null,"abstract":"<div>\u0000 \u0000 <p>Spiking Neural Networks (SNNs) are currently attracting researchers' attention due to their efficiencies in various tasks. Spike-timing-dependent plasticity (STDP) is an unsupervised learning process that utilizes bio-plausibility based on the relative timing of pre/post-synaptic spikes of neurons. Integrated with STDP, SNNs perform well consuming less energy. However, it is hard to ensure that synaptic weights always converge to values guaranteeing accurate prediction because STDP does not change synaptic weights with supervision. To address this limitation, researchers have proposed mechanisms for inducing STDP to converge synaptic weights on the proper values referring to current synaptic weights. Thus, if the current weights fail to describe proper synaptic connections, they cannot induce STDP to update synaptic weights properly. To solve this problem, we propose an adaptive mechanism that helps STDP to converge synaptic weights directly based on input data features: Adaptive synaptic template (AST). AST leads synaptic weights to describe synaptic connections according to the data features. It prevents STDP from changing synaptic weights based on abnormal weights that fail to describe the proper synaptic connections. This is because it does not use the current synaptic weights that can disturb proper weight convergence. We integrate AST with an SNN and conduct experiments to compare it with a baseline (the SNN without AST) and benchmarks (previous works to improve STDP). Our experimental results show that the SNN using AST classifies various data sets with 6%–39% higher accuracy than the baseline and benchmarks.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid HAN-CNN with aspect term extraction for sentiment analysis using product review 利用产品评论进行情感分析的混合 HAN-CNN 与方面词提取技术
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-07 DOI: 10.1111/coin.12698
P. C. D. Kalaivaani, K. Sathyarajasekaran, N. Krishnamoorthy, T. Kumaravel

In this article, an intensive sentiment analysis approach termed Hierarchical attention-convolutional neural network (HAN-CNN) has been proposed using product reviews. Firstly, the input product review is subjected to Bidirectional Encoder Representation from Transformers (BERT) tokenization, where the input data of each sentence are partitioned into little bits of words. Thereafter, Aspect Term Extraction (ATE) is carried out and feature extraction is completed utilizing some features. Finally, sentiment analysis is accomplished by the developed HAN-CNN, which is formed by combining a Hierarchical Attention Network (HAN) and a Convolutional Neural Network (CNN). Moreover, the proposed HAN-CNN achieved a greater performance with maximum accuracy, recall and F1-Score of 91.70%, 90.60% and 91.20%, respectively.

本文利用产品评论提出了一种密集情感分析方法,称为分层注意力-卷积神经网络(HAN-CNN)。首先,对输入的产品评论进行双向变换器编码器表征(BERT)标记化处理,将每个句子的输入数据分割成单词的小比特。然后,进行方面术语提取(ATE),并利用一些特征完成特征提取。最后,情感分析由开发的 HAN-CNN 完成,HAN-CNN 由分层注意力网络(HAN)和卷积神经网络(CNN)组合而成。此外,所提出的 HAN-CNN 取得了更高的性能,最高准确率、召回率和 F1-Score 分别为 91.70%、90.60% 和 91.20%。
{"title":"Hybrid HAN-CNN with aspect term extraction for sentiment analysis using product review","authors":"P. C. D. Kalaivaani,&nbsp;K. Sathyarajasekaran,&nbsp;N. Krishnamoorthy,&nbsp;T. Kumaravel","doi":"10.1111/coin.12698","DOIUrl":"https://doi.org/10.1111/coin.12698","url":null,"abstract":"<p>In this article, an intensive sentiment analysis approach termed Hierarchical attention-convolutional neural network (HAN-CNN) has been proposed using product reviews. Firstly, the input product review is subjected to Bidirectional Encoder Representation from Transformers (BERT) tokenization, where the input data of each sentence are partitioned into little bits of words. Thereafter, Aspect Term Extraction (ATE) is carried out and feature extraction is completed utilizing some features. Finally, sentiment analysis is accomplished by the developed HAN-CNN, which is formed by combining a Hierarchical Attention Network (HAN) and a Convolutional Neural Network (CNN). Moreover, the proposed HAN-CNN achieved a greater performance with maximum accuracy, recall and F1-Score of 91.70%, 90.60% and 91.20%, respectively.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1