Marija Kopanja, Stefan Hačko, Sanja Brdar, Miloš Savić
Cost-sensitive ensemble learning as a combination of two approaches, ensemble learning and cost-sensitive learning, enables generation of cost-sensitive tree-based ensemble models using the cost-sensitive decision tree (CSDT) learning algorithm. In general, tree-based models characterize nice graphical representation that can explain a model's decision-making process. However, the depth of the tree and the number of base models in the ensemble can be a limiting factor in comprehending the model's decision for each sample. The CSDT models are widely used in finance (e.g., credit scoring and fraud detection) but lack effective explanation methods. We previously addressed this gap with cost-sensitive tree Shapley Additive Explanation Method (CSTreeSHAP), a cost-sensitive tree explanation method for the single-tree CSDT model. Here, we extend the introduced methodology to cost-sensitive ensemble models, particularly cost-sensitive random forest models. The paper details the theoretical foundation and implementation details of CSTreeSHAP for both single CSDT and ensemble models. The usefulness of the proposed method is demonstrated by providing explanations for single and ensemble CSDT models trained on well-known benchmark credit scoring datasets. Finally, we apply our methodology and analyze the stability of explanations for those models compared to the cost-insensitive tree-based models. Our analysis reveals statistically significant differences between SHAP values despite seemingly similar global feature importance plots of the models. This highlights the value of our methodology as a comprehensive tool for explaining CSDT models.
{"title":"Cost-sensitive tree SHAP for explaining cost-sensitive tree-based models","authors":"Marija Kopanja, Stefan Hačko, Sanja Brdar, Miloš Savić","doi":"10.1111/coin.12651","DOIUrl":"https://doi.org/10.1111/coin.12651","url":null,"abstract":"<p>Cost-sensitive ensemble learning as a combination of two approaches, ensemble learning and cost-sensitive learning, enables generation of cost-sensitive tree-based ensemble models using the cost-sensitive decision tree (CSDT) learning algorithm. In general, tree-based models characterize nice graphical representation that can explain a model's decision-making process. However, the depth of the tree and the number of base models in the ensemble can be a limiting factor in comprehending the model's decision for each sample. The CSDT models are widely used in finance (e.g., credit scoring and fraud detection) but lack effective explanation methods. We previously addressed this gap with cost-sensitive tree Shapley Additive Explanation Method (CSTreeSHAP), a cost-sensitive tree explanation method for the single-tree CSDT model. Here, we extend the introduced methodology to cost-sensitive ensemble models, particularly cost-sensitive random forest models. The paper details the theoretical foundation and implementation details of CSTreeSHAP for both single CSDT and ensemble models. The usefulness of the proposed method is demonstrated by providing explanations for single and ensemble CSDT models trained on well-known benchmark credit scoring datasets. Finally, we apply our methodology and analyze the stability of explanations for those models compared to the cost-insensitive tree-based models. Our analysis reveals statistically significant differences between SHAP values despite seemingly similar global feature importance plots of the models. This highlights the value of our methodology as a comprehensive tool for explaining CSDT models.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Pan, Shuting Zhou, Teng Li, Yu Liu, Quanli Pei, Angela J. Huang, Jimmy X. Huang
The pre-trained language model (PLM) based on the Transformer encoder, namely BERT, has achieved state-of-the-art results in the field of Information Retrieval. Existing BERT-based ranking models divide documents into passages and aggregate passage-level relevance to rank the document list. However, these common score aggregation strategies cannot capture important semantic information such as document structure and have not been extensively studied. In this article, we propose a novel kernel-based score pooling system to capture document-level relevance by aggregating passage-level relevance. In particular, we propose and study several representative kernel pooling functions and several different document ranking strategies based on passage-level relevance. Our proposed framework KnBERT naturally incorporates kernel functions from the passage level into the BERT-based re-ranking method, which provides a promising avenue for building universal retrieval-then-rerank information retrieval systems. Experiments conducted on two widely used TREC Robust04 and GOV2 test datasets show that the KnBERT has made significant improvements over other BERT-based ranking approaches in terms of MAP, P@20, and NDCG@20 indicators with no extra or even less computations.
{"title":"Utilizing passage-level relevance and kernel pooling for enhancing BERT-based document reranking","authors":"Min Pan, Shuting Zhou, Teng Li, Yu Liu, Quanli Pei, Angela J. Huang, Jimmy X. Huang","doi":"10.1111/coin.12656","DOIUrl":"https://doi.org/10.1111/coin.12656","url":null,"abstract":"<p>The pre-trained language model (PLM) based on the Transformer encoder, namely BERT, has achieved state-of-the-art results in the field of Information Retrieval. Existing BERT-based ranking models divide documents into passages and aggregate passage-level relevance to rank the document list. However, these common score aggregation strategies cannot capture important semantic information such as document structure and have not been extensively studied. In this article, we propose a novel kernel-based score pooling system to capture document-level relevance by aggregating passage-level relevance. In particular, we propose and study several representative kernel pooling functions and several different document ranking strategies based on passage-level relevance. Our proposed framework KnBERT naturally incorporates kernel functions from the passage level into the BERT-based re-ranking method, which provides a promising avenue for building universal retrieval-then-rerank information retrieval systems. Experiments conducted on two widely used TREC Robust04 and GOV2 test datasets show that the KnBERT has made significant improvements over other BERT-based ranking approaches in terms of MAP, P@20, and NDCG@20 indicators with no extra or even less computations.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingjun Dai, Ronghao Huang, Jinjin Wang, Bingchun Li
Codes that possess combination property (CP) and zigzag decoding (ZD) simultaneously (CP-ZD) has broad application into edge aided distributed systems, including distributed storage, coded distributed computing (CDC), and CDC-structured distributed training. Existing CP-ZD code designs are based on scalar code, where one node stores exactly one encoded packet. The drawback is that the induced overhead is high. In order to significantly reduce the overhead, vector CP-ZD codes are designed, where vector means the number of stored encoded packets in one node is extended from one to multiple. More specifically, in detailed code construction, cyclic shift is proposed, and the shifts are carefully designed for cases that each node stores two, three, and four packets, respectively. Comparisons show that the overhead is reduced significantly.
{"title":"Low overhead vector codes with combination property and zigzag decoding for edge-aided computing in UAV network","authors":"Mingjun Dai, Ronghao Huang, Jinjin Wang, Bingchun Li","doi":"10.1111/coin.12642","DOIUrl":"https://doi.org/10.1111/coin.12642","url":null,"abstract":"<p>Codes that possess combination property (CP) and zigzag decoding (ZD) simultaneously (CP-ZD) has broad application into edge aided distributed systems, including distributed storage, coded distributed computing (CDC), and CDC-structured distributed training. Existing CP-ZD code designs are based on scalar code, where one node stores exactly one encoded packet. The drawback is that the induced overhead is high. In order to significantly reduce the overhead, vector CP-ZD codes are designed, where vector means the number of stored encoded packets in one node is extended from one to multiple. More specifically, in detailed code construction, cyclic shift is proposed, and the shifts are carefully designed for cases that each node stores two, three, and four packets, respectively. Comparisons show that the overhead is reduced significantly.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the medical image processing domain, deep learning methodologies have outstanding performance for disease classification using digital images such as X-rays, magnetic resonance imaging (MRI), and computerized tomography (CT). However, accurate diagnosis of disease by medical personnel can be challenging in certain cases, such as the complexity of interpretation and non-availability of expert personnel, difficulty at pixel-level analysis, etc. Computer-aided diagnostic (CAD) systems with proper training have shown the potential to enhance diagnostic accuracy and efficiency. With the exponential growth of medical data, CAD systems can analyze and extract valuable information by assisting medical personnel during the disease diagnostic process. To overcome these challenges, this research introduces CX-RaysNet, a novel deep-learning framework designed for the automatic identification of various lung disease classes in digital chest X-ray images. The core novelty of the CX-RaysNet framework lies in the integration of both convolutional and group convolutional layers, along with the usage of small filter sizes and the incorporation of dropout regularization. This phenomenon helps us optimize the model's ability to distinguish minute features that reveal different lung diseases. Additionally, data augmentation techniques are implemented to augment the training and testing datasets, which enhances the model's robustness and generalizability. The performance evaluation of CX-RaysNet reveals promising results, with the proposed model achieving a multi-class classification accuracy of 97.25%. Particularly, this study represents the first attempt to optimize a model specifically for low-power embedded devices, aiming to improve the accuracy of disease detection while minimizing computational resources.
在医学图像处理领域,深度学习方法在利用 X 射线、磁共振成像(MRI)和计算机断层扫描(CT)等数字图像进行疾病分类方面表现出色。然而,在某些情况下,医务人员对疾病的准确诊断可能具有挑战性,例如解释的复杂性和专家人员的不可获得性、像素级分析的难度等。经过适当培训的计算机辅助诊断(CAD)系统已显示出提高诊断准确性和效率的潜力。随着医疗数据的指数级增长,计算机辅助诊断系统可以在疾病诊断过程中协助医务人员分析和提取有价值的信息。为了克服这些挑战,本研究引入了 CX-RaysNet,这是一种新颖的深度学习框架,旨在自动识别数字胸部 X 光图像中的各种肺部疾病类别。CX-RaysNet 框架的核心新颖之处在于同时整合了卷积层和群卷积层,并使用小尺寸滤波器和滤除正则化。这种现象有助于我们优化模型分辨揭示不同肺部疾病的微小特征的能力。此外,我们还采用了数据增强技术来增强训练和测试数据集,从而增强了模型的鲁棒性和通用性。CX-RaysNet 的性能评估结果令人鼓舞,所提出的模型的多类分类准确率达到了 97.25%。特别值得一提的是,这项研究首次尝试优化专门用于低功耗嵌入式设备的模型,旨在提高疾病检测的准确性,同时最大限度地减少计算资源。
{"title":"Detection of multi-class lung diseases based on customized neural network","authors":"Azmat Ali, Yulin Wang, Xiaochuan Shi","doi":"10.1111/coin.12649","DOIUrl":"https://doi.org/10.1111/coin.12649","url":null,"abstract":"<p>In the medical image processing domain, deep learning methodologies have outstanding performance for disease classification using digital images such as X-rays, magnetic resonance imaging (MRI), and computerized tomography (CT). However, accurate diagnosis of disease by medical personnel can be challenging in certain cases, such as the complexity of interpretation and non-availability of expert personnel, difficulty at pixel-level analysis, etc. Computer-aided diagnostic (CAD) systems with proper training have shown the potential to enhance diagnostic accuracy and efficiency. With the exponential growth of medical data, CAD systems can analyze and extract valuable information by assisting medical personnel during the disease diagnostic process. To overcome these challenges, this research introduces CX-RaysNet, a novel deep-learning framework designed for the automatic identification of various lung disease classes in digital chest X-ray images. The core novelty of the CX-RaysNet framework lies in the integration of both convolutional and group convolutional layers, along with the usage of small filter sizes and the incorporation of dropout regularization. This phenomenon helps us optimize the model's ability to distinguish minute features that reveal different lung diseases. Additionally, data augmentation techniques are implemented to augment the training and testing datasets, which enhances the model's robustness and generalizability. The performance evaluation of CX-RaysNet reveals promising results, with the proposed model achieving a multi-class classification accuracy of 97.25%. Particularly, this study represents the first attempt to optimize a model specifically for low-power embedded devices, aiming to improve the accuracy of disease detection while minimizing computational resources.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diffusion models can generate high-quality images and have attracted increasing attention. However, diffusion models adopt a progressive optimization process and often have long training and inference time, which limits their application in realistic scenarios. Recently, some latent space diffusion models have partially accelerated training speed by using parameters in the feature space, but additional network structures still require a large amount of unnecessary computation. Therefore, we propose the Contour Wavelet Diffusion method to accelerate the training and inference speed. First, we introduce the contour wavelet transform to extract anisotropic low-frequency and high-frequency components from the input image, and achieve acceleration by processing these down-sampling components. Meanwhile, due to the good reconstructive properties of wavelet transforms, the quality of generated images can be maintained. Second, we propose a Batch-normalized stochastic attention module that enables the model to effectively focus on important high-frequency information, further improving the quality of image generation. Finally, we propose a balanced loss function to further improve the convergence speed of the model. Experimental results on several public datasets show that our method can significantly accelerate the training and inference speed of the diffusion model while ensuring the quality of generated images.
{"title":"Contour wavelet diffusion: A fast and high-quality image generation model","authors":"Yaoyao Ding, Xiaoxi Zhu, Yuntao Zou","doi":"10.1111/coin.12644","DOIUrl":"https://doi.org/10.1111/coin.12644","url":null,"abstract":"<p>Diffusion models can generate high-quality images and have attracted increasing attention. However, diffusion models adopt a progressive optimization process and often have long training and inference time, which limits their application in realistic scenarios. Recently, some latent space diffusion models have partially accelerated training speed by using parameters in the feature space, but additional network structures still require a large amount of unnecessary computation. Therefore, we propose the Contour Wavelet Diffusion method to accelerate the training and inference speed. First, we introduce the contour wavelet transform to extract anisotropic low-frequency and high-frequency components from the input image, and achieve acceleration by processing these down-sampling components. Meanwhile, due to the good reconstructive properties of wavelet transforms, the quality of generated images can be maintained. Second, we propose a Batch-normalized stochastic attention module that enables the model to effectively focus on important high-frequency information, further improving the quality of image generation. Finally, we propose a balanced loss function to further improve the convergence speed of the model. Experimental results on several public datasets show that our method can significantly accelerate the training and inference speed of the diffusion model while ensuring the quality of generated images.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.
{"title":"Novel mixture allocation models for topic learning","authors":"Kamal Maanicshah, Manar Amayri, Nizar Bouguila","doi":"10.1111/coin.12641","DOIUrl":"https://doi.org/10.1111/coin.12641","url":null,"abstract":"<p>Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Shu, Fuxi Zhu, Zhongqiu Zhang, Min Zhang, Jie Yang, Yi Wang, Jun Wang
The Internet of Vehicles (IoV) autonomous driving technology based on deep learning has achieved great success. However, under the tunnel environment, the computer vision-based IoV may fail due to low illumination. In order to handle this issue, this paper deploys an image enhancement module at the terminal of the IoV to alleviate the low illumination influence. The enhanced images can be submitted through IoT to the cloud server for further processing. The core algorithm of image enhancement is implemented by a dynamic graph embedded transformer network based on federated learning which can fully utilize the data resources of multiple devices in IoV and improve the generalization. Extensive comparative experiments are conducted on the publicly available dataset and the self-built dataset which is collected under the tunnel environment. Compared with other deep models, all results confirm that the proposed graph embedded Transformer model can effectively enhance the detail information of the low-light image, which can greatly improve the following tasks in IoV.
{"title":"Graph embedded low-light image enhancement transformer based on federated learning for Internet of Vehicle under tunnel environment","authors":"Yuan Shu, Fuxi Zhu, Zhongqiu Zhang, Min Zhang, Jie Yang, Yi Wang, Jun Wang","doi":"10.1111/coin.12648","DOIUrl":"https://doi.org/10.1111/coin.12648","url":null,"abstract":"<p>The Internet of Vehicles (IoV) autonomous driving technology based on deep learning has achieved great success. However, under the tunnel environment, the computer vision-based IoV may fail due to low illumination. In order to handle this issue, this paper deploys an image enhancement module at the terminal of the IoV to alleviate the low illumination influence. The enhanced images can be submitted through IoT to the cloud server for further processing. The core algorithm of image enhancement is implemented by a dynamic graph embedded transformer network based on federated learning which can fully utilize the data resources of multiple devices in IoV and improve the generalization. Extensive comparative experiments are conducted on the publicly available dataset and the self-built dataset which is collected under the tunnel environment. Compared with other deep models, all results confirm that the proposed graph embedded Transformer model can effectively enhance the detail information of the low-light image, which can greatly improve the following tasks in IoV.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Chi Chen, Song-Yi Hsu, Xin Xie, Saru Kumari, Sachin Kumar, Joel Rodrigues, Bander A. Alzahrani
In a smart city, IoT devices are required to support monitoring of normal operations such as traffic, infrastructure, and the crowd of people. IoT-enabled systems offered by many IoT devices are expected to achieve sustainable developments from the information collected by the smart city. Indeed, artificial intelligence (AI) and machine learning (ML) are well-known methods for achieving this goal as long as the system framework and problem statement are well prepared. However, to better use AI/ML, the training data should be as global as possible, which can prevent the model from working only on local data. Such data can be obtained from different sources, but this induces the privacy issue where at least one party collects all data in the plain. The main focus of this article is on support vector machines (SVM). We aim to present a solution to the privacy issue and provide confidentiality to protect the data. We build a privacy-preserving scheme for SVM (SecretSVM) based on the framework of federated learning and distributed consensus. In this scheme, data providers self-organize and obtain training parameters of SVM without revealing their own models. Finally, experiments with real data analysis show the feasibility of potential applications in smart cities. This article is the extended version of that of Hsu et al. (Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. ACM; 2020:904-906).
{"title":"Privacy preserving support vector machine based on federated learning for distributed IoT-enabled data analysis","authors":"Yu-Chi Chen, Song-Yi Hsu, Xin Xie, Saru Kumari, Sachin Kumar, Joel Rodrigues, Bander A. Alzahrani","doi":"10.1111/coin.12636","DOIUrl":"https://doi.org/10.1111/coin.12636","url":null,"abstract":"<p>In a smart city, IoT devices are required to support monitoring of normal operations such as traffic, infrastructure, and the crowd of people. IoT-enabled systems offered by many IoT devices are expected to achieve sustainable developments from the information collected by the smart city. Indeed, artificial intelligence (AI) and machine learning (ML) are well-known methods for achieving this goal as long as the system framework and problem statement are well prepared. However, to better use AI/ML, the training data should be as global as possible, which can prevent the model from working only on local data. Such data can be obtained from different sources, but this induces the privacy issue where at least one party collects all data in the plain. The main focus of this article is on support vector machines (SVM). We aim to present a solution to the privacy issue and provide confidentiality to protect the data. We build a privacy-preserving scheme for SVM (SecretSVM) based on the framework of federated learning and distributed consensus. In this scheme, data providers self-organize and obtain training parameters of SVM without revealing their own models. Finally, experiments with real data analysis show the feasibility of potential applications in smart cities. This article is the extended version of that of Hsu et al. (Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. ACM; 2020:904-906).</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Jayasakthi Velmurugan, G. Sumathy, K. V. Pradeep
Fuzzy matching techniques are the presently used methods in translating the words. Neural machine translation and statistical machine translation are the methods used in MT. In machine translator tool, the strategy employed for translation needs to handle large amount of datasets and therefore the performance in retrieving correct matching output can be affected. In order to improve the matching score of MT, the advanced techniques can be presented by modifying the existing fuzzy based translator and neural machine translator. The conventional process of modifying architectures and encoding schemes are tedious process. Similarly, the preprocessing of datasets also involves more time consumption and memory utilization. In this article, a new spider web based searching enhanced translation is presented to be employed with the neural machine translator. The proposed scheme enables deep searching of available dataset to detect the accurate matching result. In addition, the quality of translation is improved by presenting an optimal selection scheme for using the sentence matches in source augmentation. The matches retrieved using various matching scores are applied to an optimization algorithm. The source augmentation using optimal retrieved matches increases the translation quality. Further, the selection of optimal match combination helps to reduce time requirement, since it is not necessary to test all retrieved matches in finding target sentence. The performance of translation is validated by measuring the quality of translation using BLEU and METEOR scores. These two scores can be achieved for the TA-EN language pairs in different configurations of about 92% and 86%, correspondingly. The results are evaluated and compared with other available NMT methods to validate the work.
{"title":"Novel algorithm machine translation for language translation tool","authors":"K. Jayasakthi Velmurugan, G. Sumathy, K. V. Pradeep","doi":"10.1111/coin.12643","DOIUrl":"https://doi.org/10.1111/coin.12643","url":null,"abstract":"<p>Fuzzy matching techniques are the presently used methods in translating the words. Neural machine translation and statistical machine translation are the methods used in MT. In machine translator tool, the strategy employed for translation needs to handle large amount of datasets and therefore the performance in retrieving correct matching output can be affected. In order to improve the matching score of MT, the advanced techniques can be presented by modifying the existing fuzzy based translator and neural machine translator. The conventional process of modifying architectures and encoding schemes are tedious process. Similarly, the preprocessing of datasets also involves more time consumption and memory utilization. In this article, a new spider web based searching enhanced translation is presented to be employed with the neural machine translator. The proposed scheme enables deep searching of available dataset to detect the accurate matching result. In addition, the quality of translation is improved by presenting an optimal selection scheme for using the sentence matches in source augmentation. The matches retrieved using various matching scores are applied to an optimization algorithm. The source augmentation using optimal retrieved matches increases the translation quality. Further, the selection of optimal match combination helps to reduce time requirement, since it is not necessary to test all retrieved matches in finding target sentence. The performance of translation is validated by measuring the quality of translation using BLEU and METEOR scores. These two scores can be achieved for the TA-EN language pairs in different configurations of about 92% and 86%, correspondingly. The results are evaluated and compared with other available NMT methods to validate the work.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Labeling fine-grained objects manually is extremely challenging, as it is not only label-intensive but also requires professional knowledge. Accordingly, robust learning methods for fine-grained recognition with web images collected from Internet of Things have drawn significant attention. However, training deep fine-grained models directly using untrusted web images is confronted by two primary obstacles: (1) label noise in web images and (2) domain variance between the online sources and test datasets. To this end, in this study, we mainly focus on addressing these two pivotal problems associated with untrusted web images. To be specific, we introduce an end-to-end network that collaboratively addresses these concerns in the process of separating trusted data from untrusted web images. To validate the efficacy of our proposed model, untrusted web images are first collected by utilizing the text category labels found within fine-grained datasets. Subsequently, we employ the designed deep model to eliminate label noise and ameliorate domain mismatch. And the chosen trusted web data are utilized for model training. Comprehensive experiments and ablation studies validate that our method consistently surpasses other state-of-the-art approaches for fine-grained recognition tasks in real-world scenarios, demonstrating a significant improvement margin (2.51% on CUB200-2011 and 2.92% on Stanford Dogs). The source code and models can be accessed at: https://github.com/Codeczh/FGVC-IoT.
{"title":"Robust fine-grained visual recognition with images based on internet of things","authors":"Zhenhuang Cai, Shuai Yan, Dan Huang","doi":"10.1111/coin.12638","DOIUrl":"https://doi.org/10.1111/coin.12638","url":null,"abstract":"<p>Labeling fine-grained objects manually is extremely challenging, as it is not only label-intensive but also requires professional knowledge. Accordingly, robust learning methods for fine-grained recognition with web images collected from Internet of Things have drawn significant attention. However, training deep fine-grained models directly using untrusted web images is confronted by two primary obstacles: (1) label noise in web images and (2) domain variance between the online sources and test datasets. To this end, in this study, we mainly focus on addressing these two pivotal problems associated with untrusted web images. To be specific, we introduce an end-to-end network that collaboratively addresses these concerns in the process of separating trusted data from untrusted web images. To validate the efficacy of our proposed model, untrusted web images are first collected by utilizing the text category labels found within fine-grained datasets. Subsequently, we employ the designed deep model to eliminate label noise and ameliorate domain mismatch. And the chosen trusted web data are utilized for model training. Comprehensive experiments and ablation studies validate that our method consistently surpasses other state-of-the-art approaches for fine-grained recognition tasks in real-world scenarios, demonstrating a significant improvement margin (2.51% on CUB200-2011 and 2.92% on Stanford Dogs). The source code and models can be accessed at: \u0000https://github.com/Codeczh/FGVC-IoT.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}